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Nonlinear unmixing of hyperspectral data with
vector-valued kernel functions
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Abstract—This paper presents a kernel based nonlinear mixing
model for hyperspectral data where the nonlinear function be-
longs to a Hilbert space of vector valued functions. The proposed
model extends existing ones by accounting for band dependent
and neighboring nonlinear contributions. The key idea is to work
under the assumption that nonlinear contributions are dominant
in some parts of the spectrum while they are less pronounced in
other parts. In addition to this, we motivate the need for taking
into account nonlinear contributions originating from the ground
covers of neighboring pixels by practical considerations, precisely
the adjacency effect. The relevance of the proposed model is
that the nonlinear function is associated to a matrix valued
kernel that allows to jointly model a wide range of nonlinearities
and include prior information regarding band dependencies.
Furthermore, the choice of the nonlinear function input allows
to incorporate neighboring effects. The optimization problem is
strictly convex and the corresponding iterative algorithm is based
on the alternating direction method of multipliers (ADMM).
Finally, experiments conducted using synthetic and real data
demonstrate the effectiveness of the proposed approach.

Index Terms—Hyperspectral imaging, nonlinear mixing,
vector-valued RKHS, ADMM.

I. INTRODUCTION

Hyperspectral images are a very powerful tool in remote
sensing. They provide a spectrum for each pixel, which is
a vector of reflectance values estimated over hundreds of
contiguous spectral bands with high spectral resolution [1],
[2]. The spatial resolution of hyperspectral images can vary
from a few meters up to a hundreds of meters in the case of
airborne remote sensing. No matter the spatial resolution in
this range, the image possibly contains mixed pixels where
the surface covered by the pixel contains more than one
constituent material [3]. This is in contrast with a pure pixel
where the corresponding surface only contains one constituent
material also known as an endmember. According to the well-
known linear mixing model (LMM), the spectrum associated
with a mixed pixel is a linear combination of the endmembers
spectra [4]–[6]. More formally:

sn =
∑M
i=1 ai,nri + en, ∀n = 1, . . . N, (1)

where sn is the L-dimensional spectrum of the n-th pixel, L
is the number of frequency bands, M denotes the number of

Rita Ammanouil, André Ferrari and Cédric Richard are with the
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endmembers, ai,n is the abundance of the i-th endmember in
the n-th pixel, ri is the L-dimensional spectrum of the i-th
endmember, en is a vector of Gaussian white noise, and N is
the number of observations. All vectors are column vectors.
The abundances, which represent the relative contributions of
the endmembers [7], are positive and usually sum to one:
ai,n ≥ 0 and

∑M
i=1 ai,n = 1 respectively. The LMM (1) is

a simplified spectral mixing model. It only considers light
reaching the sensor that has interacted once with the imaged
surface, and neglects complex interactions between light, the
imaged surface, neighboring surfaces and the atmosphere.

More recently, there has been a considerable amount of stud-
ies devoted to nonlinear mixing models [8], [9]. In particular,
bilinear models are among the most widely known to account
for nonlinear effects [10]–[13]. The physical assumption un-
derlying these models is that light beams go through multiple
reflections before reaching the sensor, mainly due to the three
dimensionality of real scenes and scattering in the atmosphere
[14]–[16]. The mathematical expression established for multi-
ple reflections is the term by term product of two reflectance
vectors in the case of bilinear models, and more than two
reflectance vectors in the case of multilinear models [17]. For
example, the polynomial post nonlinear mixing model (PPNM)
introduced in [14] is a bilinear model that considers bilinear
contributions through the following formulation:

