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Abstract. We report on the zonal variability of mesopelagic

particulate organic carbon remineralization and deep car-

bon transfer potential during the Kerguelen Ocean and

Plateau compared Study 2 expedition (KEOPS 2; October–

November 2011) in an area of the polar front support-

ing recurrent massive blooms from natural Fe fertilization.

Mesopelagic carbon remineralization (MR) was assessed us-

ing the excess, non-lithogenic particulate barium (Baxs) in-

ventories in mesopelagic waters and compared with bacterial

production (BP), surface primary production (PP) and ex-

port production (EP). Results for this early season study are

compared with the results obtained during a previous study

(2005; KEOPS 1) for the same area at a later stage of the

phytoplankton bloom. Our results reveal the patchiness of the

seasonal advancement and of the establishment of remineral-

ization processes between the plateau (A3) and polar front

sites during KEOPS 2. For the Kerguelen plateau (A3 site)

we observe a similar functioning of the mesopelagic ecosys-

tem during both seasons (spring and summer), with low and

rather stable remineralization fluxes in the mesopelagic col-

umn (150–400 m). The shallow water column (∼ 500 m), the

lateral advection, the zooplankton grazing pressure and the

pulsed nature of the particulate organic carbon (POC) trans-

fer at A3 seem to drive the extent of MR processes on the

plateau. For deeper stations (> 2000 m) located on the mar-

gin, inside a polar front meander, as well as in the vicinity

of the polar front, east of Kerguelen, remineralization in the

upper 400 m in general represents a larger part of surface car-

bon export. However, when considering the upper 800 m, in

some cases, the entire flux of exported carbon is remineral-

ized. In the polar front meander, where successive stations

form a time series, two successive events of particle transfer

were evidenced by remineralization rates: a first mesopelagic

and deep transfer from a past bloom before the cruise, and a

second transfer expanding at mesopelagic layers during the

cruise. Regarding the deep carbon transfer efficiency, it ap-

peared that above the plateau (A3 site) the mesopelagic rem-

ineralization was not a major barrier to the transfer of organic

matter to the seafloor (close to 500 m). There, the efficiency

of carbon transfer to the bottom waters (> 400 m) as assessed

by PP, EP and MR fluxes comparisons reached up to 87 % of

the carbon exported from the upper 150 m. In contrast, at the

deeper locations, mesopelagic remineralization clearly lim-

ited the transfer of carbon to depths of > 400 m. For sites at

the margin of the plateau (station E-4W) and the polar front

(station F-L), mesopelagic remineralization even exceeded
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upper 150 m export, resulting in a zero transfer efficiency to

depths > 800 m. In the polar front meander (time series), the

capacity of the meander to transfer carbon to depth > 800 m

was highly variable (0 to 73 %). The highest carbon transfer

efficiencies in the meander are furthermore coupled to in-

tense and complete deep (> 800 m) remineralization, result-

ing again in a near-zero, deep (> 2000 m) carbon sequestra-

tion efficiency there.

1 Introduction

While numerous artificial (Boyd et al., 2000, 2004; Gervais

et al., 2002; Buesseler et al., 2004, 2005; de Baar et al., 2005;

Hoffmann et al., 2006; Boyd et al., 2012; Smetacek et al.,

2012) and natural (Blain et al., 2007; Pollard et al., 2009;

Zhou et al., 2010, 2013) ocean iron-fertilization experiments

in the Southern Ocean have demonstrated the role of iron

in enhancing the phytoplankton biomass and production in

high-nutrient low-chlorophyll (HNLC) regions, determining

to what extent fertilization could modify the transfer of par-

ticulate organic carbon (POC) to the deep ocean is far from

being comprehensively achieved (Lampitt et al., 2008; Mor-

ris and Charette, 2013; Le Moigne et al., 2014; Robinson et

al., 2014). This is partly due to the short term over which the

observations were made, precluding extrapolation to longer

timescales. Moreover, when assessing whether Fe-supply

could induce vertical POC transfer, the magnitude of the ex-

port from the surface is not the only important parameter to

take into account. Indeed, POC fate in the mesopelagic zone

(defined as the 100–1000 m depth layer) is often largely over-

looked although these depth layers are responsible for the

remineralization of most of the POC exported from the sur-

face layer (Martin et al., 1987; Longhurst, 1990; Lampitt and

Antia, 1997; François et al., 2002; Buesseler et al., 2007b;

Buesseler and Boyd, 2009). Only few studies have consid-

ered mesopelagic carbon (C) remineralization rates (Bues-

seler et al., 2007a; Jacquet et al., 2008a, b, 2011a, b; Salter

et al., 2007) to estimate the response of deep POC export

to fertilization. Assessing mesopelagic C remineralization is

pivotal for evaluating remineralization length scale as well as

the timescale of the C storage in the deep ocean. Indeed the

typical depth of the main thermocline, 1000 m (IPCC, WG1,

2007, chapter 5) is often referred to as the horizon, clearly re-

moved from the surface ocean and atmosphere (Passow and

Carlson, 2012). Overall, assessing mesopelagic C reminer-

alization will allow one to better quantify the ocean’s bio-

logical carbon pump and its efficiency in the global C cycle

which holds large uncertainty and is currently under debate

(e.g. from 5 Gt yr−1 in Henson et al., 2011 to 21 Gt C yr−1

in Laws et al., 2000 and 13 Gt yr−1 in the IPCC WG1 re-

port (2013, chapter 6)).

The present work aims at understanding the impact of a

natural iron-induced bloom on the mesopelagic POC rem-

ineralization and zonal variability in the Kerguelen area

(Southern Ocean). Here, C remineralization was assessed

from particulate biogenic Ba (hereafter called excess Ba or

Baxs; mainly forms as barite BaSO4 crystals) contents in the

mesopelagic water column. The link between barite and C

remineralization depends on the fact that this mineral precip-

itates in oversaturated micro-environments (biogenic aggre-

gates) during the process of prokaryotic degradation of sink-

ing POC (Dehairs et al., 1980, 1992, 1997, 2008; Stroobants

et al., 1991, Cardinal et al., 2001, 2005; Jacquet et al., 2007,

2008b, 2011a; Planchon et al., 2013; Sternberg et al., 2007,

2008a, 2008b). Once the aggregates have been remineral-

ized, barites are released and spread through the mesopelagic

layer. Overall, earlier work highlights the fact that suspended

barite in mesopelagic waters builds up over the growing sea-

son and reflects past remineralization activity integrated over

several days to weeks (Dehairs et al., 1997; Cardinal et al.,

2005; Jacquet et al., 2007, 2008b). An algorithm linking

mesopelagic Baxs contents to oxygen consumption (Shopova

et al., 1995; Dehairs et al., 1997) allowed remineralization

of POC fluxes to be estimated for the mesopelagic layer.

Combined with surface C production and export estimates,

mesopelagic Baxs also highlights the deep carbon transfer ef-

ficiency of the system. From earlier studies, the efficiency of

C transfer through the mesopelagic layer was reported to in-

crease under artificially induced (EIFEX; Strass et al., 2005;

Smetacek et al., 2012) and natural (KEOPS; Blain et al.,

2007) Fe-replete conditions (Jacquet et al., 2008a, b; Savoye

et al., 2008) compared to Fe-limited, non-bloom HNLC ref-

erence stations in the Southern Ocean. In contrast, C transfer

efficiency through the mesopelagic layer was reported to be

lower in natural Fe-replete locations during the SAZ-Sense

(Sub-Antarctic Zone Sensitivity to Environmental Change)

cruise off Tasmania (Jacquet et al., 2011a, b). Differences in

plankton community structure and composition (e.g. diatoms

vs. flagellates, type of diatoms) were suggested as possible

causes of such discrepancies in C transfer efficiency through

the mesopelagic layer (Jacquet et al., 2008a, 2011a, b). Also,

differences in integration timescales for the processes that

control the carbon fluxes in artificially vs. naturally Fe fertil-

ized systems may yield an incomplete picture of the C trans-

fer potential and lead to misleading conclusions.

