
On the Complexity of Modal Separation Logics

Stéphane Demri

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France

Raul Fervari

FAMAF, Universidad Nacional de Córdoba & CONICET, Argentina

Abstract

We introduce a modal separation logic MSL whose models are memory states from
separation logic and the logical connectives include modal operators as well as sepa-
rating conjunction and implication from separation logic. With such a combination
of operators, some fragments of MSL can be seen as genuine modal logics whereas
some others capture standard separation logics, leading to an original language to
speak about memory states. We analyse the decidability status and the computa-
tional complexity of several fragments of MSL, leading to surprising results, obtained
by designing proof methods that take into account the modal and separation features
of MSL. For example, the satisfiability problem for the fragment of MSL with 3,
the inequality modality 〈6=〉 and separating conjunction ∗ is shown Tower-complete
whereas the restriction either to 3 and ∗ or to 〈6=〉 and ∗ is only NP-complete.

Keywords: separation logics, relation-changing logics, satisfiability, model-checking,
complexity, expressive power.

1 Introduction
Combining modalities and separating connectives. Separation logic is
known as an assertion language to perform verification, by extending Hoare-
Floyd logic in order to verify programs with mutable data structures [27,34].
Local reasoning is a key feature of separation logic and the separating conjunc-
tion ∗ allows us to state properties in disjoint parts of the memory. Moreover,
the separating implication−∗ asserts that whenever a fresh heap satisfies a prop-
erty, its composition with the current heap satisfies another property. Hence,
the separating connectives ∗ and −∗ allow us to evaluate formulae in alterna-
tive models, which is a feature shared with many modal logics such as sabotage
logics [39,29], logics of public announcements (see e.g., [30]), interval temporal
logics [26] or relation-changing logics [4,1].

Many other examples of such logics can be found in the literature (see
also [18]) but the modalities involved in such logics can be of a different na-
ture. For instance, combinations of epistemic logics and abstract separation

180 On the Complexity of Modal Separation Logics

logics (such as variants of BI) can be found in [17,23]. Sometimes, the con-
cept of separation is different and performed at a different level, for instance a
simple separation logic is introduced in [25] in which separation is performed
on valuations instead of being performed on heaps. A slightly different ap-
proach including description logics [5] was investigated in [24,15]. An interest-
ing attempt to get a logic (namely CT2) that captures both a very expressive
description logic and a separation logic (the symbolic heap fragment) can be
found in [15].

Our motivations. Most existing logics combining (epistemic, temporal, etc.)
modalities and separating connectives are multi-dimensional logics and the
modal dimension is often orthogonal with the separation dimension (see
e.g. [10,17,23]), which allows to get proof methods combining adequately the
modal part and the separation part. Our intention in this work is to introduce
a modal separation logic whose models are Kripke-style structures that can
be also viewed as memory states from separation logic, without being multi-
dimensional. As a gain, it is possible to study the computational effects of the
interaction between modalities and separating connectives but within a uni-
form framework and to push further the expressive power of the underlying
modal logics as well as the expressive power of the underlying separation log-
ics. Adding modalities to separation logics happens to be an original means
to work on fragments of first-order separation logics. So, the logic MSL in-
troduced herein can be understood as a hybrid separation logic, by analogy to
hybrid versions of modal logics [7]. Note that a hybrid extension of Boolean BI
is defined in [13], in which nominals are interpreted by heaps whereas herein,
the nominals are interpreted by locations.

Our contributions. We introduce the logic MSL whose models are Kripke-
style structures with domain N (understood as the set of locations) and
the accessibility relation is finite and functional (understood as some heap
h : N →fin N). In MSL, the modal connectives are 3 and the inequal-
ity modality 〈6=〉 [19] whereas the separating connectives are the separating
conjunction ∗ and separating implication −∗ (also known as the magic wand
operator). These connectives allow to update dynamically the model under
evaluation. Therefore, in MSL, 3 provides a means to move within the model
following the accessibility relation, 〈6=〉 adds the possibility to jump to (al-
most) any location of the model, and the connectives ∗ and −∗, removes or
adds edges in the model respectively. The closest logic to MSL is probably
the modal logic of heaps MLH [21] since they share the same class of frames.
However, there are differences, notably MSL has propositional variables (unlike
MLH whose atomic formulae are truth constants) and MSL does not contain
the converse modality and the reflexive transitive closure modality. Moreover,
MSL shares with some logics from [28,12] the feature of having propositional
variables whose interpretation is unrestricted but in such logics, the proposi-
tional variables are interpreted as sets of memory states whereas in MSL, the
variables are interpreted as sets of locations, as usual for modal logics.

Demri, Fervari 181

• MSL restricted to 3 and ∗, written MSL(∗,3), can be viewed as the min-
imal modal separation logic as it witnesses a simple interaction between 3

and, on the other side ∗ and emp (formula stating that the heap domain is
empty). By showing a small model property, we establish that the satisfi-
ability problem for MSL(∗,3) is NP-complete. The same result is shown
for MSL(∗, 〈6=〉) by adapting arguments for the logic of elsewhere [36,20].
To obtain the NP upper bound, we need to show that underlying model-
checking problems are in P, which requires a refined analysis as the model
checking problem for propositional separation logic (even restricted to ∗)
is already PSpace-complete [14].

• As far as decidability is concerned, we show that the satisfiability prob-
lem for MSL(∗,3, 〈6=〉) is decidable by translation into the weak monadic
second-order theory of one unary function shown decidable in [33]. This
extends the decidability proof of 1SL1(∗) from [11] as, now, propositional
variables need to be taken into account. More surprisingly, even though
both MSL(∗,3) and MSL(∗, 〈6=〉) are NP-complete, we establish that
the satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-hard by reduc-
tion from the nonemptiness problem for star-free expressions [31,37,35].
To do so, we show an essential property: the formula ∃ x, y ls(x, y) from
separation logic (see e.g. [6,16]) can be expressed in MSL(∗,3, 〈6=〉), which
allows us to encode finite words. The notion of Tower-completeness is
borrowed from [35].

• Using the fact that ls(x, y) can be expressed in MSL(∗,3, 〈6=〉) we also
establish that MSL (i.e. MSL(∗,3, 〈6=〉) augmented with the magic wand
−∗) admits an undecidable satisfiability problem by using the recent result
from [22] about the undecidability of propositional separation logic (with
∗ and −∗) augmented with the list segment predicate ls.

• Along the paper, we also investigate variants of MSL (or some of its frag-
ments) by slightly modifying the semantics or by adding other modal con-
nectives. For instance, we provide a reduction from the satisfiability prob-
lem for MSL(∗,3) when the models are arbitrary countable Kripke-style
models into global sabotage logic over general models [3].

2 Preliminaries
In this section we introduce the modal separation logic MSL, as well as several
fragments that we briefly compare with propositional separation logic.

2.1 Modal separation logic MSL
Let PROP = {p1, q1, p2, q2, . . .} be a countably infinite set of propositional
variables. Formulae for the logic MSL are defined by the grammar below:

φ ::= p | emp | ¬φ | φ ∨ φ | 3φ | 〈6=〉φ | φ ∗ φ | φ−∗φ,
where p ∈ PROP. An MSL model is a tupleM = 〈N,R,V〉 such thatR ⊆ N×N
is finite and functional, and V : PROP → P(N). Since separation logics are
interpreted on structures representing heaps, our formulas are interpreted on

182 On the Complexity of Modal Separation Logics

models where the accessibility relation is finite and functional. The models
M1 = 〈N,R1,V〉 and M2 = 〈N,R2,V〉 are disjoint if R1 ∩ R2 = ∅; when
this holds, M1]M2 denotes the model corresponding to the disjoint union of
M1 and M2, and M1 ⊆M2 means that M1 and M2 have the same valuation
and R1 ⊆ R2. Given M = 〈N,R,V〉 and l ∈ N, the satisfaction relation |= is
defined below (clauses for Boolean connectives are omitted):

M, l |= p
def⇔ l ∈ V(p)

M, l |= emp
def⇔ R = ∅

M, l |= 3φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R
M, l |= φ1−∗φ2

def⇔ for all M′=〈N,R′,V〉 such that R∪R′ is finite and
functional, and R ∩R′ = ∅,
we have M′, l |= φ1 implies 〈N,R ∪R′,V〉, l |= φ2.

