
Adaptive Inverse Control Using Kernel Identification

Andrea Abelli, André Ferrari, Salvatore Monaco and Cic Richard

Abstract— Kernel methods are exploited to implement an
adaptive inverse control scheme of which a first introductory
presentation is given. The resulting controller has faster conver-
gence than the solutions proposed in literature utilizing Support
Vector Machines (SVMs) [1] and Artificial Neural Networks
(ANNs) [2]. Smaller residual errors are obtained for trajectory
tracking. Simulations are carried out for different scenarios.

I. INTRODUCTION

Analytically speaking, the control of a known nonlinear
dynamics can be a hard problem to solve. Since Control The-
ory was born the linear system branch has uninterruptedly
attracted the far greatest deal of studies and efforts so that,
nowadays, the design of linear controllers, even for nonlinear
systems [3], is supported by a vast theoretical and practical
literature. In fact, most of the controllers used in the industry,
due to their simplicity of implementation and ease of use,
belong to this class. But as the plant becomes more complex
some difficulties arise: modeling a highly nonlinear system
is everything but a trivial task. Models are inevitably less
precise and the feedback schemes more complex implying
higher noise levels.

In the last few decades, some efficient but theoreti-
cally challenging methods have been developed to deal
with these problems: feedback linearization, Lyapunov tech-
niques, etc. [4], [5]. Among the most widespread “local”
methods, gain scheduling [3], where the plant dynamics is
linearized around a certain number of operating points for
each one of which a linear controller is synthesized and
employed, has gained a large domain of use. Unfortunately,
being model based, a precise model needs to be known
and the dynamics needs not to move away from preselected
operating zones. Another popular method is feedback lin-
earization [6], which is based on the dynamic inversion of
the plant model, but as above an accurate model of the plant
needs to be known and the inverse of the plant dynamics
needs to exist, which is generally not the case of more
complex cases typical of the nonlinear context.

One particular method, derived from signal processing
techniques, immune from these last constraints is Adaptive
Inverse Control (AIC) [7]. Firstly proposed by Widrow in

A. Abelli is with Laboratoire J.L. Lagrange, Université de Nice-
Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, France.
andrea.abelli@uniroma1.it

F. Ferrari is with Laboratoire J.L. Lagrange, Université de Nice-
Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, France.
andre.ferrari@unice.fr

C. Richard is with Laboratoire J.L. Lagrange, Université de Nice-
Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, France.
cedric.richard@unice.fr

S. Monaco is with Dipartimento di Informatica e Sistemistica, Università
di Roma, Italy. salvatore.monaco@uniroma1.it

1986, in AIC the “local inverse” of the plant model is used
as serial controller such that the open loop approximates
some predetermined function in some optimal (Least-Mean
Squares (LMSs), Least Squares (LSs), etc..) sense. The prin-
ciples of AIC can be applied to the control of nonlinear
plants using nonlinear adaptive filtering techniques. Since in
general, nonlinear systems do not have inverses, the resulting
controller is an acceptable inverse only for the particular
control input currently fed to the plant.

The literature is populated by some attempts to free the
designer from the complexity of nonlinear filtering tech-
niques, e.g., [1], [2]. In [1] a pure signal processing approach
is used: the method is developed as an adaptive-filtering
problem. First, the dynamical system is identified using
adaptive system-identification techniques training an ANN
with a Real-Time Recurrent Learning (RTRL) [8] algorithm.
Then, the dynamic response of the system is controlled
using an adaptive feedforward controller, a neural network
adapted with a Back-Propagation Through Time (BPTT) [9]
algorithm, therein called Back-Propagation Through Plant
Model (BPTM). No proper feedback is used, except that
the system output is monitored and used by an adaptive
algorithm to adjust the controller’s parameters. In [2] an
adaptive inverse control algorithm is proposed by combining
the power of Reproducing Kernel Hilbert Spaces (RKHSs),
exploited by on-line Support Vector Regression (SVR), with
inverse control. Because the training speed of standard on-
line SVR algorithms is generally low, a kernel cache is
introduced to accelerate the standard algorithm. Then the
customized algorithm is applied to approximate the inverse
of the plant, and the residual output is used to adjust the
support vector machine. Simulation results show that fair
control performance for linear systems and gently nonlinear
dynamics can be achieved. For acceptable performance, the
algorithm needs to be trained off-line in a neighborhood
of the plant’s operating point, which implies that the state
trajectory needs to stay in its proximity. These methods
are directly affected by all the limitations typical of the
controller implementation they use. Neural networks suffer
from weak generalization ability and their structure must
be designed prior to training and usage. Algorithms used
to train ANNs are usually slow, require a large diversity of
training data for realistic applications and can get stuck in
local minima. Furthermore, on-line training converges slowly
and it’s theoretically non-trivial, i.e., Decoupled Extended
Kalman Filter (DEKF) [10]. SVRs on the other side have a
good generalization ability, they are the optimal solution of
the cost functional used to design them, generally of the
form J [f ] = 1