Here, we examine changes in mesopelagic POC reminer-

alization during the early spring (October–November 2011)

KEOPS 2 expedition to the naturally iron-fertilized area east

of Kerguelen Islands. The hydrographic structure of the Ker-

guelen area generates contrasted environments that are dif-

ferently impacted by iron availability and mesoscale activ-

ity. The specific objectives of the present work are to as-

sess the zonal variability of mesopelagic C remineraliza-

tion and deep C transfer potential, and to identify possible

causes of this variability. The same area was visited earlier in

2005 during summer at a late stage of the bloom (KEOPS 1;

January–February 2005), offering a unique opportunity to es-

timate the main carbon fluxes over most of the growth sea-
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Figure 1. (a) Kerguelen Island area in the Southern Ocean with KEOPS 2 sampling zones and MODIS chlorophyll concentrations (mg m−3)

(Chl a map from 11 November 2011, courtesy of F. d’Ovidio) superimposed. 1 refers to station A3; 2 to stations E; 3 to the south–north

transect; 4 to the west–east transect; 5 to station F-L and 6 to reference station R-2; (b) Corresponding stations location. Colours indicate

stations with similar θ − S and Chl a characteristics.

son. Mesopelagic C remineralization estimates are compared

to particle and biological parameters as reported in other

papers included in this issue (Cavagna et al., 2014; Chris-

taki et al., 2014; Dehairs et al., 2014; Lasbleiz et al., 2014;

Laurenceau-Cornec et al., 2015; Planchon et al., 2014; van

der Merve et al., 2015) and in Blain et al. (2007), Christaki

et al. (2008), Jacquet et al. (2008a), Park et al. (2008) and

Savoye et al. (2008).

2 Experiment and methods

2.1 Study area

The KEOPS 2 (Kerguelen Ocean and Plateau compared

Study) cruise was conducted in austral spring at the onset

of the bloom from 10 October to 20 November aboard the

R/V Marion Dufresne (TAAF/IPEV). The KEOPS 2 expe-

dition studied the Kerguelen Plateau area (Indian sector of

the Southern Ocean) which is characterized by the passage

of the polar front (PF), as illustrated in Fig. 1a. The Ker-

guelen Plateau is surrounded by the Antarctic Circumpolar

Current (ACC) whose main branch circulates to the north

of the plateau (Park et al., 2008). A second branch of the

ACC circulates to the south of Kerguelen Islands to later

join a branch of the Fawn Trough Current (FTC). The FTC

has a main northeast direction, but a minor branch splits

away northwestward to join the eastern side of the Kergue-

len Plateau (Park et al., 2008; Fig. 1a). These particular hy-

drographic features generate a mosaic of recurrent massive

bloom patterns in the northeastern part of the plateau, and

the possible sources and mechanisms for fertilization were

investigated during ANTARES 3 (1995; Blain et al., 2001)

and the KEOPS 1 cruise (January–February 2005, late sum-

mer conditions; Blain et al., 2007, 2008). During KEOPS 2

the evolution of Chl a data based on multi-satellite imagery

of the study area revealed the presence of different Chl a

rich plumes (D’Ovidio et al., 2015) (Fig. 1a; e.g. Chl a map

from 11 November 2011). Stations were sampled in distinct

zones covering these different bloom patterns (Fig. 1a) (cor-

responding stations are reported in Fig. 1b): (a) on the shal-

low plateau (station A3; see 1 in Fig. 1a). Note that station

A3 coincides with a site studied during the KEOPS 1 cruise,

and that it was sampled twice over a 27-day period; (b) in

a meander formed by a quasi-permanent retroflection of the

polar front (PF) and topographically steered by the eastern

escarpment (Gallieni Spur) of the Kerguelen Plateau (mainly

stations E, sampled as a quasi-Lagrangian temporal series)

(see 2 in Fig. 1a); (c) along a north–south transect (referred

to as TNS stations; see 3, grey line in Fig. 1a) and a east–

west transect (referred to as TEW stations; see 4, grey line

in Fig. 1a), both crossing the PF; and (d) in the polar front

zone (PFZ) in the vicinity (east) of the PF (station F-L; see 5

in Fig. 1a). Furthermore we also sampled a reference HNLC,

non-bloom, non-Fe-fertilized station southwest of the plateau

(station R-2; see 6 in Fig. 1a). Station locations are given in

Table 1.

Detailed descriptions of the complex physical structure of

the area, circulation, water masses and fronts are given in

Park et al. (2014). Briefly, the main hydrodynamic features

observed during the cruise are the following (see θ − S di-

agram, Fig. 2a): (1) north of the PF, stations in the PFZ

(TNS-1, TEW-8 and F-L) present Antarctic Surface Wa-

ters (AASW; θ ' 4 ◦C and density < 27); θ − S character-

istics between 150 to 400 m at station F-L (and to a lesser

extent at station TNS-1) reveal the presence of interleav-

ing with waters from northern (subantarctic) origin, cen-

tred between the 27.2 and 27.5 kg m−3 density curves, where

Antarctic Intermediate Waters (AAIW) are usually found.

This contrasts with the conditions at station TEW-8, where

there is no evidence of interleaving; (2) stations south of

www.biogeosciences.net/12/1713/2015/ Biogeosciences, 12, 1713–1731, 2015
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Figure 2. (a) Potential temperature θ–salinity S plots and isopycnals for KEOPS 2 profiles, (b) Focus on the upper 200 m water column.

AASW: Antarctic Surface Waters, AAIW: Antarctic Intermediate Waters, WW: winter waters, UCDW and LCDW: Upper and Lower Cir-

cumpolar Deep Water, AABW: Antarctic Bottom Water. Graph constructed using Ocean Data View (Schlitzer, 2002; Ocean Data View;

http://www.awi-bremerhaven.de/GEO/ODV).

Table 1. Station locations, cast numbers and bottom depths during KEOPS 2. Depth-weighted average (DWA) values of mesopelagic Baxs-

(pM) and Baxs-based mesopelagic POC remineralization (MR; mgCm−2 day−1) integrated between 150–400 and 150–800 m depths. See

text for further information on calculation.

Station CTD Long Lat Date of Seafloor DWA DWA MR MR Std. MR MR Std.

cast no. (◦ E) (◦ S) sampling [m] Baxs[pM] Baxs[pM] 150–400 m Uncertainty 150–800 m Uncertainty

150–400 m 150–800 m [mgCm−2 day−1] % [mgCm−2 day−1] %

Plateau

A3-1 4a 72.080 50.629 20 Oct 2011 530 316 – 14 4 – –

A3-2 107a 72.056 50.624 16 Nov 2011 527 267 – 11 5 – –

TEW-3 38 71.018 48.799 31 Oct 2011 560 324 – 28 8 – –

Meander time series

TNS-6 10 72.277 48.779 22 Oct 2011 1885 427 389 31 7 69 17

E-1 27/30 72.187 48.458 29, 30 Oct 2011 2056 387 325 26 6 48 14

E-2 43 72.077 48.523 1 Nov 2011 2003 301 309 15 5 42 13

E-3 50/55 71.967 48.702 3, 4 Nov 2011 1915 258 286 10 4 35 12

E-4E 94/97 72.563 48.715 13, 14 Nov 2011 2210 395 357 27 7 58 15

E-5 113/114 71.900 48.412 18 Nov 2011 1920 402 380 28 7 66 17

Polar front zone

TNS-1 15 71.501 46.833 23 Oct 2011 2280 350 315 22 6 45 14

TEW-8 47 74.999 48.471 2 Nov 2011 2786 199 240 2 4 20 11

F-L 63/68 74.659 48.532 6, 7 Nov 2011 2695 345 328 21 6 49 14

Polar front

E-4W 81/87 71.425 48.765 11, 12 Nov 2011 1384 468 411 36 8 76 18

Antarctic zone

R-2 (reference site) 17/20 66.717 50.359 25, 26 Oct 2011 2300 572 456 50 10 91 20

TNS-8 8 72.240 49.463 21 Oct 2011 1030 473 358 37 8 59 15

a Station A3 (CTD no. 4 and 107); integration up to 354 and 405 m.

the PF exhibit subsurface temperature minima character-

istic of winter waters (WW); below the WW, three wa-

ter masses can be identified, namely: the Upper (tempera-

ture maximum) and Lower (salinity maximum) Circumpo-

lar Deep Water (UCDW and LCDW), and the Antarctic Bot-

tom Water (AABW). These water masses are present roughly

in the following depth intervals: 700 m<UCDW< 1500 m;

1500 m<LCDW< 2500 m; AABW> 2500 m.