The semantics for the modal operators and the separating connectives is the
standard one, see e.g. [8,34]. Other standard connectives or formulae are used:

• [6=]φ
def
= ¬〈6=〉¬φ and 2φ

def
= ¬3¬φ,

• 〈U〉φ def
= φ ∨ 〈6=〉φ and [U]φ

def
= ¬〈U〉¬φ,

• 〈 ! 〉φ def
= 〈U〉(φ ∧ [6=]¬φ) (unicity of the satisfaction of φ),

• the atomic formula size = 1 is a shortcut for ¬emp ∧ ¬(¬emp ∗ ¬emp).

The satisfiability problem for the logic MSL, takes as input a formula φ and
asks whether there exist an MSL model M and a location l such that M, l |= φ.

Not only our study includes MSL but above all, we also deal with fragments.
For instance, the fragment with Boolean connectives and 3 is the basic modal
logic ML. Otherwise, as a convention, we always consider the Boolean part
and the emptiness constant emp, and we put between parentheses the rest of
(separating or modal) connectives we are considering. The main logics we
consider are MSL(∗,3), MSL(∗, 〈6=〉) and MSL(∗,3, 〈6=〉).

2.2 Nominals, program variables and separation logic in a nutshell
In all the fragments of MSL containing the inequality modality [19], it is known
that nominals from hybrid logics [7] can be used since stating that p holds true
in a unique location can be expressed by 〈 ! 〉p. So, we can freely use nominals.
Syntactically, nominals are taken from PVAR = {x, y, . . .}, that is actually also
used as the set of program variables in separation logic (see below). Indeed,
nominals and program variables are both interpreted by locations, as noticed
in [24]. So, checking the satisfiability status of a formula φ containing x1, . . . ,
xn actually amounts to checking the satisfiability status of (

∧
1≤i≤n〈 ! 〉xi) ∧ φ.

A formula φ is said to be global iff its satisfaction does not depend on the
location and we simply write M |= φ (instead of M, l |= φ). Below, we show

Demri, Fervari 183

why these formulae are important to compare MSL with separation logics.
Indeed, MSL behaves as a standard modal logic since the satisfaction relation
has three arguments (a model, a location and a formula) but it can be also
presented as a separation logic so that the satisfaction relation takes only two
arguments, a model and a global formula. Let us briefly explain why separation
logic can be viewed as a fragment of MSL. A memory state is a pair (s, h) such
that s : PVAR → N (the store) and h : N →fin N is a partial function with
finite domain (the heap). Models of the separation logic SL(∗,−∗) are memory
states. When the respective domains of the heaps h1 and h2 are disjoint, we
write h1] h2 to denote the heap corresponding to the disjoint union of h1 and
h2. Formulae of SL(∗,−∗) are built from

φ ::= x = y | x ↪→ y | emp | ¬φ | φ ∧ φ | φ ∗ φ | φ−∗φ,
where x, y ∈ PVAR. The satisfaction relation |= is defined as follows:

(s, h) |= x = y
def⇔ s(x) = s(y)

(s, h) |= emp
def⇔ dom(h) = ∅

(s, h) |= x ↪→ y
def⇔ s(x) ∈ dom(h) and h(s(x)) = s(y)

(s, h) |= φ1 ∗ φ2
def⇔ there are h1 and h2 such that h1] h2 = h,

(s, h1) |= φ1 and (s, h2) |= φ2
(s, h) |= φ1−∗φ2

def⇔ for all h1, if (dom(h1) ∩ dom(h) = ∅ and
(s, h1) |= φ1), then (s, h] h1) |= φ2.

Any memory state (s, h) can be viewed as the MSL model M = 〈N,R,V〉 such
that R = {(l, h(l)) | l ∈ dom(h)} and the restriction of V to PVAR is equal
to s. Actually, any formula φ of SL(∗,−∗) is satisfiable iff t(φ) is satisfiable in
MSL where t is homomorphic for Boolean and separating connectives and,

t(x = y)
def
= 〈U〉(x ∧ y) t(emp)

def
= emp t(x ↪→ y)

def
= 〈U〉(x ∧3y).

It is worth noting that each formula t(φ) is a global formula of MSL.

2.3 Alternative semantics

A general model M = 〈W,R,V〉 is such that W is an arbitrary countable
set, R ⊆ W ×W and V : PROP → P(W). This corresponds to standard
(countable) Kripke structures with no frame condition. A finite and functional
model M = 〈W,R,V〉 is such that W is a finite set, R ⊆W×W is functional
and V is a valuation. Without loss of generality, we assume W ⊆ N. Each
syntactic fragment L of MSL gives rise to the logic Lf (resp. Lg) where the
models for Lf are finite and functional models (resp. are general models). When
L includes −∗, the definition of |= for Lg is updated as follows:

M, l |= φ1−∗φ2
def⇔ for all M′ = 〈W,R′,V〉 such that R ∩R′ = ∅

M′, l |= φ1 implies 〈W,R ∪R′,V〉, l |= φ2.

Note that the formula (>−∗¬((¬emp)−∗ ⊥)) is valid for MSL but not for
MSLf . The model-checking problem for MSLf is defined in the usual way.
As MSL can be viewed as a fragment of second-order logic (the second-order

184 On the Complexity of Modal Separation Logics

feature is needed to internalise the semantics of separating connectives), the
model-checking problem for MSLf is in PSpace. More surprisingly, we show
that the restriction to either MSLf (∗, 〈6=〉) or MSLf (∗,3) is in P, whereas the
restriction to MSLf (∗,3, 〈6=〉) is already untractable.

Lemma 2.1 The model-checking problem for MSLf (∗,3, 〈6=〉) is PSpace-
hard.

Proof Let Q1 p1 · · · Qn pn φ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀}
and φ is a propositional formula built over {p1, . . . , pn} and the Boolean connec-
tives ∧, ∨ and ¬ (only in front of atomic propositions). Satisfiability problem
for QBF formulae is known to be PSpace-complete [38].

In the reduction of ϕ = Q1 p1 · · · Qn pn φ, we introduce a finite and func-
tional model Mn = 〈W,R,V〉 with W = [0, 2n] such that Q1 p1 · · · Qn pn φ
is satisfiable iff Mn, 0 |= t(ϕ), where t(·) is recursively defined below. The
truth of the propositional variable pi in QBF subformulae is encoded by the
satisfaction of the formula 〈6=〉(pi ∧ p> ∧3>) from MSLf (∗,3, 〈6=〉).

First, let us complete the definition of Mn over the propositional variables
{p>, p1, . . . , pn}.

V(pi)
def
= {i, n+ i}, for all i = 1, . . . , n

V(p>)
def
= [1, n]

R
def
= {(i, 0) | i ∈ [1, 2n]}.

0 Mn

p1

p>
p1

. . .
pn

p>
pn

Let us define the map t as follows (homomorphic for Boolean connectives):

t(pi)
def
= 〈6=〉(pi ∧ p> ∧3>)

t(∃ pi ψ)
def
= (size = 1 ∧ 〈6=〉(pi ∧3>)) ∗ t(ψ)

t(∀ pi ψ)
def
= ¬((size = 1 ∧ 〈6=〉(pi ∧3>)) ∗ ¬t(ψ)).

For every j ∈ [1, n+ 1], we write φj to denote the formula Qj pj · · · Qn pn φ.
By definition, we have φ1 = Q1 p1 · · · Qn pn φ and by convention φn+1 = φ.

Given a model M ⊆Mn and a propositional valuation v, we write M ≈j v
to denote the fact that:
• For all i ∈ [1, j−1], exactly one location in {i, n+ i} has an outgoing edge.
• For all i ∈ [j, n], all the locations in {i, n+ i} have an outgoing edge.
• For all i ∈ [1, j − 1], i has an outgoing edge iff v(pi) = >.