l

∑l
i=1 |yi − f(xi)|ϵ + λ ∥f∥2RKHS , |·|ϵ being

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1094-0/12/$26.00 ©2012 AACC 202



the Vapnik ϵ-insensitive norm [11]. This kind of predictors
have a parametric form, e.g., f̂(x) = ⟨w, φx⟩, where w
is the parameters vector, φ a finite-dimensional mapping.
SVRs belong to a wider class of algorithms called kernel
methods at whose foundation is the Representer Theorem
(RT) [12]. Kernels can be directly applied to the solution
of nonlinear regression problems, the RT guaranteeing that
if the regularization functional is strictly increasing all the
solutions will have same form as (1)

f̂(x) =

k∑
i=1

αiκ(x,xi) , (1)

where {xl}dl=1 are the training sample points, κ(·, ·) is a
Mercer kernel and solving the problem boils down to solving
for the αi’s. In both these approaches the solution has the
same size of the training sets, which increases at each time
step, k. To overcome this limitation, different approaches,
i.e., sparsification methods, must be taken.

For SVRs, soft-cost functionals combining some error-
insensitive component to a smoothing term are used, usually,
leading to sparse solutions. Still, due to their complexity
only few real-time SVR algorithms have been developed
and their performance don’t fit practical usage: they scale
superlinearly in the training set size, e.g., compared to the
method presented in this work, an on-line SVR algorithm as
in [2] works with “dictionaries” whose size is one or two
(dependently on the plant complexity) orders of magnitude
bigger, implying a much heavier calculatory burden.

In the case of kernels, attention is given to construct
a sparse dictionary of “informative” points, for which the
kernel matrix will be calculated. Sparsity reduces the com-
plexity in terms of computation and memory, and it usually
gives better generalization ability to unseen data [13]. To
achieve this, some methods were developed. Among those,
the novelty criterion [13] in which when a new data point xk

is obtained by the network, the distance of this point to the
actual dictionary is calculated. If this distance is smaller than
some preset threshold, xk will not be added to the dictionary.
Otherwise, the prediction error is computed and if it’s larger
than some other preset threshold, xk will be accepted as a
new dictionary sample; an alternative approach is based on
the approximate linear dependency criterion as described in
Sec. II-C.

This work is a first attempt to bring together the concept of
AIC with the strengths of numerical recursive kernel methods-
based algorithms. The latter allow to effectively isolate
nonlinearities and then handle their inversion in a local, and
thus feasible, manner. The Kernel Recursive Least-Square
(KRLS) algorithm [14] is used to implement an adaptive
inverse controller capable of forcing a suitable nonlinear
dynamics, i.e., satisfying the conditions given in Sec. III,
to follow a desired output and at the same time check if that
output is admissible for the nonlinear dynamics.

The rest of this paper is organized as follows: in Sec. II the
basic theory behind the RKHS transformation of the least-
squares regression algorithm is introduced. Adaptive inverse

control basics and a first approach to the numerical solution
of the general output tracking problem [15] are given in
Sec. III. In Sec. IV the method is applied to some elementary
nonlinear control problems.

II. KERNEL RECURSIVE LEAST-SQUARES ALGORITHM

A. The Least-Squares Criterion

Given a set of training input/output couples
{(x1, y1), . . . , (xm, ym)} ⊂ X × R, where X ⊂ Rn

is the space of the input patterns. The (LS) least-squares
problem [16] consists in finding the optimal vector a∗ ∈ Rn

given by
min
a∗

∥y −Xa∥2 . (2)

where X ∈ Rm×n is the input data matrix. The solution a∗

is unique if, and only if, the data matrix X has full column
rank (i.e., all its columns are linearly independent, which
necessarily requires m ≥ n : over-determined case). In this
case, a∗ is given by

a∗ =
(
XTX

)−1
XTy . (3)