Biogeosciences, 12, 1713–1731, 2015 www.biogeosciences.net/12/1713/2015/
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Based on the θ − S characteristics (Fig. 2a, b) and surface

phytoplankton biomasses, we can schematically group the

stations as follows. The R-2 HNLC reference station (white

dot in Fig. 1b) is characterized by a very low biomass (with

low iron contents; Quéroué et al., 2015). Stations TEW-3 and

TNS-8 (black dots) are characterized by low to moderate

biomass and Fe contents. Stations A3 and E-4W (red dots;

south of the PF) as well as stations TNS-1, F-L and TEW-8

(blue dots; north of the PF) are characterized by high biomass

and iron contents. Stations in the core of the PF meander

(green dots; stations TNS-6, E-1, E-2, E-3, E-4E and E-5

considered as a temporal series) are characterized by mod-

erate biomass and iron contents.

2.2 Sampling and analyses

Twenty-two CTD (conductivity, temperature, and depth)

casts (surface to 500–2000 m) were sampled for particu-

late barium (Table 1) using a CTD rosette equipped with

twenty-two 12 L Niskin bottles. Deep particulate Ba profiles

(> 1000 m) were not systematically obtained from the same

CTD cast, but from successive casts sampled closely in time

and space and having similar θ − S data profiles. In the fol-

lowing, we use both the station and CTD numbers to refer to

stations.

Four to 7 L of seawater were filtered onto 47 mm polycar-

bonate membranes (0.4 µm porosity) under slight overpres-

sure supplied by filtered air (0.4 µm). The filters were rinsed

with Milli-Q grade water (< 5 mL) to remove sea salt, dried

(at 50 ◦C) and stored in Petri dishes for later analysis. In the

laboratory, we performed a total digestion of samples using a

tri-acid (0.5 mL HF / 1.5 mL HCl / 1 mL HNO3; all Suprapur

grade) mixture in closed Teflon beakers overnight at 90 ◦C in

a clean pressurized room. After evaporating until nearly dry,

samples were re-dissolved into around 13 mL of 2 % HNO3.

The solutions were analysed for Ba and other major and mi-

nor elements using a ICP-QMS (inductively coupled plasma

quadrupole mass spectrometer; X Series 2 Thermo Fisher)

equipped with collision cell technology (CCT). To correct

instrumental drift and matrix effects, internal standards and

matrix-matched calibrations were used. We analysed several

certified reference materials which consisted of dilute acid-

digested rocks (BHVO-1, JB-3 and JGb-1), natural river-

ine water (SLRS-5) and multi-element artificial solutions for

these external calibrations. Based on analyses of these ex-

ternal standards, accuracy and reproducibility are both bet-

ter than ±5 %. For more details on sample processing and

analysis we refer to Cardinal et al. (2001). Among all ele-

ments analysed, we were particularly interested in Ba and

Al. The presence of sea salt was checked by analysing Na

and the sea-salt particulate Ba contribution was found to be

negligible. Average detection limits equal 0.6 nM for Al and

3 pM for Ba. Detection limits were calculated as 3 times the

standard deviation of the blank measured on board and then

normalized to an average dilution factor of 385, i.e. particles

from around 5 L of Milli-Q water, dissolved in a final vol-

ume of 13 mL as for the samples. Biogenic barium (hereafter

called excess Ba or Baxs) was calculated as the difference be-

tween total particulate Ba and lithogenic Ba using Al as the

lithogenic reference element (Dymond et al., 1992; Taylor

and McLennan, 1985). At most sites and depths, the biogenic

Baxs represented > 95 % of total particulate Ba. Lithogenic

Ba reached up to 20 % of total particulate Ba at some depths

in the upper 80–100 m mainly at station R-2 and stations

north of the polar front (i.e. TEW-8, F-L and TNS-1). The

standard uncertainty (Ellison et al., 2000) of Baxs data ranges

between 5 and 5.5 %. Baxs and Al data are reported in Ap-

pendix A.

2.3 O2 consumption and POC remineralization

The rate of oxygen consumption and particulate organic car-

bon remineralization rate in the mesopelagic layer (later re-

ferred to as MR) can be estimated using an algorithm relating

mesopelagic Baxs contents and oxygen consumption based

on earlier observations in the Southern Ocean (Shopova et

al., 1995; Dehairs et al., 1997, 2008). The detailed calcula-

tions are described in Jacquet et al. (2008a, 2011a). Briefly,

we use the following equations:

JO−2 = (Baxs−Baresidual)/17 450, (1)

Crespired = Z× JO2
×RR, (2)

where JO2
is the O2 consumption (µmol L−1 day−1) and

Crespired is the mineralization rate of organic carbon (in mmol

C m−2 day−1; MR); Baxs is the depth-weighted average

(DWA) Baxs value, i.e. the Baxs inventory divided by the

depth layer considered Z, Baresidual is the residual Baxs sig-

nal (or Baxs background) at zero oxygen consumption and

RR is the Redfield C /O2 molar ratio (127/175; Broecker et

al., 1985). DWA Baxs values were calculated for both layers

at 150 to 400 m (plateau and deep stations) and 150 to 800 m

(deep stations only; see details further below). The residual

Baxs is considered as “preformed” Baxs, left over after par-

tial dissolution and sedimentation of Baxs produced during

a previous phytoplankton growth event. In BaSO4, saturated

waters, such as the ones filling the whole ACC water col-

umn (Monnin et al., 1999), this background Baxs value was

considered to reach 180 to 200 pM, which is rather character-

istic for the deep ocean (> 1000 m) (see Dehairs et al., 1997;

Jacquet et al., 2008a, 2011). In the present study we used a

Baxs background of 180 pM.

We take the opportunity here to also compare O2 con-

sumption rates for the KEOPS 1 expedition (D. Lefèvre, un-

published data) with KEOPS 1 Baxs data published earlier

(Jacquet et al., 2008a). No such O2 consumption data are

available for KEOPS 2. During KEOPS 1, dark community

respiration (DCR) was estimated from changes in the dis-

solved oxygen concentration over 72 h incubations. Discrete

samples were collected at three depths in the mesopelagic

www.biogeosciences.net/12/1713/2015/ Biogeosciences, 12, 1713–1731, 2015
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zone from Niskin bottles and placed into 125 cm3 borosil-

icate glass bottles according to the WOCE (World Ocean

Circulation Experiment) procedure, and oxygen concentra-

tion was determined by Winkler titrations using a photomet-

ric endpoint detector (Williams and Jenkinson, 1982). By

integrating DCR data with the water column, we estimated

the rate of oxygen consumption (referred to as JO2-W). We

compared JO2-W obtained from incubated oxygen samples

with the rate of oxygen consumption based on KEOPS 1

mesopelagic Baxs contents (Eq. 1; later referred to as JO2-

Ba). Dissolved oxygen was measured three times at station

A3 (same location as during KEOPS2) over a 19-day period

(A3 CTD no. 32, 74 and 119). Dissolved oxygen was also

measured at station C11, located off-shelf in less productive

HNLC waters (51.65◦ S, 78.00◦ E; not shown in Fig. 1) and

was sampled two times over a 10-day period (C11 CTD no.

42 and 83). Figure 3 compares JO2-W and JO2-Ba for repeat

stations A3 (no. 32, 74 and 119) and C11 (no. 42 and 83)

(integration between 150–300 m). JO2-W rates range from

0.082 to 0.208 mmol m−2 day−1 at station A3 and from 0.292

to 0.528 mmol m−2 day−1 at station C11. Although JO2-Ba

rates (from 0.846 to 1.555 mmol m−2 day−1) are slightly

higher than JO2-W, JO2 rates are of the same order of mag-

nitude and present the same trend. We observed a signifi-

cant positive correlation between the JO2 rates (R2
=0.90;

p< 0.01), with a slope of 0.64. The difference in oxygen

consumption rates can be explained by the integration time of

both methods (a few hours for the incubations vs. few days to

weeks for Baxs) and by the fact that KEOPS 1 occurred at the

decline of the bloom (late summer; low organic substrates),

which would explain the lower JO2 rates as estimated by the

incubation method.