By induction on j, one can show that for all j ∈ [1, n + 1], if M ≈j v, then
M, 0 |= t(φj) iff v |= φj . Details are omitted. So, as Mn ≈1 v for any v, we
have v |= ϕ iff Mn, 0 |= t(φ1). As ϕ is a closed formula and φ1 = ϕ, ϕ is
satisfiable iff Mn, 0 |= t(ϕ). 2

MSL can be seen as a logic with the ability to add or remove edges from
the accessibility relation, closely related to relation-changing modal logics [1].
Below, we discuss the connections between MSL and the global sabotage logic
MSLg(3, 〈gsb〉). Formulae of MSLg(3, 〈gsb〉) extends those of ML by adding
the operator 〈gsb〉 interpreted over general models M = 〈W,R,V〉 as:

Demri, Fervari 185

M, l |= 〈gsb〉φ def⇔ for some (l′, l′′) ∈ R, M−l′,l′′ , l |= φ,

where M−l′,l′′ = 〈W,R \ {(l′, l′′)},V〉. MSLg(3, 〈gsb〉) can be encoded into
MSLg(∗,3) by the translation t that is homomorphic for Boolean connectives
and for 3 and, t(〈gsb〉φ)

def
= (size = 1) ∗ t(φ). We have φ is satisfiable iff

t(φ) is satisfiable for MSLg(∗,3). Similarly, MSL(3, 〈gsb〉) is the variant of
MSLg(3, 〈gsb〉) with MSL models.

3 Decision problems in Tower
Below, we establish that the satisfiability problem for MSL(∗,3, 〈6=〉) is in
Tower [35], the class of problems of time complexity bounded by a tower of
exponentials, whose height is an elementary function of the input. To do so,
we design a reduction to the satisfiability problem for MSLf (∗,3, 〈6=〉) and
then we show that the satisfiability problem for MSLf (∗,3, 〈6=〉) is in Tower
by translation into the weak MSO theory of one unary function. Notice that
the difference between MSL(∗,3, 〈6=〉) and MSLf (∗,3, 〈6=〉) is that models in
MSL(∗,3, 〈6=〉) have finite relations over an infinite set of locations, while the
set of locations in MSLf (∗,3, 〈6=〉) models is finite. This proof is analogous
to the decidability proof for 1SL1(∗) in [11] but our main technical task is to
solve the satisfiability problem for MSL(∗,3, 〈6=〉) by using only propositional
variables that hold true on a finite amount of locations. First, we show that lo-
cations satisfying the same propositional variables and with no successor satisfy
the same formulae.

Lemma 3.1 Let p1, . . . , pn be propositional variables, M = 〈N,R,V〉 be a
model and l 6= l′ be locations such that R(l) = R(l′) = ∅ and, l and l′ agree
on p1, . . . , pn. For all φ in MSL(∗,3, 〈6=〉) built over p1, . . . , pn, M, l |= φ iff
M, l′ |= φ.

Let φ in MSL(∗,3, 〈6=〉) be built over p1, . . . , pn. Let us define T (φ) as

T (φ)
def
= φ∧

∨
X⊆{p1,...,pn}

〈U〉(2 ⊥ ∧
∧
p∈X

p∧
∧
p 6∈X

¬p∧〈6=〉(2 ⊥ ∧
∧
p∈X

p∧
∧
p 6∈X

¬p)).

When 〈6=〉 is not present, the second conjunct can be removed (see Lemma 4.3,
where we take T (φ) = φ). Such a conjunct states that there are two distinct
locations with no successor that agree on propositional variables from X and it
is needed since 〈 ! 〉p ∧ [U]p is satisfiable for MSLf (∗, 〈6=〉) but not for the logic
MSL(∗, 〈6=〉).
Lemma 3.2 φ is satisfiable in MSL(∗,3, 〈6=〉) iff T (φ) is satisfiable in
MSLf (∗,3, 〈6=〉).

The complexity class Tower has been introduced in [35] and sits between
the class of elementary problems and the class of primitive recursive problems.

Theorem 3.3 The satisfiability problem for MSL(∗,3, 〈6=〉) is in Tower.

By Lemma 3.2, there is a reduction from the satisfiability problem for
MSL(∗,3, 〈6=〉) into the satisfiability problem for MSLf (∗,3, 〈6=〉) that works

186 On the Complexity of Modal Separation Logics

in exponential time. There is also a (logspace) reduction from the satisfiabil-
ity problem for MSLf (∗,3, 〈6=〉) into the satisfiability problem for the weak
MSO theory of one unary function whose structures are 〈D, f,=〉 where D is
a countable domain, f is a unary function (‘weakness’ refers to the fact that
the monadic predicates are interpreted by finite sets). This theory is decidable,
see e.g. [9, Corollary 7.2.11] and it can be shown in Tower as it can be re-
duced to the satisfiability to the MSO theory of the infinite binary tree. In the
proof of Theorem 3.3, the reduction from MSLf (∗,3, 〈6=〉) simply internalises
its semantics by using the (weak) second-order feature of the target logic.

In order to conclude this section, we consider the standard converse modal-
ity 3−1 (not originally in MSL), when it interacts with separating connectives.
More precisely,M, l |= 3−1φ

def⇔ M, l′ |= φ, for some l′ ∈ N such that (l′, l) ∈ R.
Although replacing 3 by 3−1 does not sound as leading to a major variant,
we will show that 3−1 already brings new difficulties.

Theorem 3.4 The satisfiability problem for MSL(∗,3−1) is PSpace-hard as
well as the model-checking problem for MSLf (∗,3−1).

Note that MSL(∗,3−1) contains MSL(3−1) that can be viewed as a slight
variant of the modal logic K on finite trees, known to admit a PSpace-complete
satisfiability problem. So, PSpace-hardness of the satisfiability problem for
MSL(∗,3−1) is quite expected.

By using the proof technique from the proof of Theorem 3.3, we can establish
the result below where 3−1 is part of the modal operators.

Theorem 3.5 The satisfiability problem for MSL(∗,3,3−1, 〈6=〉) is in
Tower.

As a conclusion, there is a huge gap for MSL(∗,3−1) between the PSpace-
hardness for the satisfiability problem and the Tower upper bound.

4 NP-complete fragments of MSL
In this section, we show that the satisfiability problems for MSL(∗,3) and for
MSL(∗, 〈6=〉) are NP-complete. In order to establish the NP upper bound,
we reduce the problems to their variants with finite and functional models, we
show a linear-size model property and finally, we prove that the model-checking
problems are in P, dealing in each case with particular technical difficulties.

4.1 The minimal modal separation logic MSL(∗,3)

To show that MSL(∗,3) has a linear-size model property (i.e., the cardinal of
the relation can be bounded), we introduce an equivalence relation s,n∼ (s ≥ 0
is a parameter about the number of edges and n ≥ 1 is a parameter about
the propositional variables) such that s,n∼ -equivalent models satisfy the same
formulae with less than s syntactic resources (to be defined) and built over
{p1, . . . , pn}. First, we need to explain how to decompose models with respect
to the parameters s and n and, the relation s,n∼ is defined by using such a
decomposition. As R is functional, what matters is the structure of R reduced

Demri, Fervari 187

l0

l1

l2

l3

l4

l5

l′0

l′1

l′2

l′3

l′4

l′5

M M′

with s = 5

s?l0 = 4

tl0 = 5

rem?
l0

= 0

with s = 5

s?l0 = tl0 = 4

rem?
l0

= 1

Figure 1. Decomposition.

to at most the s first steps from a given location as well as the total number
of edges, counting up to s. Below, we show that this abstraction is correct
with respect to the expressive power of MSL(∗,3), see e.g. Lemma 4.2. Let
M = 〈N,R,V〉 be a model, l ∈ N and s ≥ 0, we define Wl,s and Rl,s as follows.