When XTX is singular many solutions a∗ exist, the one that
has the smallest euclidean norm is the one that solves

mina∗ ∥a∗∥2

s.t. XTXa∗ = XTy
(4)

and a∗ = X+y. To improve generalization and increase the
smoothness of the solution a regularization term is often used

J = min
a

[
∥y −Xa∥+ λaTa

]
, (5)

where λ ∈ R is a regularization constant. This problem is
known as regularized least-squares and has the following
optimal solution

a∗ =
(
XTX + λI

)−1
XTy . (6)

Recursive Least-Square (RLS) deal with the problem of taking
in consideration new observations as they become available.
The previously exposed LS method would imply a very
high computational cost if applied on-line since at each time
instant, an ever growing, in size, matrix inversion

(
XTX

)−1

would have to be performed. In the case of linear systems, the
RLS algorithm solves recursively the regularized LS problem
using the Woodbury matrix identity [17].

B. Kernel Methods

In recent years many efforts were put in extending the
scopes of many adaptive algorithms to nonlinear problems,
combining the adaptive characteristics of traditional linear
adaptive filters with the capability of kernel methods to
‘convexify’ nonlinear problems.

Kernel methods are based on the idea of mapping through
a nonlinear transformation φ : X → Rh (where h might be
infinity) the input sample xi ∈ X into a higher-dimensional
Hilbert space (feature space) in which the transformed
data is more likely to be linearly separable. As explained

203



in [18]: “the key property of kernel methods is that scalar
products in the feature space can be seen as nonlinear
(kernel) functions of the data in the input space”. Every
continuous function κ(·, ·) : X × X → R is a kernel.
According to Mercer’s theorem [19], any positive definite
kernel function satisfying Mercer’s condition (a Mercer
kernel), κ(xi,xj) =

⟨
φxi , φxj

⟩
, has an implicit mapping

to some higher-dimensional feature space. This allows to
perform any conventional scalar product based algorithm in
the feature space by solely replacing the scalar products with
the Mercer kernel function in the input space.

This simple and elegant idea is known as the kernel trick,
and it is commonly applied by using a nonlinear kernel such
as the Gaussian

κ (xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
, (7)

which implies an infinite-dimensional feature space.
Using such a technique, a nonlinear mapping can be

represented as a linear combination of kernels evaluated on a
dictionary of support vectors (SVs) xi, as (1). The RT assures
us that f can be approximated arbitrarily well by choosing
the training vectors as SVs.

C. Nonlinear Least Squares: a kernel-based approach

Consider the transformed data matrix φX ∈ Rm×h and the
corresponding coefficient vector φa ∈ Rh, the LS problem
can be written in the feature space as

J = min
φa

∥y − φXφa∥2 . (8)

Since φX is highly dimensional, the solution φa can now
also be represented in the basis defined by its rows, φa =
φT
Xα. Introducing the kernel matrix K = φXφT

X , the LS
problem in feature space can be written as

J = min
α

∥y −Kα∥2 . (9)

in which the solution α is in Rm. The advantage of
writing the nonlinear LS problem in the dual notation is
that thanks to the “kernel trick”, we only need to compute
K[i,j] = κ(xi,xj). In [14], a sparsification process based on
a dictionary of “meaningful” past samples was proposed. For
every new data couple {xn, yn}, the algorithm tests whether
the transformed input point φxk

is approximately linearly
dependent (ALD) on the dictionary samples, by calculating

the residual error δk = minα

∥∥∥∑dk−1

i=1 αiφxi − φxk

∥∥∥2 where

α = [α1, . . . , αdk
]
T is a vector containing the expansion

coefficients of the linear combination of dictionary samples,
as in (1). If δk does not exceed a certain threshold ν , the new
data point xi can be approximated sufficiently well in feature
space by a linear combination of the samples stored in the
current dictionary of size dk. On the other hand, if δk > ν,
the current dictionary does not represent the new data point
sufficiently well and it must be expanded. In this case, xi

is added to the dictionary, yielding Dk = Dk−1 ∪ {xi} and
dk = dk−1 + 1.