Overall, these results highlight the need for further con-

straining spatial and temporal variability of deep ocean oxy-

gen utilization via a combination of direct rate measurements

and the Baxs proxy. In the present work, O2 consumption and

POC remineralization were assessed from Baxs inventories

and Eqs. (1) and (2). C remineralization rates are given in

Table 1. Relative standard uncertainties (Ellison et al., 2000)

of C remineralization ranged between 4 and 20 %.

3 Results

3.1 Particulate biogenic Baxs profiles

Baxs profiles in the upper 800 m are reported in Fig. 4.

The complete whole water column data set is given in Ap-

pendix A. From previous studies we know that Baxs in sur-

face waters is distributed over different, mainly non-barite

biogenic phases (see Stroobants et al., 1991; Jacquet et al.,

2007; Cardinal et al., 2005; Sternberg et al., 2005). As such,

these do not reflect POC remineralization processes, in con-

trast to mesopelagic waters where Baxs is mainly composed

of barite (Dehairs et al., 1980) formed during prokaryotic

R²	  =	  0.90	  
y	  =	  0.6443x	  -‐	  0.4867	  

0.0	  
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Figure 3. Rates of oxygen consumption (mmol m−2 day−1) dur-

ing KEOPS 1 as directly measured (JO2-W) and from mesopelagic

Baxs contents (JO2-Ba). Rates are integrated between 150–300 m.

degradation of sinking POC (Martin et al., 1987; Sarmiento

et al., 1993; Buesseler et al., 2007b). For KEOPS 2 we

observed that Baxs concentrations generally increase below

150 m (i.e. they increase above the background level set at

180 pM), but some sites have ocean surface Baxs contents

significantly larger than background (E-1, 896 pM at 21 m;

E4-E, 563 pM at 93 m). Such values are not unusual, and very

high surface values have been observed occasionally in ear-

lier Southern Ocean studies. During KEOPS 1, surface Baxs

maxima at the three A3 repeat stations ranged from 1354

to 5930 pM at 50 m, likely associated with phytoplankton-

derived particles (Jacquet et al., 2008a).

The following part focuses on the mesopelagic zone where

most of the remineralization of exported organic matter takes

place. The Baxs profile for station R-2 (CTD no. 17) dis-

played a characteristic mesopelagic Baxs maximum, reaching

up to 834 pM at 304 m, which is actually one of the highest

values observed for the whole study (Fig. 4a). Baxs profiles

for stations A3 above the Kerguelen Plateau (A3-1 CTD no. 4

and A3-2 CTD no. 107; Fig. 4b) had lower mesopelagic Baxs

content, with values ranging from about 80 to 350 pM. For

both A3 visits, Baxs values increased close to the seafloor,

reaching up to 1108 pM (A3-1, 474 m) and 1842 pM (A3-2,

513 m). In contrast, station E-4W (located further north along

the margin in deeper waters, but with similar θ−S and Chl a

characteristics as station A3) displayed a large mesopelagic

Baxs maximum reaching up to 627 pM at 252 m (Fig. 4c).

Station TEW-3 (located on the Kerguelen Plateau, in waters

with similar θ − S and Chl a characteristics as station TNS-

8) had a profile similar to the one observed at station A3-2,

but compared to plateau sites A3-1 and A3-2, no increased

Baxs contents were observed in bottom water (Fig. 4d). The

other stations of the study area (Fig. 4d–g) have Baxs pro-
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Figure 4. Particulate biogenic Baxs profiles (pM) in the upper 800 m (Fig. 4a–g) and in the upper 2500 m (Fig. 4h). Stations are identified by

CTD cast numbers. BKG: Baxs background (180 pM).

files similar to the one at station E-4W, showing the char-

acteristic Baxs maximum between 200 and 500 m. Note that

for most of the stations, Baxs concentrations in waters below

the mesopelagic maximum did not systematically decrease

to reach the Baxs background level (180 pM; see above). In

some cases Baxs contents significantly higher than residual

Baxs were observed until below 1000 m (see Appendix A).

This is particularly salient at stations TNS-6, E-1, E-2 and F-

L where Baxs values below 1000 m reach 410 pM at 1886 m

(TNS-6) and 436 pM at 1498 m (E-1). These cases of high,

deep Baxs contents clearly contrasted with the values ob-

served at station E4-E (Fig. 4h).

3.2 Depth-weighted average Baxs content of

mesopelagic waters

Since the base of the mixed layer was generally shallower

than 150 m, this depth is taken as the upper boundary of the

mesopelagic domain. The depth-weighted average (DWA)

Baxs contents, calculated for the 150–400 and 150–800 m

depth intervals, are given in Table 1. For the profiles on the

plateau (500 m water column), bottom waters with evidence

of sediment resuspension were not taken into account when

calculating DWA Baxs values (≥ 400 m). Particle size spec-

tra indicated that sediment resuspension occurred especially

at stations A3 and TEW-3 (Jouandet et al., 2014; Lasbleiz

et al., 2014; van der Merve et al., 2015;). Thus, at site A3

(Fig. 4b), DWA Baxs was calculated for the layer between

150 and 354 m for A3-1 (CTD no. 4) and between 150 and

405 m for A3-2 (CTD no. 107). For station TEW-3 (CTD no.

38), DWA Baxs was calculated for the water layer between

150 and 400 m (Fig. 4d). For the deep sites, we considered

both the 150–400 and the 150–800 m depth intervals when

calculating the DWA Baxs contents. Depth-weighted aver-

age Baxs values were translated into carbon remineralization

rates using Eqs. (1) and (2) given above. These rates ranged

from 2 to 91 mg C m−2 day−1 (Table 1).

DWA Baxs values range from 199 to 572 pM (Table 1)

and fit within the range reported for polar front areas dur-

ing previous studies (Cardinal et al., 2001, 2005; Jacquet et

al., 2005, 2008a, b, 2011; Planchon et al., 2013). For the

KEOPS 2 cruise the main observed features are as follows:

a. Unexpectedly, the highest DWA Baxs value of the

whole study area (572 pM; 150–400 m) was observed

at the reference R-2 site. For R-2, Bowie et al. (2014),

Quéroué et al. (2015) and van der Merve et al. (2015) re-

ported local maxima in particulate and dissolved trace

metals at 500 m and deeper, reflecting lateral trans-

port of lithogenic matter possibly originating from the

Leclaire Rise (a large seamount located west of R-

2). Similarly, Lasbleiz et al. (2014) observed a max-

imum of lithogenic silica (LSi) at 500 m, confirm-

ing lithogenic inputs there. However, we note that the
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mesopelagic Baxs maximum at R-2 occurs at shallower

depths, around 300 m, and that there is no evidence for

elevated values at 500 m where the previous authors re-

ported higher trace element and silica concentrations.

Also, as reported above (see Sect. 2.2 and Appendix A),

the higher lithogenic Ba fractions at R-2 (up to 20 % of

the total Ba) occur only in the upper 80 m. Moreover,

we note that surface waters at R-2 has already experi-

enced some nitrate consumption as compared to subsur-

face winter waters (Tmin waters). Indeed, surface wa-

ters had 10 % less nitrate than winter water (26 µM at

5 m vs. 29 µM at 200 m), and the isotopic enrichment

of this surface nitrate confirmed a suggestion of uptake

(see Dehairs et al., 2014). Also, Lasbleiz et al. (2014)

reported relatively low Si : C and Si : N ratios for sur-

face ocean suspended matter), pointing to the develop-

ment of a diatom assemblage just prior to the sampling,

consistent with the high dissolution rates of biogenic sil-

ica (BSi) that Closset et al. (2014) reported for R-2 sur-

face waters. It is therefore likely that the mesopelagic

Baxs content at R-2 indeed reflects remineralization of

organic material that was fuelled by an important past

early spring production and export event. Similarly, dur-

ing late winter (November 1993) F. Dehairs (unpub-

lished results) observed the presence of significant num-

bers of barite microcrystals in mesopelagic waters at the

KERFIX time series station (50◦40′ S, 68◦25′ E) located

east of R-2. Results would thus suggest the occurrence

in this HNLC area of recurrent brief early spring di-

atom productive period pulses and subsequent export

and remineralization activity in the underling layers.