• Wl,s
def
= {(i, li) | i ∈ [0, s], ∃ l0, . . . , li, l = l0Rl1 · · · Rli−1Rli}. We also

write tl = max{i | (i, li) ∈Wl,s} (so tl ≤ s).
• Rl,s

def
= {(li, li+1) | i ∈ [0, tl − 1] and (i, li), (i+ 1, li+1) ∈Wl,s}. We also

write s?l
def
= card(Rl,s) and rem?

l = min(s− card(Rl,s), card(R \Rl,s)). So,
s?l ≤ tl ≤ s and s?l + rem?

l ≤ s.
Let M, M′ be models, l, l′ ∈ N and s ≥ 0, n ≥ 1 such that Wl,s and Rl,s

are defined as above and W′l′,s and R′l′,s are related to M′, l′ and s. Let us
define the relation s,n∼ : M, l

s,n∼ M′, l′
def⇔ the conditions below are satisfied:

• We have tl = tl′(
def
= t). Say, Wl,s = {(0, l0), . . . , (t, lt)} and W′l′,s =

{(0, l′0), . . . , (t, l′t)}.
• For all i ∈ [0, t], li in M and l′i in M′ agree on {p1, . . . , pn} ⊂ PROP.
• For all i, j ∈ [0, t− 1], we have li = lj iff l′i = l′j . Hence, s?l = s?l′(

def
= s?).

• We have rem?
l = rem?

l′(
def
= rem?).

The binary relation s,n∼ is an equivalence relation. In Figure 1, M, l0
4,n∼

M′, l′0 (assuming that li and l′i agree on {p1, . . . , pn} for every i ∈ [0, 3], and,
l2/l′2 and l′4 agree too). By contrast, M, l0

5,n∼ M′, l′0 does not hold. Lemma 4.1
below is essential to justify that s,n∼ behaves properly with disjoint unions of
models. Its proof is tedious as numerous cases are needed.

Lemma 4.1 Let s, s1, s2 ≥ 1 with s = s1 + s2, M, l
s,n∼ M′, l′ and M1,M2

be models such that M = M1]M2. There are models M′1 and M′2 such that
M′ = M′1]M′2, M1, l

s1,n∼ M′1, l
′ and M2, l

s2,n∼ M′2, l
′.

188 On the Complexity of Modal Separation Logics

Given a formula φ in MSL(∗,3), let us define its esize (written esize(φ)):

• esize(p)
def
= esize(emp)

def
= 1, esize(¬φ)

def
= esize(φ), esize(3φ)

def
= 1 + esize(φ),

• esize(φ ∧ ψ)
def
= max(esize(φ), esize(ψ)), esize(φ ∗ ψ)

def
= esize(φ) + esize(ψ).

Note that esize(φ) is greater than the modal degree of φ, and approximatively,
esize(φ) provides an upper bound on the number of edges that need to be
considered in a model for φ (so it will play the role of the value s). For technical
reasons, we have assumed that esize(p) = 1, so that esize(φ) ≥ 1 for any φ.

Lemma 4.2 Let s, n ≥ 1. For all formulae φ in MSL(∗,3) with esize(φ) ≤ s

and built over p1, . . . , pn, we have M, l
s,n∼ M′, l′ implies M, l |= φ iff M′, l′ |= φ.

The following quantitative result is crucial to get the NP upper bound.

Lemma 4.3 Let φ be a formula in MSL(∗,3). φ is satisfiable iff φ is satisfiable
in a finite and functional model with card(R) ≤ esize(φ).

It remains to show that the model-checking problem for MSLf (∗,3) is in P.
The main difficulty rests on the fact that evaluating an ∗-formula may require
to consider an exponential number of pairs of disjoint submodels. Fortunately,
only a polynomial amount of disjoint unions are shown relevant. At the begin-
ning of this section, we defined a decomposition of any MSL model based on
the parameter s ≥ 0. Such a decomposition was useful to show Lemma 4.3.
A similar decomposition can be done with finite and functional models. More
precisely, let M = 〈W,R,V〉 be a finite and functional model and l ∈W. One
can easily define the set Wl,s, the relation Rl,s and the values tl, s?l and rem?

l .
Consequently, an equivalence relation s,n∼ can be also defined on finite and func-
tional pointed models leading to a natural variant of Lemma 4.2 involving finite
and functional models instead of MSL models.

In order to check whether M, l |= φ holds, we start by building a submodel
M′ = 〈W,R′,V〉 ⊆ M with card(R′) ≤ esize(φ) and check whether M′, l |= φ
holds. The submodel M′ can be built in polynomial time in the size of M and
in s. In forthcoming Algorithm 1, instead of working with models, we operate
with slightly more abstract structures. An abstract frame up to s is a pair
F = ((l0, . . . , lt), r) where r ≥ 0, (l0, . . . , lt) ∈ N+ (standing for locations linked
by edges) and the conditions below hold:

(truncation) t∗ + r ≤ s and t ≤ s with t∗ = card({(li, li+1) | i ∈ [0, t− 1]}).
(maximality) t < s implies there is no i < t such that li = lt.
(functionality) for all i < j < t, we have li = lj implies t = s and li+1 = lj+1.

Given a finite and functional model M = 〈W,R,V〉, l ∈ W, and
s ≥ 0, we write abst(M, l, s) to denote the abstraction ((l0, . . . , lt), r) with
{(0, l0), . . . , (t, lt)} = Wl,s and r = rem?

l . An abstract frame is not ex-
plicitly equipped with a propositional valuation but in forthcoming Algo-
rithm 1, we manipulate such structures as the associated propositional val-
uation will be systematically the one induced by the valuation of the input
model. Let shrink(M, l, s) be the finite and functional model M′ = 〈W,R′,V〉
such that R′

def
= {(li, li+1) | i ∈ [0, t − 1]} ∪ {(n1, n′1), . . . , (nr, n

′
r)}, where

Demri, Fervari 189

{(n1, n′1), . . . , (nr, n
′
r)} is a set of r egdes in R \Rl,s and the locations n1, . . . ,

nr are minimal. Lemma 4.4 below justifies the correctness of the abstraction.

Lemma 4.4 Let s ≥ 0, M = 〈W,R,V〉 be finite and functional and l ∈W with
M′ = shrink(M, l, s). Then M, l

s,n∼ M′, l and abst(M, l, s) = abst(M′, l, s).

Let us define a notion of disjoint union between abstract frames to mimic
the disjoint union of models. Let s = s1 + s2, s, s1, s2 ≥ 1, F = ((l0, . . . , lt), r)
be an abstract frame up to s, Fi = ((li0, . . . , l

i
ti), r

i) be an abstract frame up to
si, with i ∈ {1, 2}. We write F = F1] F2

def⇔ (i)–(v) below hold (i ∈ {1, 2}):
(i) max(t1, t2) ≤ t, t1 × t2 = 0 and, if t > 0 then t1 + t2 > 0.
(ii) (li0, . . . , l

i
ti) = (l0, . . . , lti).

(iii) 0 < ti < min(si, t) implies r3−i > 0.
(iv) 0 < ti implies r1 + r2 ≤ r + t∗ − t∗i .
(v) 0 < ti and r1 + r2 < r + t∗ − t∗i imply ri = si − t∗i or r3−i = s3−i.

Though (i)–(v) sound reasonable at first glance, the best way to understand
what is really needed, is by proving Lemma 4.5 and Lemma 4.6. Similarly, given
abstract frames F1 = ((l10, . . . , l

1
t1), r1) up to s1 and F2 = ((l20, . . . , l

2
t2), r2) up

to s2 with s1 ≤ s2, we write F1 ⊆ F2 whenever (l10, . . . , l
1
t1) is a factor of

(l20, . . . , l
2
t2) and, r1 + t∗1 ≤ r2 + t∗2.

Algorithm 1 below operates with abstract frames and its correctness is
partly based on forthcoming Lemma 4.5 and Lemma 4.6. For instance,
Lemma 4.5 can be understood as a correctness result: disjoint unions of models
lead to the satisfaction of the conditions (i)-(v) at the level of abstract frames.

Lemma 4.5 Let s = s1 + s2 with s, s1, s2 ≥ 1. Let M, M1 and M2 be finite
and functional models such that M = M1] M2. For all l ∈ W, we have
abst(M, l, s) = abst(M1, l, s1)] abst(M2, l, s2).

By contrast, Lemma 4.6 below can be understood as a completeness result:
the satisfaction of (i)-(v) can always be mimicked at the level of models.