III. ADAPTIVE INVERSE CONTROL

We now derive a control scheme that can be fruitfully
used to obtain a numerical solution of the general tracking
problem [15]. Thanks to its inherent local nature, this method
is able to cope with a high number of nonlinearities: at
each instant, the system dynamics is decomposed locally
around the actual operating point, making it easier to be
handled. For simplicity, we limit our discussion only to single
input - single output (SISO) systems. However, the method
here discussed can be extended to a MIMO application.
We consider the class of nonlinear discrete-time nonlinear
systems described by

Σ : xk+1 = f(xk, uk), yk = h(xk) , (10)

where k is the discrete time, xk ∈ X ⊂ Rn the state, yk ∈
Y ⊂ R the output, uk ∈ U ⊂ R the control input, n is
the state dimension. Given a neighborhood BY ⊂ Y and an
arbitrary sequence {y∗k} such that y∗k ∈ BY , we shall find
the input sequence {u∗

k} such that

lim
k→∞

|yk − y∗k| = 0 (11)

and yk ∈ BY .
The structure of a typical adaptive inverse control system

is shown in Fig. 1. Control of plant dynamics is obtained
by preceding the plant by an adaptive controller (14) whose
dynamics are a type of inverse of those of the plant. In
general, the plant need to be stable otherwise it has to be
stabilized by standard feedback and then controlled with
the proposed method. We consider the controller not having
previous knowledge of the plant’s model, except it’s relative
degree.

We might like the controlled system to have a Input-Ouput
(I/O) function conforming to some predetermined model.
Then, by preceding the plant by a filter whose transfer
function is the product of the I/O function of the model
and the inverse of the plant, a controller is implemented
which gives the desired I/O relationship. When adaptation
has converged, the cascade of C and the plant will have a
I/O relation equal to M ’s, see Fig. 1.

As pointed out above, if the plant is strictly causal, then its
inverse will be non-causal. In such a case, a delayed inverse
can still be obtained. This is done by incorporating a pure
delay term ∆ into the filter M . This delay is not a deficiency
of the method: it’s inevitable with any controller for such a
plant.

A. Sufficient Conditions Of Applicability

Sufficient conditions for the applicability of the presented
method (future works will release some of the constraints)
to (10) for the solution of the exact tracking problem [15]
are: a) f(0, 0) = 0 and h(0) = 0; b) the linearization around
the origin, ΣL, of Σ is observable; c) (x, u) = (0, 0) is an
asymptotically stable equilibrium of Σ.

For sufficiently small inputs and outputs, this class of
systems admits an exact I/O representation ΣIO

yk+1 = f (yk, . . . , yk−n+1, uk, . . . , uk−n+1) , (12)

204



If ΣIO has a well defined relative degree [20], r, it can be
re-written as

yk+1 = f (yk, . . . , yk−n+1, uk−r+1, . . . , uk−n+1) (13)

If the zero dynamics [21], [20] is asymptotically stable, then
there exists a control law,

u∗
k = g

(
ydk+r, yk, . . . , yk−n+1, uk−1, . . . , uk−n+1

)
, (14)

where ydk+r is the desired plant output at time k + r, such
that the closed-loop system, ΣIO(k, yk, u

∗
k), satisfies yk = ydk

for k ≥ r.

B. Control And Adaptation Schemes

Since in the case of nonlinear systems the concept of
inverse is deeply local or bound to a specific class of inputs,
this method exploits the recursive adaptation capabilities of
the KRLS algorithm, as described in Sec. II-C, to overcome
this limitation: this is why this innovative application of
regression with kernels wouldn’t have been possible with
a batch kernel regression algorithm.

The control signal synthesis is carried out concurrently to
the controller’s adaptation procedure. To identify the plant’s
inverse qk = g(pk), at each time step, the following data
vectors (15) are to be fed to the KRLS algorithm,

pk = {yk+r, yk, . . . , yk−n+1, uk−1, . . . , uk−n+1}
qk = uk ,

(15)

with the set of training input vectors P .
= {pk, k > 0}

being a compact subset of a Banach space [22]. Accordingly,
it returns the weight vector α and the support vector’s
dictionary Dk. To synthesize the control signal the input
vector

xk =
{
ydk+r, yk, . . . , yk−n+1, uk−1, . . . , uk−n+1

}
,
(16)

is fed to the predictor’s equation to obtain the wished control
input value:

uk =

dk−1∑
i=1

αiκ
(
xdict
i ,xk

)
. (17)

We consider the system to be time invariant, this constraint
is present since the identification algorithm used - i.e., KRLS
- by construction cannot handle abrupt changes in the dy-
namics [23]. In future works this constraint will be released
as algorithms capable of handling time varying dynamics
will be used - i.e. custom on-line MIMO identification
algorithms [24].