Chl a satellite images (Giovanni – Interactive Visualiza-

tion and Analysis, NASA GES DISC) corroborate that

the R-2 and KERFIX area is occasionally subject to en-

hanced biomass during early spring;

b. The two successive visits (27 days apart) at site A3

yielded relatively low DWA Baxs values of 267 and

316 pM, and a quite similar value was observed for the

shallow station TEW-3 (324 pM), located further north

on the plateau and north of the PF. Note that for com-

parison purposes, we recalculated the DWA Baxs and

MR values of KEOPS 1 by considering upper and lower

mesopelagic layer boundaries of 150 and 400 m rather

than 125 and 450 m, as in Jacquet et al. (2008a). Also,

in the aforementioned study the high Baxs contents ob-

served near the seafloor were not excluded from the

calculations, while they are here. These increased ben-

thic boundary layer Baxs contents (observed also during

KEOPS 2) are due to sediment resuspension which ex-

tended up to 70 m above the seafloor during KEOPS 1

(Blain et al., 2008; Venchiarutti et al., 2008; Armand

et al., 2008). Because of these slightly different depth

intervals over which Baxs values were integrated, the

KEOPS 1 values discussed here will be slightly differ-

ent from those reported in Jacquet et al. (2008a). At

the other depths, the lithogenic Ba contribution at A3

(KEOPS 2) was only minor;

c. The time series stations in the polar front meander

had DWA Baxs contents ranging from 258 to 427 pM

(150–400 m), so reaching values exceeding those on

the plateau. For these time series, stations’ values de-

creased between day 0 (TNS-6) and 12 (E-3), and then

increased again at days 22 (E-4E) and 27 (E-5). Sta-

tions E-4W and TNS-8, above the plateau but in deeper

waters close to the Kerguelen margin, at the edge the

high biomass plume (Fig. 1), had the highest DWA Baxs

values (468 and 473 pM, respectively; 150–400 m), not

considering the R-2 reference station. The polar front

F-L site, although located within the eastern part of the

high biomass plume, had a smaller DWA Baxs value

of 345 pM (150–400 m) and the nearby station TEW-8

had the lowest DWA Baxs value of the whole study area

(199 pM; 150–400 m).

4 Discussion

4.1 Mesopelagic Baxs and bacterial production

Previous studies revealed that the shape of the column-

integrated bacterial production (BP) profile (i.e. the attenu-

ation length scale) was important in setting the Baxs signal

in the mesopelagic zone (Dehairs et al., 2008; Jacquet et al.,

2008a, 2011a). Mesopelagic Baxs content is smaller when

most of the column-integrated BP is restricted to the upper

mixed layer (indicating an efficient, near-complete reminer-

alization within the surface), compared to situations where

a significant part of integrated BP was located deeper in the

water column (reflecting significant deep bacterial activity

and POC export). During KEOPS 2 the incorporation of 3H-

leucine was used to estimate bacterial production. BP data

are described in Christaki et al. (2014). In Fig. 5 we compare

column-integrated BP at 150 m over 400 m (BP150 / 400)

and DWA Baxs for the 150–400 m depth interval, along with

the relationship obtained during KEOPS 1 (BP200 / 125 and

150–450 m DWA Baxs; Jacquet et al., 2008a; Christaki et al.,

2008). Excluding stations A3, E-1, E-2 and E-3, KEOPS 2

data presented a significant correlation (R2
=0.88; p< 0.01)

and a similar trend to the one reported for KEOPS 1. A simi-

lar picture was obtained when integrating DWA Baxs and BP

up to 800 m (not shown). The time series “E” stations in the

meander revealed a shift from stations E-1, E-2 and E-3 to

stations E-4E and E-5, i.e. towards the trend reported above.

A shift was also apparent at station A3 from KEOPS 2 (early

spring) to KEOPS 1 (late summer). It is thus possible that

results reflect the occurrence of different stages of bloom ad-

vancement. The large variability of the Baxs and BP relation-

ship during KEOPS 2, especially at A3 site and in the me-
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Table 2. Comparison of mesopelagic POC remineralization (MR) with primary production (PP) and export production (EP). All fluxes in

mg Cm−2 day−1. r ratio is the ratio of Mr over EP. The C sequestration (or transfer) efficiency at 400 and 800 m (T400, T800) is the fraction

of C export (EP) at 150 m exiting through the 400 m (T400) or the 800 m (T800) horizons. See text for further information on calculation.

Station CTD MLD Ezb PPc Ez EPd MR MR EP/PP r ratio r ratio T400 T800

[m] [m] [mgCm−2 day−1] 150 m 150–400 m 150–800 m 150–400 m 150–800 m

[mgCm−2 day−1] [mgCm−2 day−1] [mgCm−2 day−1]

Plateau

A3-1 4a 161 – – 47 14 – – 0.29 – 0.70 –

A3-2 107a 165 38 2172 85 11 – 0.04 0.13 – 0.87 –

Reference site

R-2 17/20 111 92 132 30 50 91 0.23 1.65 3.02 0 0

Meander time series

E-1 27/30 84 64 578 100 26 48 0.17 0.26 0.48 0.74 0.52

E-3 50/55 41 68 748 130 10 35 0.17 0.08 0.27 0.92 0.73

E-4E 94/97 77 34 1037 48 27 58 0.05 0.57 1.21 0.43 0

E-5 113/114 36 54 1064 84 28 66 0.08 0.33 0.78 0.67 0.22

Polar front zone

F-L 63/68 21 29 3380 43 21 49 0.01 0.48 1.13 0.52 0

Polar front

E-4W 81/87 67 31 3287 54 36 76 0.02 0.67 1.41 0.33 0

a Station A3 (CTD4 and 107); MR integrated up to 354 and 405 m. b Ez euphotic layer (until 1 % PAR level). c PP data from Cavagna et al. (2015). d EP data from Planchon et al. (2015).
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Figure 5. Regression of the ratio of integrated bacterial production

(BP) in the upper 150 m over integrated BP in the upper 400 m ver-

sus depth-weighted average (DWA) mesopelagic Baxs (pM; 150–

400 m) during KEOPS 2. KEOPS 1 data (dots) are reported for

comparison (Christaki et al., 2008; Jacquet et al., 2008a).

ander, could reflect the temporal evolution and patchiness of

the establishment of mesopelagic remineralization processes

in this polar front area.

4.2 Fate of exported organic C in the mesopelagic zone

and deep water column

An important question relates to the fate of the exported

POC: how much of this POC is respired in the mesopelagic

waters and how much escapes remineralization and is ex-

ported to deeper layers where longer-term sequestration is

likely (see e.g. Passow and Carlson, 2012; Robinson et

al., 2014; Schneider et al., 2008). To address these ques-

tions, we defined two ratios: (1) the mesopelagic C rem-

ineralization efficiency (r ratio in Table 2), which is the ra-

tio of mesopelagic C remineralization (MR, based on the

DWA Baxs concentrations) over C export (EP) from the

150 m horizon (based on 234Th, see Planchon et al., 2014),

and (2) the C transfer efficiency at 400 and 800 m (i.e.