Lemma 4.6 Let s = s1 + s2 with s, s1, s2 ≥ 1. Let M be finite and functional,
Fi be an abstract frame up to si (i ∈ {1, 2}) such that abst(M, l, s) = F1]F2.
There are M1 and M2 such that M = M1]M2, Fi = abst(Mi, l, si) (i ∈
{1, 2}).

What is essential is the fact that the number of non-equivalent decompo-
sitions is polynomial and not exponential in the size of F , which is a serious
guarantee to obtain a model checking algorithm running in polynomial time.

Lemma 4.7 Let s = s1 + s2 with s, s1, s2 ≥ 1, F = ((l0, . . . , lt), r) be an
abstract frame up to s. We have card({(F1,F2) | F = F1]F2, Fi up to si}) ≤
2(s+ 1)(s1 + 1)(s2 + 1).

Algorithm 1 below uses first principles of dynamic programming as well as
the map shrink(F , s) defined as follows (abstract version of the shrink con-
struction on models): shrink(((l0, . . . , lt), r), s)

def
= ((l0, . . . , lt′), r

′) with
• t′ = min(s, t),

190 On the Complexity of Modal Separation Logics

• t′∗ = card({l1, . . . , lt′}) and,
• r′ = min(s− t′∗, r + (card({l1, . . . , lt})− t′∗)).

One can show that shrink(((l0, . . . , lt), r), s) ⊆ ((l0, . . . , lt), r) and
shrink(((l0, . . . , lt), r), s) is an abstract frame up to s. Algorithm 1 only com-
putes values for T (shrink(F , esize(ψk)), k) as it would be time-consuming (and
useless) to compute all the values T (F , k). This is enforced by the values in
the for loops and by line 2. The map shrink(·, ·) is also further needed for
conjunctions as the measure esize(·) involves a maximum for conjunctions.

Algorithm 1 Model Checking MSLf (∗,3)

In: A finite and functional model M = 〈W,R,V〉, a location l ∈W, an MSL(∗,3) formula φ
Out: Return 1 iff M, l |= φ.
1: function MC(M, l, φ)
2: ((l0, . . . , lL), R) := abst(M, l, esize(φ)) . card({l1, . . . , lL}) +R ≤ esize(φ)
3: ψ1, . . . , ψM subformulae of φ in increasing size . ψM = φ
4: for k ← 1 to M do
5: for j ← L downto 0 do
6: for len← 0 to max{len′ ∈ [0, L− j] | card({lj , . . . , lj+len′}) ≤ esize(ψk)} do
7: for r ← 0 to max{r′ ∈ [0, R] | card({lj , . . . , lj+len}) + r′ ≤ esize(ψk)} do
8: F := ((lj , . . . , lj+len), r) . F = shrink(F , esize(ψk))
9: case ψk of
10: emp: T (F , k) := 1 if (len = 0 and r = 0), otherwise 0.
11: p: T (F , k) := 1 if lj ∈ V(p), otherwise 0.
12: ¬ψk′ : T (F , k) := 1− T (F , k′) . k′ < k
13: ψk1

∧ ψk2
: . k1, k2 < k

14: T (F , k) := min(T (shrink(F , esize(ψk1
)), k1), T (shrink(F , esize(ψk2

)), k2))
15: 3ψk′ : if (len > 0), F ′ := shrink(((lj+1, . . . , lj+len), r), esize(ψk′)) . k′ < k
16: T (F , k) := 1 if (len > 0) and T (F ′, k′) = 1, otherwise 0.
17: ψk1

∗ ψk2
: . k1, k2 < k

18: s1 := esize(ψk1
); s2 := esize(ψk2

) . esize(ψk) = s1 + s2
19: T (F , k) := max{min(T (F1, k1), T (F2, k2)) | F = F1] F2, Fi up to si}
20: end case
21: return T (((l0, . . . , lL), R),M)

Due to the organisation of the for loops, each time the algorithm computes
T (F , k), it requires values of the form T (F ′, k′), always with F ′ ⊆ F and k′ < k,
so the algorithm is properly defined. The algorithm runs in polynomial time
thanks to Lemma 4.7. The following lemma establishes that the algorithm is
correct and explains what is the intention behind computing the values T (F , k).

Lemma 4.8 For all k ∈ [1,M], for all abstract frames F = ((l, . . .), R′) up to
esize(ψk) with F ⊆ ((l0, . . . , lL), R), when the model-checking algorithm ends,
T (F , k) = 1 iff for all finite and functional submodels M′ ⊆ M such that
abst(M′, l, esize(ψk)) = F , we have M′, l |= ψk.

So the model checking problem for MSLf (∗,3) is in P, and we can conclude.

Theorem 4.9 The satisfiability problem for MSL(∗,3) is NP-complete.

From Section 2, we recall that MSL(3, 〈gsb〉) is defined as a fragment of
MSL(∗,3) with the translation t(〈gsb〉φ)

def
= (size = 1) ∗ t(φ) (global sabotage

modal operator). As a corollary of Theorem 4.9, we obtain the result below.

Demri, Fervari 191

Corollary 4.10 The satisfiability problem of MSL(3, 〈gsb〉) is NP-complete.

4.2 The fragment MSL(∗, 〈6=〉)
We also establish that the satisfiability problem for MSL(∗, 〈6=〉) is NP-
complete and its model-checking problem is in P. To do so, we reduce the
problems from MSL(∗, 〈6=〉) to MSLf (∗, 〈6=〉) and we show a small model prop-
erty. Given φ in MSL(∗, 〈6=〉), let us define its ∗-weight w∗(φ) as follows:

• w∗(p)
def
= 0, w∗(emp)

def
= 1, w∗(¬φ)

def
= w∗(〈6=〉φ)

def
= w∗(φ),

• w∗(φ ∧ ψ)
def
= max(w∗(φ), w∗(ψ)), w∗(φ ∗ ψ)

def
= w∗(φ) + w∗(ψ).

Lemma 4.11 Let α ≥ 0 and M = 〈N,R,V〉 and M′ = 〈N,R′,V〉 be MSL
models such that min(card(R), α) = min(card(R′), α). Then, for all locations
l and formulae φ in MSL(∗, 〈6=〉) such that w∗(φ) ≤ α, we have M, l |= φ iff
M′, l |= φ.

As a corollary, if φ in MSL(∗, 〈6=〉) is satisfiable, then it has a model with
at most w∗(φ) edges. Let us refine this. Let M = 〈N,R,V〉 be an MSL model
with card(R) = β, l ∈ N and φ be in MSL(∗, 〈6=〉) such that M, l |= φ. Let
ψ1, . . . , ψN be the subformulae of φ such that 〈6=〉ψ1, . . . , 〈6=〉ψN are the only
subformulae of φ whose outermost connective is 〈6=〉. For all i ∈ [1, N] and all
β′ ∈ [0, β], we define at most two locations li,β

′

1 and li,β
′

2 as follows.

• Given R′ ⊆ R with card(R′) = β′, we have 〈N,R′,V〉, li,β
′

1 |= ψi and
〈N,R′,V〉, li,β

′

2 |= ψi. By Lemma 4.11, this definition makes sense as two
models with the same valuation and with the same cardinal of the relation
satisfy the same formulae.

• If possible we require that li,β
′

1 and li,β
′

2 are distinct, otherwise if there is
only one location satisfying ψi in 〈N,R′,V〉, we require li,β

′

1 = li,β
′

2 .
• If no location satisfies ψi in 〈N,R′,V〉, then by default li,β

′

1 = li,β
′

2 = l.

Let W def
= {l} ∪ {li,β

′

j | j ∈ {1, 2}, i ∈ [1, N], β′ ∈ [0, β]}.
Lemma 4.12 We have 〈W,R,V〉, l |= φ.

So, MSL(∗, 〈6=〉) satisfies a small model property.

Corollary 4.13 Let φ be a formula in MSL(∗, 〈6=〉). φ is satisfiable iff φ is
MSLf (∗, 〈6=〉) satisfiable in a model with card(W) ≤ 1 + 2|φ| × w∗(φ).

It remains to characterise the complexity of the model-checking problem for
MSLf (∗, 〈6=〉).
Lemma 4.14 The model-checking problem for MSLf (∗, 〈6=〉) is in P.