C. Design Parameters

As stated above, the tuning parameters are: 1) the kernel
parameters. 2) the Approximate Linear Dependency (ALD)’s
threshold, δ.

Our approach considers the use of a Gaussian kernel (7),
depending only on one parameter, the kernel width σ also
known as the characteristic length-scale. It can be thought
of as the distance one has to cover in the input space for the
function value to change significantly. Normally, σ can be

hand-picked by rule-of-thumb, the stronger the nonlinearities
the smaller σ one should chose. Or, in a more formal way
through Bayesian inference or cross-validation [24].

For what concerns the ALD’s threshold, it must be cho-
sen dependently on the expected performance, normally ≈
10−3/10−4.

IV. NUMERICAL SIMULATIONS

Here we introduce some simple applications of the method
herein presented: the advantages of the method over the cited
works are a higher convergence speed, the vast amount of
nonlinearities that it can handle and the small tracking error
obtained with a simple and straightforward parametrization -
the user selectable design parameters being the ALD’s thresh-
old, δ, and the kernel parameters (i.e., for a Gaussian kernel,
the width σ). Regarding the convergence rate, in Wang [2]
the SVR algorithm is pre-trained with data belonging to the
surroundings of the operating point so a fair comparison
cannot be made; in Plett [1], convergence speed is dependent
on the training algorithm used: RTRL converges in 107 steps,
Dynamic Decoupled Extended Kalman Filter (DDEKF), the
fastest method presented [25], needs 105 steps. We may also
compare to the identification part of Narendra’s work [26],
the control method used being different and we see that the
convergence is achieved in approximately 104/105 steps,
depending on the system. For more details, the interested
reader can refer to the above mentioned literature.

A. First Order (as seen in [27])

As a first example consider the first-order nonlinear non-
affine dynamics

yk+1 = sin(yk) + (5 + cos(ykuk))uk . (18)

We fix the objective trajectory yrk = 2 sin(2πk/50) +
2 sin(2πk/100). The controller geometry used is shown in
the upper part of Fig. 1. The controller was implemented
training a KRLS algorithm to identify the function uk =
η(ydk+1, yk). In Fig. 2 we can see the result for σ = 1 and
ν = 0.0001. Eventually, at instant k = 300 the dictionary
size is 58, see Fig. 6. The squared tracking error is shown
in Fig. 5, it starts decreasing monotonically after about
100 steps, that is, when the algorithm has converged: this
newborn approach to AIC is well promising.

Freed the constraint of an off-line training stage, it’s
characterized by its ease of use and straightforward imple-
mentation. While assuring similar performances it is at least
2 orders of magnitude faster than the cited methods.

B. 2nd Order (as seen in [27])

The plant is described by

x1(k + 1) = 0.1x1(k) + 2 u(k)+x2(k)
1+(u(k)+x2(k))2

x2(k + 1) = 0.1x2(k) + u(k)(2 + u(k)2

1+x1(k)2+x2(k)2
)

y(k) = x1(k) + x2(k) .
(19)

While the representation given is not in the form of (12),
it’s easy to verify that the system satisfies the conditions

205



given in Sec. III. We want to track yrk = 4 sin(2πk/50) +
4 sin(2πk/100). The controller implements the function
uk = η(ydk+1, yk, yk−1, uk−1). In Fig. 3 we can see the
output for σ = 4.3 and ν = 0.0001. Eventually, at instant
k = 400 the dictionary size is 120, see Fig. 6, the algorithm
fully converges after 205 steps. The squared tracking error
is shown in Fig. 5.

C. Model Reference (as seen in [26])

The plant is described by

yk+1 =
ykyk−1(yk + 2.5)

1 + y2k + y2k−1

+ uk (20)

Given yrk = sin(2πk/50), the signal to be tracked is the
output of the system

ymk+1 = 0.6ymk + 0.2ymk−1 + pk , (21)

as in Fig. 1. The controller implements uk =
η(ydk+1, yk, yk−1, yk−2, uk−1). In Fig. 4 we can see
the result for σ = 4 and ν = 0.001. Eventually, at instant
k = 250 the dictionary size is 82, see Fig. 6. The squared
tracking error is shown in Fig. 5.