T400, T800 in Table 2), which is the fraction of C ex-

port (EP) at 150 m passing through the 400 m (T400) or

the 800 m (T800) horizons (e.g. T400=EP400 / EP150= 1–

(MR / EP150), with MR / EP150= r ratio; see above). This

approach is similar to the one developed by Buesseler and

Boyd (2009) stating that a conventional curve-fitting of par-

ticle flux data (i.e. power law or exponential) skews our inter-

pretation of the mesopelagic processes. They recommended

the use of combined metrics to capture and compare dif-

ferences in flux attenuation. In the following, we compare

MR fluxes for the different KEOPS 2 areas (reference site;

plateau sites; polar front and polar front meander) and dis-

cuss remineralization and transfer efficiencies for those sites

for which MR, primary production (PP) and/or EP data (Ta-

ble 2) were available. PP data were estimated from uptake

experiments including 24 h incubations at different PAR lev-

els over the euphotic layer, i.e. up to the 0.01 % PAR level

(Cavagna et al., 2014). EP data were estimated from 234Th

activities and 234Th /POC ratios and are discussed in Plan-

chon et al. (2014). The thorium method integrates POC ex-

port over a 1-month period (234Th half live is 24.1 days). We

remind the reader here that MR fluxes based on mesopelagic

Baxs reflect past remineralization activity integrated over sev-

eral days to a few weeks (Dehairs et al., 1997; Cardinal et

al., 2005; Jacquet et al., 2007, 2008b). In order to compare
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EP with MR (r ratio and transfer efficiency), we consider

EP fluxes from 150 m. Results are compared with late sum-

mer KEOPS 1 results. For KEOPS 1, PP data are detailed in

Lefèvre et al. (2008) and Mosseri et al. (2008), EP data are

detailed in Savoye et al. (2008) and Baxs data are described

in Jacquet et al. (2008a).

4.2.1 Reference station R-2

Since station R-2 had the highest DWA Baxs content, it

yielded the highest MR flux of the whole study area (91 mg

C m−2 day−1; 150–800 m; Table 2). In contrast, both PP and

EP fluxes at R-2 were very low (132 and 10 mg C m−2 day−1,

respectively) and the calculated MR flux exceeded EP (Ta-

ble 2). The resulting export efficiency (EP / PP) was high, and

T400 and T800 values (the fraction of EP exported deeper

than 400 and 800 m, as defined above) equal 0 (i.e. no ex-

port of POC beyond 400 and 800 m; note that > 100 % val-

ues, i.e. MR>EP, were set to zero in Fig. 7a and Table 2).

The fact that MR exceeds EP therefore implies a non-steady

state condition at the R-2 site. As reported above, R-2 proba-

bly experienced a brief early spring diatom production pulse

days to a few weeks before the start of the KEOPS 2 cruise,

followed by subsequent export and very important reminer-

alization activity in the underling layers as depicted by MR

data.

4.2.2 Station A3 on the plateau

The MR fluxes on the plateau varied little between the two

visits 27 days apart (Table 1) and, moreover, as discussed

below they were similar to summer values obtained during

KEOPS 1 (see Jacquet et al., 2008a) when the same A3 site

was sampled three times over a 19-day period. While dur-

ing KEOPS 2 (spring) MR fluxes at A3 ranged from 11 to

14 mg C m−2 day−1 (with a standard uncertainty of around

5 %), they were slightly larger during KEOPS 1 (summer;

17 to 23 mg C m−2 day−1) (Fig. 5). We observed differences

in the mesopelagic POC remineralization efficiency between

the two seasons (r ratio, blue values in Fig. 6, Table 2). Dur-

ing KEOPS 1, r ratios (MR / EP) remained low, ranging from

7 to 9 % of EP at A3, while during KEOPS 2, r ratios were

slightly higher but decreased from 29 % (A3-1; first visit)

to 13 %, 27 days later (A3-2; second visit). This variation

in r ratio during KEOPS 2 is mostly due to an increase of

EP (from 47 to 85 mg C m−2 day−1; Planchon et al., 2014)

over the same period while MR showed little change. Al-

though at this early stage of the season (spring) PP at A3-

2 had already reached 2172 mg C m−2 day−1 (Cavagna et

al., 2014), EP remained relatively low (85 mg C m−2 day−1).

Here EP accounted for only about 4 % of PP (low export ef-

ficiency; see green data points in Fig. 5). These conditions

suggested that phytoplankton biomass had accumulated in

the surface waters without significant export at that point,

or that C had been channelled to higher trophic levels as

suggested by Christaki et al. (2014). Note that a negative

relationship between primary productivity and surface car-

bon export efficiency has already been reported from previ-

ous studies in the Southern Ocean (Lam et al., 2007; Mor-

ris et al., 2007; Savoye et al., 2008; Jacquet et al., 2011a,

b). Among possible explanations for the occurrence of high-

productivity low export efficiency regimes in high-latitude

systems Maiti et al. (2013) mentioned differences in trophic

structure, grazing intensity, recycling efficiency, high bacte-

rial activity or increase in DOC export, but the exact rea-

son remain unclear. In contrast, during KEOPS 1 (summer),

EP fluxes reached 250 mg C m−2 day−1 at 125 m (14–31 %

of PP), while PP ranged from 865 to 1872 mg C m−2 day−1,

reflecting enhanced export efficiency (Jacquet et al., 2008a;

Savoye et al., 2008).

It is important to underline the fact that MR at station A3

was only slightly higher in summer than in spring, especially

considering the large differences in export efficiency between

seasons. According to results from sediment traps deployed

over 1 year at the A3 site, Rembauville et al. (2014) re-

ported that 60 % of the annual POC export at the base of

the mixed layer occurred over a short periods of time repre-

senting < 4 % of the year and was composed of small highly

silicified, fast-sinking, resting spores of diatoms that bypass

grazing pressure. According to these authors, the pulses are

linked to nutrient depletion dynamics inducing resting spore

formation. During the rest of the year, the flux was com-

posed of small diatoms (empty frustules) and small fecal

pellets, with efficient C retention in the surface layer or

transfer to trophic levels. If we consider that export con-

ditions during KEOPS 2 are more similar to those prevail-

ing most of the year, it is surprising that during KEOPS 1

(which would reflect an export event toward the end of the

growth season) MR is not more important. This would in-

dicate that fast-sinking, highly silicified and pulsed material

was directly transferred to the bottom without major rem-

ineralization. Note for example that at the complex R-2 ref-

erence station, a small export event (Laurenceau-Cornec et

al.; 2015) held heavily silicified diatoms (Lasbleiz et al.,

2014) and that the material was efficiently remineralized in

the upper mesopelagic layer as witnessed by the high MR

values we observed for that station. For the KEOPS 2 A3

site, Laurenceau-Cornec et al. (2015) reported that the sink-

ing flux collected in the upper layer using gel-filled sediment

traps was composed of phytodetrital aggregates that held

slightly silicified diatoms (Lasbleiz et al., 2014). Even con-

sidering the shift from slightly to highly silicified material

transfer between spring (KEOPS2) and summer (KEOPS 1),

MR only slightly increases between both periods. Also, the

mesozooplankton biomass at A3-2 was one of the highest of

the KEOPS2 cruise, with a doubling from KEOPS 2 (early

spring) to KEOPS 1 (late summer) (Carlotti et al., 2015). It

is thus possible that at A3 the export event reported above,

combined with a lasting grazing pressure, could have induced

this rather low and enduring mesopelagic remineralization.
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KEOPS 2 KEOPS 1
(Early spring 2011) (Late summer 2005)

A3-1 A3-2 Mean of the 3 repeats
PP Not available 2172 864-1872

- 4%

EP 47 85 250
29% 13%

MR 14 11 17-23

All fluxes in mgC m day-2 -1

Blue values:   ratio, mesopelagic remineralization efficiency (MR/EP)
Green values: EP/PP
Red values: MR/PP

!"#$"%"

&'"#(&"%"

&#)%"*&%"#"

r

Figure 6. Schematic, comparing the fate of POC at station A3 during KEOPS 1 and KEOPS 2 cruises. PP: primary production, EP: export

production at 150 m depth and MR: mesopelagic POC remineralization deduced from the Baxs maxima and integrated between 150–400 m;

all fluxes in mgC m−2 day−1. EP / PP (green values), MR / PP (red values) and MR / EP (r ratio, blue values) ratios shown as percentage.
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Figure 7. y axis: EP / PP=POC flux at 150 m (EP150) as a fraction of primary production (PP); x axis: EPx / EP150=POC flux at defined

depths (EPx; here 400 and 800 m) as a fraction of POC flux at 150 m (EP150). The green cross (Fig. 5a) is for station A3-1 (KEOPS-2).