Proof Let M = 〈W,R,V〉 be a finite and functional model, l ∈W, and φ be
a formula in MSL(∗, 〈6=〉). Let ψ1, . . . , ψM be the subformulae of φ ordered in
increasing size. We assume W = [0,K] for some K ≥ 0, l = 0 and card(R) = β.
In order to determine whether M, l |= φ, we use a labelling algorithm and we
complete a table T (i, j, k) with i ∈ [0,K], j ∈ [0, β] and k ∈ [1,M] that takes
the value 1 iff 〈W,R′,V〉, i |= ψk with card(R′) = j (dynamic programming is

192 On the Complexity of Modal Separation Logics

used here as usual). The polynomial-time upper bound is mainly due to the
fact (see Lemma 4.12) that what matters in a partition {R′1,R′2} of R′ ⊆ R is
the respective cardinalities of R′1 and R′2.

Algorithm 2 Model Checking MSLf (∗, 〈6=〉)
In: A finite and functional model M = 〈[0,K],R,V〉, K ≥ 0, an MSL(∗, 〈6=〉) formula φ
Out: Return 1 iff M, 0 |= φ.
1: function MC(M, l, φ)
2: ψ1, . . . , ψM subformulae of φ in increasing size . ψM = φ
3: β := card(R)
4: for j ← 0 to β do
5: for k ← 0 to M do
6: for i← 0 to K do
7: case ψk of
8: emp: T (i, j, k) := 1 if (j = 0), otherwise 0
9: p: T (i, j, k) := 1 if i ∈ V(p), otherwise 0
10: ¬ψk′ : T (i, j, k) := 1− T (i, j, k′) . k′ < k
11: ψk1

∧ ψk2
: T (i, j, k) := min(T (i, j, k1), T (i, j, k2)) . k1, k2 < k

12: 〈6=〉ψk′ : . k′ < k
13: T (i, j, k) := max(T (1, j, k′), . . . , T (i− 1, j, k′), T (i+ 1, j, k′), . . . , T (K, j, k′))
14: ψk1

∗ ψk2
: . k1, k2 < k

15: T (i, j, k) := max{min(T (i, I, k′1), T (i, J, k
′
2)) | I + J = j and I, J ≥ 0}

16: end case
17: return T (0, β,M)

It is worth noting that computing T (i, j, k) always requires values T (i′, j′, k′)
that have already got a value and the whole procedure requires polynomial-time
in β + M + K. The correctness of T (i, j, k) = 1 iff 〈W,R′,V〉, i |= ψk with
card(R′) = j is then by an easy verification. The satisfaction of M, l |= φ is
therefore stored in T (0, β,M). 2

Again, we are able to establish an NP upper bound.
Theorem 4.15 The satisfiability problem for MSL(∗, 〈6=〉) is NP-complete.

5 MSL(∗,3, 〈6=〉): a Tower-complete fragment of MSL
In this section, we show that the satisfiability problem for MSL(∗,3, 〈6=〉) is
Tower-complete. The upper bound is from Section 3 whereas the proof for
Tower-hardness consists of two parts. First, we show that there is a formula
in MSL(∗,3, 〈6=〉) that characterises the linear structures. Then, we reduce the
nonemptiness problem for star-free expressions into the satisfiability problem.

5.1 Encoding linear structures
The goal of this section is to design a global formula in MSL(∗,3, 〈6=〉), namely
φ∃ls, such that for all modelsM, we haveM |= φ∃ls iff eitherR is empty orR =
{(l0, l1), . . . , (ln−1, ln)} for some n ≥ 1 such that for all i 6= j ∈ [0, n], we have
li 6= lj . In that case, we say that M is linear . Given a finite set X ⊆ PROP,
the relation {(l0, l1), . . . , (ln−1, ln)} encodes the finite word b1 · · · bn where each
letter bj is equal to {p ∈ X | lj ∈ V(p)} (the labelling of the location l0
is irrelevant for the encoding). When R is empty, the pair M, l encodes the
empty string.

Demri, Fervari 193

Note that φ∃ls shall be free of propositional variables, which is not so sur-
prising as it expresses a property about the structure of the model. This cor-
responds to the natural counterpart of the list segment predicate ls(x, y) in
separation logic, defined as follows:

(s, h) |= ls(x, y)
def⇔ either (dom(h) = ∅ and s(x) = s(y)) or

h = {l0 7→ l1, l1 7→ l2, . . . , ln−1 7→ ln} with n ≥ 1,
l0 = s(x), ln = s(y) and for all i 6= j ∈ [0, n], li 6= lj .

So, the formula φ∃ls expresses a property that corresponds to ∃ x, y ls(x, y)
from (first-order) separation logic.

Given an MSL model M = 〈N,R,V〉, let us introduce a few notions that are
helpful to build the formula φ∃ls. As MSL(∗,3, 〈6=〉) does not include 3−1 and
〈?〉 (unlike MLH [21]), we need to characterise linear structures by combining
intricate properties. By way of example, stating that each location has at
most one predecessor can be easily expressed with [U](¬(3−1>∗3−1>)), but,
obviously, this formula does not belong to MSL(∗,3, 〈6=〉).

A loop in M is a sequence of locations (l0, . . . , ln) for some n ≥ 1 such that
l0 = ln and for all i ∈ [0, n−1], (li, li+1) ∈ R. M has at most one maximally
connected component (MCC) whenever for all l, l′ such that R(l) and R(l′) are
non-empty, there is l+ such that (l, l+) ∈ R+ and (l′, l+) ∈ R+, where R+ is the
transitive closure of R. A location l is a leaf in M if R(l) 6= ∅ and R−1(l) = ∅,
and l is a pre-root if R(l) = {l′} for some l′ and R(l′) = ∅. In Figure 2 we
illustrate these concepts. This terminology making reference to trees is best
understood if we think the definitions with respect to R−1.

l0M

l1

l2 l′0M′

l′1

l′2

l′3

l′4 l′′0

M′′

l′′1 . . . l′′n

Figure 2. M is a MCC and a loop, with no leaves and no pre-roots; M′ is a MCC
with three leaves (l′0, l′1 and l′3) and two pre-roots (l′2 and l′3); M′′ is linear.

Obviously, if M is linear, then it is loop-free, it has at most one MCC and
has a unique leaf in case M is non-empty. The result below states the converse,
and below we explain how to express all these properties.

Lemma 5.1 Let M be an MSL model with a non-empty relation. M is linear
iff M is loop-free and has a unique leaf.

Let us introduce the global formula Loop
def
= > ∗ (([U]23>) ∧ ¬emp).

Lemma 5.2 Let M be an MSL model. M |= Loop iff M has at least one loop.

Let us consider the formulae below (whose semantics is given in Lemma 5.3).

PRoot
def
= 32⊥; UniqTreePRoot

def
= ¬Loop ∧ ((¬(¬emp ∗ ¬emp)) ∨ 〈 ! 〉PRoot)

Leaf
def
= (3> ∧ size = 1)∨

(3> ∧ ¬PRoot ∧ ((size = 1 ∧3>) ∗ UniqTreePRoot)).

194 On the Complexity of Modal Separation Logics

Lemma 5.3 Let M = 〈N,R,V〉 be a model and l ∈ N.
(I) M, l |= PRoot iff l is a pre-root.
(II) M, l |= UniqTreePRoot iff M is loop-free and either R is empty or (M has

at most one MCC and a unique pre-root).
(III) Assuming that M |= UniqTreePRoot, we have M, l |= Leaf iff l is a leaf.

The proof is rather tedious and is intrinsically related to the definition of
the formulae. Let φ∃ls be emp∨ (UniqTreePRoot∧ 〈 ! 〉Leaf). By combination of
the previous lemmas and using that if M is linear and non-empty, then M has
at most one MCC and a unique pre-root, we get the result below.

Theorem 5.4 Let M = 〈N,R,V〉 be a model. M |= φ∃ls iff M is linear.

The formula ls(x, y) can be therefore encoded by the formula below:

φls(x,y)
def
= φ∃ls ∧ ((emp ∧ 〈U〉(x ∧ y)) ∨ (〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y))).