D. Additive Measurement Noise

Even if this particular setup isn’t meant for noisy measure-
ments, it’s interesting to present, without any modification
in the identification/control mechanisms, its performance in
case of measurement noise. We consider the case of additive
measurement noise with zero mean and standard deviation
σnoise = 0.2.

To solve the tracking problem with the first order system of
Sec IV-A, the following parameters where chosen: σ = 15.3
and ν = 0.0001. Full convergence is obtained after 4× 102

steps, while the dictionary size grows up to d = 110 and the
Mean Squared Error calculated on the next 1000 samples is
0.1788. For the second order system of Sec IV-B we fixed
σ = 14.65 and ν = 0.0005: convergence is achieved in
5× 102 steps, d = 120 and the Mean Squared Error is 0.09.
For the model reference problem of Sec. IV-C: σ = 19.5
and ν = 0.00001: the system converges in 4.5 × 102 steps,
d = 470 and the Mean Squared Error is 0.0818. The time
evolution of dictionaries is shown in Fig. 7.

Thanks to noise, the space of possible datasets, P , that
the one could observe gets expanded leading to bigger
dictionaries, higher risk of overfitting, etc. Considering that
the presented method wasn’t designed to be able to deal
with this kind of problems, its performance result to be
nonetheless satisfactory.

V. CONCLUSIONS

In this paper a new kind of numerical adaptive inverse con-
trol scheme was proposed making use of the KRLS algorithm
for trajectory tracking. This is just a first attempt over an
approach which needs to be theoretically developed and, at
this stage, is mainly motivated by the encouraging simulation
results. Moreover, this method can be easily adapted to verify
if an arbitrary linear/nonlinear system can track a given path

pk in finite time just by tuning a single parameter (i.d., in
the case of a RBF kernel only σ).

Future works will develop a theoretical framework to
support the numerical results obtained herein.

VI. ACRONYMS

AIC Adaptive Inverse Control
ALD Approximate Linear Dependency
ANN Artificial Neural Network
BPTT Back-Propagation Through Time
BPTM Back-Propagation Through Plant Model
DDEKF Dynamic Decoupled Extended Kalman Filter
DEKF Decoupled Extended Kalman Filter
KRLS Kernel Recursive Least-Square
I/O Input-Ouput
LMS Least-Mean Square
LS Least Square
RLS Recursive Least-Square
RT Representer Theorem
RTRL Real-Time Recurrent Learning
RKHS Reproducing Kernel Hilbert Space
SVR Support Vector Regression
SVM Support Vector Machine

Plant

M ymk

ynkykuk

nk

Controller
yrk

Fig. 1: Typical geometry of a model-reference adaptive
inverse control system .

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

k

y k , 
yr k

First Order System

 

 
y

k

yr
k

Fig. 2: The first order system (18) is identified and controlled
in 100 steps.

REFERENCES

[1] G. Plett, “Adaptive inverse control of linear and nonlinear systems
using dynamic neural networks,” Neural Networks, IEEE Transactions
on, vol. 14, no. 2, pp. 360–376, 2003.

[2] H. Wang, D. Pi, and Y. Sun, “Online svm regression algorithm-based
adaptive inverse control,” Neurocomputing, vol. 70, no. 4-6, pp. 952–
959, 2007.

206



0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8

k

y k , 
yr k

Second Order System

 

 

y
k

yr
k

Fig. 3: The second order system (19) tracks the periodic
trajectory in less than 120 steps

0 20 40 60 80 100 120 140 160
−5

−4

−3

−2

−1

0

1

2

3

4

5

k

y k , 
ym k

Second Order Model−Reference

 

 
y

k

ym
k

Fig. 4: The system (20) converges towards the output of
system (21) in about 250 steps.

0 50 100 150 200 250 300 350 400 450 500

10−10

10−8

10−6

10−4

10−2

100

k

O
up

ut
 T

ra
ck

in
g 

Sq
ua

re
d 

Er
ro

r

Output Tracking Squared Error

 

 
First Order System Squared Error
Second Order System Squared Error
Second Order MRC Squared Error

Fig. 5: The squared tracking error e2k.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

k

D
ic

tio
na

ry
 S

iz
e 

 d
k

Dictionary Evolution in Time

 

 

1st Order
2nd Order Periodic
2nd Order Arbitrary
2nd Order MRC

Fig. 6: Time evolution of dictionaries in the noise-free case.

[3] W. Rugh, “Research on gain scheduling,” DTIC Document, Tech. Rep.,
1998.