Since no PP data are available for that station, the EP / PP value has been set to 0. Isolines represent the modelled 1, 5, 10, 20 and 30 % of PP

export to depths > at 400 or 800 m, and represent export efficiency.

We also wonder if the shallow water column at A3 combined

with lateral advection above the plateau plays a role in trig-

gering the mesopelagic POC remineralization activity and in

setting its efficiency. For KEOPS 1, Venchiarutti et al. (2008)

reported that lateral advection over the plateau could sig-

nificantly impact particle dynamics. During KEOPS 1, sta-

tion B1 (CTD68), located on the plateau upstream from A3

according to the plateau circulation (Park et al., 2008), ex-

hibited a very similar Baxs distribution as station A3: low

mesopelagic Baxs and important bottom resuspension (not

shown here; see Jacquet et al., 2008a). These strong sim-

ilarities in Baxs profile shapes would indicate that next to

the pulsed nature of the events, the dynamics on the shal-

low plateau play an important role in limiting the extent of

mesopelagic POC remineralization processes.

In Fig. 7a, the ratio of EP to PP (export efficiency) vs. the

fraction of EP exported deeper than 400 m (i.e. T400; de-

fined above) is shown for both KEOPS cruises. Note that for

station A3-1 (KEOPS 2), there are no PP data. The A3 site

shows increasing EP / PP ratios from spring (KEOPS 2) to

late summer (KEOPS 1), and so do the T400 values (A3-1:

70 %; A3-2: 87 %; KEOPS 1 A3 site: 92± 1 %). Station E-

4W is located in waters with similar θ −S and Chl a charac-

teristics as the A3 plateau site but has a deeper water column

(1384 m has PP and EP fluxes of the same order of magnitude

(Table 2)). However, MR values (36 mg C m−2 day−1; 150–

400 m) are larger at E-4W, resulting in a lower T400 value

of around 33 %, compared to 87 % for A3-2 (Fig. 7a). When

integrating between 150 and 800 m, T800 at E-4W equals 0

(i.e. no export of POC beyond 800 m; Fig. 7a and Table 2).
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Figure 8. Temporal evolution of particulate biogenic Ba (Baxs; pM)

in the upper 2000 m water column in the polar front meander. Graph

constructed using Ocean Data View (Schlitzer, 2002; Ocean Data

View; http://www.awi-bremerhaven.de/GEO/ODV).

Station F-L (in the vicinity of the PF; 74.7◦ E) appears to

function in a similar way as observed for E-4W (71.4◦ E).

PP at station F-L is relatively high (3380 mg C m−2 day−1),

while EP is quite low (43 mg C m−2 day−1), reflecting the

fact that the biomass was not yet exported from the surface

waters or was transported to higher trophic levels. Since MR

fluxes are slightly lower (21 mg C m−2 day−1; 150–400 m)

at F-L than at E-4W, resulting T400 values are higher (52 %)

there.

Overall, during KEOPS 2, it appears that biomass at sta-

tions A3, E-4W and F-L (sites of high productivity) had been

accumulating in surface waters (e.g. transfer to higher trophic

levels) and export had not yet started, considering the early

stage of the season during KEOPS 2. Our observations allow

us to conclude the following:

1. Both seasons (KEOPS 1 and KEOPS 2) showed a sim-

ilar functioning of the mesopelagic ecosystem at A3.

The rather low and enduring MR fluxes under high pro-

duction and variable export regimes (high export effi-

ciency during KEOPS 1 and low export efficiency dur-

ing KEOPS 2) indicated that here mesopelagic reminer-

alization does not represent a major resistance to or-

ganic matter transfer to the seafloor at A3. On average

(considering both seasons, but excluding A3-1), the C

transfer efficiency into the deep (> 400 m) as assessed

by PP, EP and MR fluxes comparisons reached 91± 3 %

at A3;

2. In contrast to A3, E-4W and F-L showed important

mesopelagic remineralization rates, reducing the effi-

ciency of C transfer beyond 400 m to 33 and 52 %, re-

spectively, and to zero for both stations beyond 800 m.

Bottom depth, lateral advection, zooplankton grazing

pressure and the pulsed nature of the POC transfer at

A3 were the particular conditions that could drive the

differences in C transfer efficiency between A3 and E4-

W and F-L and limit the extent of MR processes at A3.

4.3 Stations in the meander

Temporal short-term changes for the stations TNS-6, E-1, E-

2, E-3, E-4E and E-5, located in the polar front meander, will

be discussed in this section. Note that no PP or EP data exist

for TNS-6. From Table 2 it appears that PP almost doubled

between E-1 and E-5, but this increase was not paralleled by

an increase of EP and MR, except for the 30 % EP increase

from E-1 to E-3. In fact, overall EP shows a decreasing trend

with time, while MR (150–400 m) stays rather constant, ex-

cept for the decrease between E-1 and E-3 (Table 2). As re-

ported above such a mismatch may result from differences

in timescales characterizing the different processes that were

compared. The most likely explanation is that in this early

stage of the growth season, phytoplankton biomass accumu-

lated in the surface layer and export lagged behind.

The ratio of EP to PP vs. T400 and T800 showed a

large variability in transfer efficiency inside the meander

(Fig. 7b). PP and EP fluxes increased by about 30 % from

E-1 to E-3, but a concomitant decrease of mesopelagic MR

yielded to an enhanced transfer efficiency, from 74 to 92 %,

through the 400 m boundary, and from 52 to 73 % through the

800 m boundary. This suggests that significant remineraliza-

tion should have occurred at greater depths (even> 1000 m),

and it is also reflected by the presence of Baxs maxima below

1000 m (see Fig. 4h and Appendix A). This was particularly

salient when plotting Baxs contents vs. depths over the 27-

day observation period (Fig. 8). The high, deep water Baxs

values in Fig. 8 were not taken into account when integrating

TNS-6 and E-1 profiles between 150 and 400 or even 150 and

800 m (Fig. 5e). Considering that the seafloor in the meander

area is at about 2000 m depth, it seems unlikely that these

high Baxs contents at depths > 1000 m were due to sediment

resuspension. Also, particle spectra for these sites do not re-

veal any bottom resuspension (Jouandet et al., 2014; Lasbleiz

et al., 2014; van der Merve et al., 2015). Therefore, the high,

deep (> 1000 m) Baxs contents at TNS-6 and E-1 most likely

reflects the fact that here significant remineralization of POC

material actually did occur in the bathypelagic domain and

even down to the seafloor. Note that suspended particles in

the depth range containing the deep Baxs maxima were dom-

inated by the < 2 µm size fraction (M. Zhou, personal com-

munication, 2014). When integrating the Baxs contents from

150 m to the seafloor at stations TNS-6 and E-1, MR fluxes

increase to 156 and 184 mg C m−2 day−1, respectively. Such

C fluxes were similar to the EP values (maximum value of

130 mg C m−2 day−1 at E-3) and suggested that the exported
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POC was entirely remineralized in the water column leaving

no C for transfer to the sediments.

Overall, the temporal pattern of mesopelagic remineraliza-

tion described above reflects two successive events of particle

transfer: a first transfer from a previous bloom (occurred be-

fore visiting TNS-6 and enduring at E-1) and a second trans-

fer from E-4E to E-5. The first transfer was evidenced by the

downward (to the bottom) propagation of the mesopelagic

Baxs maximum signal, which mostly weakens at E-2. The

second event was reflected by the occurrence again of impor-

tant mesopelagic Baxs build-up at E-4E and E-5. Overall, our

results indicated the large capacity of the polar front meander

to transfer POC material to depth, but in contrast to station

A3 on the plateau, this transfer was coupled to intense and

near-complete POC remineralization (as also observed at E-

4W and F-L). Between-site changes in mesopelagic carbon

remineralization due to unequal biomass productivity and

iron fertilization over the Kerguelen Plateau were thus rel-

atively complex. Furthermore, the conditions in the meander

area seems to corroborate results obtained in the iron-replete

Subantarctic Zone east of the Tasman Plateau (Australian

sector of the Southern Ocean; SAZ-Sense cruise; Jacquet et

al., 2011a, b), where the mesopelagic remineralization effi-

ciency reported was relatively high (on average 91 %) and the

deep (> 600 m) carbon transfer weak (< 10 %). Finally, the

important Baxs contents reported between 1000 and 2000 m

during the first stages of the meander time-series support re-

cent results indicating for the Southern Ocean that 1000 m

is insufficient as an ocean-wide reference for carbon transfer

and sequestration potential (Robinson et al., 2014).