5.2 The reduction
In this section, we show that the satisfiability problem for MSL(∗,3, 〈6=〉) is
Tower-hard by reduction from the nonemptiness problem for star-free expres-
sions [31,35]. The proof takes advantage of Theorem 5.4 to encode finite words
and separating conjunction will be helpful to encode concatenation, whereas
complement and union operators in the star-free expressions are taken care by
negation and disjunction, respectively. Our proof is reminiscent to develop-
ments from [21, Section 3] as it is essential to be able to encode finite words.
Instead of reducing the satisfiability problem for Propositional Interval Tem-
poral Logic [32] as done in [21, Section 3], we define a reduction from the
nonemptiness problem for star-free expressions. A star-free expression e over
some alphabet Σ is defined by

e ::= a | ε | e ∪ e | ee | ∼ e,
where a ∈ Σ and ε denotes the empty string. Star-free expressions e are
interpreted by languages L(e) ⊆ Σ∗ as follows:

• L(a)
def
= {a} for all a ∈ Σ; L(ε)

def
= {ε}; L(∼ e) def

= Σ∗ \ L(e);
• L(e ∪ e′) def

= L(e) ∪ L(e′); L(ee′)
def
= {ww′ ∈ Σ∗ | w ∈ L(e),w′ ∈ L(e′)}.

The nonemptiness problem consists in checking whether L(e) 6= ∅. The problem
is shown decidable with a non elementary procedure in [31,37] and refined to
Tower-completeness in [35].

Given a finite alphabet Σ = {a1, . . . , aα}, we use the models encoding finite
words thanks to the formula φ∃ls and furthermore, we require that [U]

∨
i ai

where ai
def
= pi ∧

∧
j 6=i ¬pj . So, for every w ∈ Σ∗, there is a pair M, l encoding

w. We define a relation � that establishes this correspondence: w �M, l
def⇔

M is linear and
• If w = ε, then M has an empty accessibility relation and l is arbitrary.
• Ifw = ai1 · · · ain (n ≥ 1), thenM has n edges and l is the unique leaf. With
R = {(l0, l1), . . . , (ln−1, ln)}, for all k ∈ [1, α], V(pk) = {lj | j ≥ 1, ij = k}.

Demri, Fervari 195

The correspondence between finite words in Σ∗ and pairs M, l satisfies a nice
property as far as splitting a word into two disjoint subwords is concerned.

Lemma 5.5 Let w�M, l with w = w1w2 ∈ Σ∗. There exist linear models M1

and M2 and l′ such that M = M1]M2, w1 �M1, l and w2 �M2, l
′.

Another technical lemma is needed for the proof of Lemma 5.7.

Lemma 5.6 Let w � M, l with M = M1]M2 and, M1 and M2 are linear.
There are w1,w2 ∈ Σ∗ and l′ ∈ N such that w = w1w2, w1 � M1, l and
w2 �M2, l

′.

Each expression e is translated as

T (e)
def
= ([U]

∨
i ai) ∧ φ∃ls ∧ (emp ∧ t(e)) ∨ (¬emp ∧ Leaf ∧ t(e)),

where t(·) is recursively defined. The four disjuncts in t(e1e2) below correspond
to cases depending on the emptiness of subwords.

t(ε)
def
= emp t(ai)

def
= (3ai) ∧ size = 1

t(∼ e) def
= ¬t(e) t(e1 ∪ e2)

def
= t(e1) ∨ t(e2)

t(e1e2)
def
= ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4

ψ1
def
= emp ∧ t(e1) ∧ t(e2) ψ2

def
= (t(e1) ∧ emp) ∗ t(e2) ψ3

def
= t(e1) ∗ (t(e2) ∧ emp)

ψ4
def
= (φ∃ls ∧ ¬emp ∧ t(e1)) ∗ (φ∃ls ∧ ¬emp ∧ 〈U〉(Leaf ∧ t(e2))).

In ψ4, to evaluate t(e2), we move to the unique leaf of the linear structure.

Lemma 5.7 Let w ∈ Σ∗, and M be a linear model such that w � M, l. For
every star-free expression e, we have w ∈ L(e) iff M, l |= t(e).

As a consequence,

Lemma 5.8 Given α ≥ 1, Σ = {a1, . . . , aα} and a star-free expression e built
on Σ, L(e) 6= ∅ iff the formula T (e) is MSL(∗,3, 〈6=〉) satisfiable.

Finally, we get the Tower-completeness.

Theorem 5.9 The satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-
complete.

6 When the magic wand strikes back
In this short section, we show that the satisfiability problem for MSL is actually
undecidable by taking advantage of previous results. All the previous complex-
ity results, deal with fragments that are −∗-free. It is well-known that adding
the separating connective −∗ can dramatically augment the expressive power
or the complexity, see e.g. [11]. Below, the expressive strength of −∗ is again
illustrated, via a reduction from propositional separation logic augmented with
the list segment predicate ls [22]. By contrast, it is known that the modal
logic for heaps MLH restricted to ∗ is decidable [21], but it is open whether the
addition of −∗ leads to undecidability.

First, note that the interval temporal logic with the operators C, D and T
over the class of finite strict orders (equivalently, one may consider only the

196 On the Complexity of Modal Separation Logics

finite intervals of N) is shown to admit an undecidable satisfiability problem
in [26] and to be non recursively enumerable. By contrast, the version of the
logic in which the propositional valuation of an interval only depends on the
first value of the interval (the locality condition) is decidable as satisfiability
can be reduced to the satisfiability problem for first-order logic over 〈N,≤,+1〉.
As we have seen in the paper, the formula φ∃ls can enforce a linear structure
whose labelling depends on the first location (corresponding to the locality
condition) but it is unclear how to reduce the undecidable version to MSL,
even though there is a clear correspondence between the chop operator C and
∗, and between the operators D and T, and −∗. Instead, our undecidability
proof for (full) MSL is by reducing the satisfiability problem for SL(∗,−∗, ls),
recently shown undecidable in [22].

Notice that for the translation of SL(∗,−∗, ls) formulae, the most complex
part is the encoding of the atomic formulae ls(x, y). However, all this work
has already been done in Section 5 when we encode linear structures with
MSL(∗,3, 〈6=〉). Then, what gives us undecidability is essentially the inclusion
of the −∗ operator.

Let us define the translation t(·) from SL(∗,−∗, ls) into MSL for-
mulas, which is homomorphic for Boolean and separation connectives, and

t(emp)
def
= emp t(x = y)

def
= 〈U〉(x ∧ y) t(x ↪→ y)

def
= 〈U〉(x ∧3y)

t(ls(x, y))
def
= φ∃ls ∧ ((emp ∧ 〈U〉(x ∧ y)) ∨ (〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y))),

where x, y are nominals and φ∃ls defined as in Section 5.1. We get the result
below.

Lemma 6.1 Let φ be an SL(∗,−∗, ls) formula. φ is satisfiable iff t(φ) is sat-
isfiable in MSL.

As the satisfiability problem for SL(∗,−∗, ls) is recently shown undecid-
able [22], we get the following result.

Theorem 6.2 The satisfiability problem for MSL is undecidable.

Another consequence is the non-finite axiomatisability of MSL, which is
inherited from SL(∗,−∗, ls). As a corollary, the modal logic for heaps MLH
(including −∗) augmented with propositional variables is undecidable [21] as
MSL is one of its fragments.

Furthermore, the satisfiability problem of MSLg(3, 〈gsb〉) is undecidable [2].
Therefore, when considering general models, the minimal modal separation
logic MSLg(∗,3) is also undecidable (use a map t such that t(〈gsb〉φ)

def
=

(size = 1) ∗ t(φ)).

7 Conclusion
We have introduced the logic MSL and studied several of its fragments. For
MSL(∗,3), we proved that the satisfiability problem is NP-complete whereas
the model-checking problem is in P. A similar complexity characterisation is
provided for MSL(∗, 〈6=〉). Surprisingly, we have shown that the satisfiability
problem for MSL(∗,3, 〈6=〉) is Tower-complete. A key element of our Tower-

Demri, Fervari 197

hardness proof is the ability to express the property ∃ x, y ls(x, y) from sep-
aration logic. Hence, we are able to show that MSL admits an undecidable
satisfiability problem. Along the paper, we also investigated variants of MSL
(or some of its fragments) by slightly modifying the semantics or by adding
other modal connectives. For instance, we have proved that the satisfiability
problem for MSL(3, 〈gsb〉) is (only) NP-complete.