[4] A. Isidori, Nonlinear control systems. Springer Verlag, 1995.
[5] ——, “Nonlinear control systems,” 1997.
[6] S. Monaco, D. Normand-Cyrot, and S. Stornelli, “On the linearizing

feedback in nonlinear sampled data control schemes,” in Decision and
Control, 1986 25th IEEE Conference on, vol. 25. IEEE, 1986, pp.
2056–2060.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

350

400

450

k

D
ic

tio
na

ry
 S

iz
e 

  d
k

Dictionary Evolution in Time (Noisy Case)

 

 

1st Order
2nd Order Periodic
2nd Order MRC

Fig. 7: Time evolution of dictionaries in the noisy case.

[7] B. Widrow and E. Walach, “Adaptive inverse control: a signal pro-
cessing approach, reissue edition,” 2007.

[8] R. Williams and D. Zipser, “Experimental analysis of the real-time
recurrent learning algorithm,” Connection Science, vol. 1, no. 1, pp.
87–111, 1989.

[9] D. Nguyen and B. Widrow, “Neural networks for self-learning control
systems,” Control Systems Magazine, IEEE, vol. 10, no. 3, pp. 18–23,
1990.

[10] L. Feldkamp and G. Puskorius, “Training controllers for robustness:
multi-stream dekf,” in Neural Networks, 1994. IEEE World Congress
on Computational Intelligence., 1994 IEEE International Conference
on, vol. 4. IEEE, 1994, pp. 2377–2382.

[11] V. Vapnik, The nature of statistical learning theory. Springer Verlag,
2000.

[12] G. Wahba et al., “Support vector machines, reproducing kernel hilbert
spaces and the randomized gacv,” 1998.

[13] J. Platt, “A resource-allocating network for function interpolation,”
Neural computation, vol. 3, no. 2, pp. 213–225, 1991.

[14] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” Signal Processing, IEEE Transactions on, vol. 52, no. 8,
pp. 2275–2285, 2004.

[15] J. Cabrera and K. Narendra, “The general tracking problem for
discrete-time dynamical systems,” in Decision and Control, 1997.,
Proceedings of the 36th IEEE Conference on, vol. 2, dec 1997, pp.
1451 –1456 vol.2.

[16] A. Sayed, Fundamentals of adaptive filtering. Wiley-IEEE Press,
2003.

[17] K. Petersen and M. Pedersen, “The matrix cookbook,” Technical
University of Denmark, pp. 7–15, 2008.

[18] S. Vaerenbergh, “Kernel methods for nonlinear identification, equal-
ization and separation of signals,” 2010.

[19] H. Minh, P. Niyogi, and Y. Yao, “Mercers theorem, feature maps, and
smoothing,” Learning theory, pp. 154–168, 2006.

[20] S. Monaco and D. Normand-Cyrot, “Minimum-phase nonlinear
discrete-time systems and feedback stabilization,” in Decision and
Control, 1987. 26th IEEE Conference on, vol. 26. IEEE, 1987, pp.
979–986.

[21] ——, “Some remarks on the invertibility of nonlinear discrete-time
systems,” in American Control Conference, San Francisco, CA, 1983,
pp. 324–328.

[22] M. Anthony and P. L. Bartlett, Neural network learning:theoretical
foundations. Cambridge, U.K.: Cambridge University Press, 1999.

[23] W. Liu, I. Park, Y. Wang, and J. Principe, “Extended kernel recursive
least squares algorithm,” Signal Processing, IEEE Transactions on,
vol. 57, no. 10, pp. 3801 –3814, oct. 2009.

[24] C. Rasmussen, “Gaussian processes in machine learning,” Advanced
Lectures on Machine Learning, pp. 63–71, 2004.

[25] G. Plett and H. Bottrich, “Ddekf learning for fast nonlinear adaptive
inverse control,” in Neural Networks, 2002. IJCNN’02. Proceedings
of the 2002 International Joint Conference on, vol. 3. IEEE, 2002,
pp. 2092–2097.

[26] K. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” Neural Networks, IEEE
Transactions on, vol. 1, no. 1, pp. 4–27, 1990.

[27] K. Narendra and S. Mukhopadhyay, “Adaptive control using neural
networks and approximate models,” Neural Networks, IEEE Transac-
tions on, vol. 8, no. 3, pp. 475–485, 1997.

207