5 Conclusions

Based on spatially and temporally well-resolved mesopelagic

excess particulate Ba inventories, this work estimated

mesopelagic POC remineralization above the Kerguelen

Plateau and inside a permanent meander of the polar

front to the east of plateau. The observed variability of

mesopelagic remineralization reflects differences in the fate

of the biomass that is exported to the deep ocean between the

plateau and polar front. Results also reveal the patchiness of

the seasonal advancement and of the establishment of rem-

ineralization processes between these sites. Our results indi-

cate that a few days to weeks before the start of the cruise,

the reference station R-2 experienced an export event that

was efficiently remineralized in the upper mesopelagic layer.

In terms of deep ocean carbon transfer efficiency, our results

highlight that above the plateau (A3 site), mesopelagic rem-

ineralization is not a major barrier to organic matter trans-

fer to the seafloor, with carbon transfer beyond 400 m reach-

ing up to 87 % of EP during KEOPS 2, while in the polar

front meander, remineralization of exported organic carbon

in the upper 400 m is more efficient than above the plateau. In

the meander area, remineralization may even balance export

when including its effect in the deeper waters (up to 800 m

and even deeper), thus resulting in a near-zero carbon trans-

fer to sediment. A similar condition is also observed for sites

at the margin of the plateau (E-4W) and the polar front (F-L).
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Appendix A

Table A1. Excess particulate biogenic Ba (Baxs; pM) and particu-

late Al (nM) during KEOPS 2.

Station A3 Station RK2

A3-1 CTD4 A3-2 CTD 107 R-2 CTD17 R-2 CTD 20

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

no. [m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

23 11 224 35 23 11 122 16 24 21 110 107 17 356 546 12

21 42 217 64 21 40 140 12 23 40 0 693 15 507 239 17

19 104 345 65 19 81 141 10 22 80 95 49 13 609 226 7

17 152 234 19 17 126 82 27 20 100 131 27 11 812 267 3

15 173 244 19 15 151 119 14 18 126 168 5 10 1011 189 2

13 204 333 17 13 176 199 9 16 151 205 4 8 1520 201 4

11 227 235 8 11 202 186 14 14 203 334 3 6 1832 184 2

9 253 315 6 9 277 323 24 13 253 616 6 1 2473 286 3

7 279 480 8 7 303 359 32 12 304 834 16

5 354 216 21 5 405 247 19 10 404 573 9

1 474 1108 155 1 513 1842 186 9 507 430 10

7 608 367 4

5 708 337 10

1 911 368 13

Station E

E-1 CTD 27 E-1 CTD 30 E-2 CTD 43 E-3 CTD 50

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

[m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

24 21 896 166 17 303 424 30 23 11 192 43 24 11 129 45

23 41 221 131 16 353 195 25 21 41 93 152 23 42 117 93

22 81 190 161 15 455 143 6 18 102 143 17 22 71 130 28

20 101 172 102 13 505 268 6 16 153 215 57 20 102 160 22

18 125 150 10 11 636 343 7 14 204 408 9 18 125 201 11

16 151 290 9 10 808 138 2 12 254 311 6 16 153 225 18

14 182 375 5 8 1011 442 4 10 305 227 4 14 203 193 3

13 253 450 12 6 1498 436 9 8 406 353 5 13 252 210 2

12 303 402 9 1 2042 326 7 7 507 371 9 12 304 309 6

10 403 327 10 6 609 271 10 10 404 316 7

9 505 230 6 5 813 297 14 9 505 419 64

7 605 305 10 4 1016 350 35 7 606 320 14

5 707 298 10 1 2020 302 11 5 707 193 12

1 913 309 7 1 912 265 5

E-3 CTD 55 E-4W CTD 81 E-4W CTD 87 E-4E CTD 94

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

[m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

17 404 185 5 24 10 101 16 17 304 277 9 24 20 116 32

16 455 272 5 23 41 134 17 16 354 350 10 23 51 260 11

15 505 176 6 22 70 152 5 15 453 233 7 22 93 563 223

13 605 378 5 20 94 86 18 13 606 182 9 20 103 170 5

11 810 258 3 18 126 84 7 11 811 186 5 18 126 215 9

10 910 172 2 16 153 193 8 10 910 187 7 16 152 210 6

8 1012 184 3 14 203 312 4 8 1011 268 61 14 181 247 7

6 1214 228 6 13 252 628 17 6 1214 249 29 13 253 547 4

1 1908 237 9 12 304 488 12 1 1384 250 30 12 305 403 78

10 406 594 11 10 404 408 26

9 507 272 11 9 505 403 26

7 607 418 12 7 606 298 13

5 708 338 21 5 706 285 8

1 909 294 14 1 912 245 65

Station E (continued)

E-4E CTD 97 E-5 CTD 113 E-5 CTD 114

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

[m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

21 404 199 2 10 911 111 3 24 11 210 5

18 505 242 3 8 1011 266 16 23 41 196 14

13 706 175 1 6 1214 256 15 22 82 245 4

8 1012 212 11 1 1922 208 5 20 102 264 14

7 1265 189 2 18 126 131 6

6 1518 149 2 16 152 153 5

5 1827 225 43 14 202 181 2

4 2027 212 12 13 252 469 6

1 2212 254 9 12 302 606 9

10 404 377 13

9 507 422 11

7 606 425 7

5 707 281 12

1 910 281 6
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Table A1. Continued.

West–east transect Station F-L

TEW-3 CTD38 TEW-8 CTD 47 F-L CTD 63 F-L CTD 68

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

[m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

23 16 133 40 23 10 196 31 24 11 146 37 17 405 264 6

21 41 107 112 21 41 0 251 23 35 97 41 16 456 233 9

19 61 209 45 18 102 92 41 22 61 0 228 15 506 339 12

17 76 148 20 16 152 169 45 20 82 141 36 13 607 265 3

13 112 128 13 14 202 134 9 18 101 134 5 11 910 718 7

11 183 235 8 12 254 164 5 16 126 185 5 10 1013 257 5

9 253 391 11 10 304 268 12 14 151 221 5 8 1215 316 8

7 277 348 9 8 405 217 5 13 202 280 7 6 1772 225 7

5 404 356 8 7 507 319 5 12 252 399 8 1 2741 2999 131

1 545 242 13 6 609 209 8 10 303 420 7

5 809 330 14 9 404 305 26

4 1011 334 22 7 506 408 7

1 2812 11179 826 5 707 247 10

1 911 282 11

North–south transect

TNS-1 CTD15 TNS-6 CTD 10 TNS-8 CTD8

Niskin Depth Baxs Al Niskin Depth Baxs Al Niskin Depth Baxs Al

[m] [pM] [nM] [m] [pM] [nM] [m] [pM] [nM]

23 11 262 62 23 35 182 26 23 12 478 45

21 41 30 90 21 42 141 12 21 41 258 53

18 102 93 15 18 103 143 14 18 102 303 32

16 153 225 17 16 184 413 11 16 150 1008 33

14 202 289 5 14 204 461 8 14 205 341 10

12 253 228 2 12 255 298 5 12 254 447 6

10 304 521 4 10 306 505 7 10 305 481 4

8 405 346 3 8 407 474 4 8 405 312 3

7 506 230 1 7 509 464 9 7 505 208 3

6 607 352 13 6 610 315 15 6 606 283 7

5 809 234 4 5 813 269 9 5 707 325 11

4 1520 127 6 4 1526 362 13 4 910 376 35

1 2282 211 19 1 1886 410 21 1 1000 294 28
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