Most of the results are summarised in the table below.

Model checking Satisfiability
(with finite models)

MSL(∗,3), MSL(∗, 〈6=〉) P NP-complete
MSL(∗,3, 〈6=〉) PSpace-complete Tower-complete
MSL PSpace-complete Undecidable
MSL(∗,3−1) PSpace-complete PSpace-hard, in Tower
MSL(3, 〈gsb〉) P NP-complete

Understanding the effects of the interactions between modal operators and sep-
arating connectives is still to be strengthened and many interesting problems
are left open. By way of example, we have shown that the satisfiability problem
for MSL(∗,3−1) is PSpace-hard and in Tower but a complexity characteri-
sation is not yet known. Similarly, the satisfiability problem for MSL(∗,3, 〈6=〉)
is shown Tower-complete, what about its slight variant MSL(∗,3, 〈U〉)? The
decidability status of MSLf and MLH [21] is also open. Finally, the design of
proof systems for modal separation logics remains a challenging question.
Ackowledgements. We would like to thank Alessio Mansutti (LSV, France) for
helpful suggestions and enlightning discussions. This work was partially supported by
ANPCyT-PICTs-2016-0215, SeCyT-UNC, and the Laboratoire International Associé
INFINIS.

References

[1] Areces, C., R. Fervari and G. Hoffmann, Relation-changing modal operators, IGPL 23
(2015), pp. 601–627.

[2] Areces, C., R. Fervari, G. Hoffmann and M. Martel, Satisfiability for relation-changing
logics, JLC (2018), accepted, subject to minor revisions.

[3] Areces, C., R. Fervari, G. Hoffmann and M. Martel, Undecidability of relation-changing
modal logics, in: Dynamic Logic. New Trends and Applications - First International
Workshop, DALI 2017, Brasilia, Brazil, LNCS 10669 (2018), pp. 1–16.

[4] Aucher, G., P. Balbiani, L. Fariñas del Cerro and A. Herzig, Global and local graph
modifiers, ENTCS 231 (2009), pp. 293–307.

[5] Baader, F., I. Horrocks, C. Lutz and U. Sattler, “An Introduction to Description Logic,”
CUP, 2017.

[6] Berdine, J., C. Calcagno and P. O’Hearn, A decidable fragment of separation logic, in:
FST&TCS’04, LNCS 3328 (2004), pp. 97–109.

[7] Blackburn, P., Representation, reasoning, and relational structures: A hybrid logic
manifesto, IGPL 8 (2000), pp. 339–365.

[8] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” CUP, 2001.
[9] Börger, E., E. Grädel and Y. Gurevich, “The Classical Decision Problem,” Perspectives

in Mathematical Logic, Springer, 1997.
[10] Brochenin, R., S. Demri and E. Lozes, Reasoning about sequences of memory states,

APAL 161 (2009), pp. 305–323.

198 On the Complexity of Modal Separation Logics

[11] Brochenin, R., S. Demri and E. Lozes, On the almighty wand, IC 211 (2012), pp. 106–
137.

[12] Brotherston, J. and M. Kanovich, Undecidability of propositional separation logic and
its neighbours, JACM 61 (2014).

[13] Brotherston, J. and J. Villard, Parametric completeness for separation theories, in:
POPL’14 (2014), pp. 453–464.

[14] Calcagno, C., P. O’Hearn and H. Yang, Computability and complexity results for a spatial
assertion language for data structures, in: FSTTCS’01, LNCS 2245 (2001), pp. 108–119.

[15] Calvanese, D., T. Kotek, M. Simkus, H. Veith and F. Zuleger, Shape and content - A
database-theoretic perspective on the analysis of data structures, in: IFM’14, LNCS 8739
(2014), pp. 3–17.

[16] Cook, B., C. Haase, J. Ouaknine, M. Parkinson and J. Worrell, Tractable reasoning in
a fragment of separation logic, in: CONCUR’11, LNCS 6901 (2011), pp. 235–249.

[17] Courtault, J.-R. and D. Galmiche, A modal BI logic for dynamic resource properties, in:
LFCS’13, LNCS 7734 (2013), pp. 134–148.

[18] Dawar, A., P. Gardner and G. Ghelli, Expressiveness and complexity of graph logic, IC
205 (2007), pp. 263–310.

[19] de Rijke, M., The modal logic of inequality, JSL 57 (1992), pp. 566–584.
[20] Demri, S., A simple tableau system for the logic of elsewhere, in: TABLEAUX’96, LNAI

1071 (1996), pp. 177–192.
[21] Demri, S. and M. Deters, Two-variable separation logic and its inner circle, ACM ToCL

2 (2015).
[22] Demri, S., E. Lozes and A. Mansutti, The effects of adding reachability predicates in

propositional separation logic, in: FOSSACS’18, LNCS 10803 (2018), pp. 476–493.
[23] Galmiche, D., P. Kimmel and D. Pym, A substructural epistemic resource logic, in:

ICLA’17, LNCS 10119 (2017), pp. 106–122.
[24] Georgieva, L. and P. Maier, Description logics for shape analysis, in: SEFM’05 (2005),

pp. 321–331.
[25] Herzig, A., A simple separation logic, in: WoLLIC’13, LNCS 8071 (2013), pp. 168–178.
[26] Hodkinson, I., A. Montanari and G. Sciavicco, Non-finite axiomatizability and

undecidability of interval temporal logics with C, D, and T, in: CSL’08, LNCS 5213
(2008), pp. 308–322.

[27] Ishtiaq, S. and P. O’Hearn, BI as an assertion language for mutable data structures, in:
POPL’01 (2001), pp. 14–26.

[28] Larchey-Wendling, D. and D. Galmiche, Nondeterministic phase semantics and the
undecidability of Boolean BI, ACM ToCL 14 (2013).

[29] Löding, C. and P. Rohde, Model checking and satisfiability for sabotage modal logic, in:
FST&TCS’03, LNCS 2914 (2003), pp. 302–313.

[30] Lutz, C., Complexity and succinctness of public announcement logic, in: AAMAS’06
(2006), pp. 137–143.

[31] Meyer, A. and L. Stockmeyer, Word problems requiring exponential time, in: STOC’73
(1973), pp. 1–9.

[32] Moszkowski, B., Reasoning about digital circuits, Technical Report STAN-CS-83-970,
Dept. of Computer Science, Stanford University, Stanford, CA (1983).

[33] Rabin, M., Decidability of second-order theories and automata on infinite trees,
Transactions of the American Mathematical Society 41 (1969), pp. 1–35.

[34] Reynolds, J., Separation logic: A logic for shared mutable data structures, in: LICS’02
(2002), pp. 55–74.

[35] Schmitz, S., Complexity hierarchies beyond Elementary, ACM Transactions on
Computation Theory 8 (2016), pp. 3:1–3:36.

[36] Segerberg, K., A note on the logic of elsewhere, Theoria 47 (1981), pp. 183–187.
[37] Stockmeyer, L., “The Complexity of Decision Problems in Automata Theory and Logic,”

Ph.D. thesis, Department of Electrical Engineering, MIT (1974).
[38] Stockmeyer, L., The polynomial-time hierarchy, TCS 3 (1977), pp. 1–21.
[39] van Benthem, J., An Essay on sabotage and obstruction, in: Mechanizing Mathematical

Reasoning, Essays in Honor of Jörg Siekmann on the Occasion of his 69th Birthday
(2005), pp. 268–276.

	Introduction
	Preliminaries
	Modal separation logic MSL
	Nominals, program variables and separation logic in a nutshell
	Alternative semantics

	Decision problems in Tower
	NP-complete fragments of MSL
	The minimal modal separation logic MSL(,)
	The fragment MSL(,"426830A = "526930B)

	MSL(,,"426830A = "526930B): a Tower-complete fragment of MSL
	Encoding linear structures
	The reduction

	When the magic wand strikes back
	Conclusion
	References