sn =
M∑
i=1

ai,nri + un(
M∑
i=1

ai,nri)� (
M∑
i=1

ai,nri) + en,

(2)
where un is the nonlinearity parameter, and � denotes the
Hadamard (element wise) product. On the right hand side of
equation (2), the first term corresponds to the linear mixture
and the second term corresponds to the nonlinear (bilinear)
one. Another way for modelling the nonlinear mixtures of the
endmembers is through the use of nonlinear (scalar-valued)
functions in reproducing kernel Hilbert spaces (RKHS) [18],
[19]. The advantage of kernel-based models in RKHS over
models similar to (2) is that they are non parametric which
means that they do not impose a predetermined form for the
nonlinearity. This provides a powerful and principled way for
modeling a wide range of nonlinearities. It decouples the de-
sign of the mixing model and the corresponding optimization
problem from the nonlinear mapping used for the nonlinear
contribution. In fact, the kernel trick, which is the central idea
in RKHS, allows to match the structure of the data through
a nonlinear mapping without having to explicitly compute
the mapping. See for example [18]–[20] for a review of the
properties and definitions related to kernel-based methods in
scalar RKHS. For example, the authors of [21] propose the
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following model:

sn =
∑M
i=1 ai,nri + Ψn(R) + en, (3)

where Ψn(R) = [Ψn(rλ1
) . . .Ψn(rλL)]>, Ψn(·) is a nonlin-

ear function in a reproducing kernel Hilbert space (RKHS),
and rλi denotes the i-th row in R. The authors of [21]
show that model (3) is able to incorporate bilinear, multilinear
as well as more complex nonlinear interactions between the
endmembers depending on the kernel choice and its associated
mapping. The main drawback of both, bilinear and (scalar-
valued) kernel based models, is that they impose the same
function at all bands, which can be restrictive in practice.
More precisely, bilinear models consider the same amount of
bilinear contributions at all bands. In the case of the PPNM
(2), the same weight unai,naj,n is used to scale the bilinear
contribution of ri�rj at all bands. Similarly, the kernel-based
model (3) considers the same scalar-valued nonlinear function
Ψn(·) at all bands. In contrast with the aforementioned models,
the authors of [22], [23] do not impose any analytical form
for the nonlinear term. The nonlinear contribution is merely
treated as a positive residual term that is sparsely (rarely)
present among the observations [23]. Nevertheless, this model-
free approach can be limiting itself since it does not control the
nonlinear expression, hence it can prevent accurate estimations
of the nonlinear contribution.

The proposed nonlinear mixing model circumvents the
drawbacks of the previously cited models by assuming that
the nonlinear function belongs to a reproducing kernel Hilbert
space (RKHS) of vector-valued functions. This approach im-
proves upon the case of RKHS of scalar-valued functions
by allowing for variable nonlinear contributions at different
bands. The key idea is to work under the assumption that
nonlinear contributions can be dominant in some parts of the
spectrum and less significant in other parts [24]–[26]. Unlike
the scalar valued case where the same function is considered
at each band, the proposed model relaxes this constraint, and
allows to take into account wavelength dependent nonlinear
contributions. In particular, we focus on RKHS associated
with a special type of kernels, namely separable kernels.
This type of kernels jointly defines the form of the nonlinear
contribution, and allows to include prior information regarding
the similarity between the nonlinear contributions at different
wavelength bands. Similarly to the PPNM model, the input
of the nonlinear vector-valued function includes the linear
mixture spectra present in the pixel. We go one step further by
also including the spectra of the linear mixtures in neighboring
pixels. This choice is motivated by the adjacency effect
[25] which states that solar radiation reflected off adjacent
surfaces can be scattered into the sensor’s instantaneous field
of view. Figure 1 shows two forms of the adjacency effect, and
depicts how neighboring surfaces can nonlinearly contribute
to the reflectance vector estimated for a pixel. The adjacency
effects are usually removed in a pre-processing step known
as atmospheric correction. There exist different empirical
methods for atmospheric correction [25]–[27]. Nevertheless,
the validity of some of these methods to correct the adjacency
effect is still questionnable [28], and errors occurred by these
methods can damage the quality of information extracted from

remote sensing data [29]. As a result, accounting for potential
adjacency effects through the input of the nonlinear function
increases the mixing model accuracy.

The paper is organized as follows. Section II describes
the nonlinear mixing model, and discusses approaches for
constructing the matrix valued kernel, section III develops
the optimization problem and the corresponding estimation
algorithm. Finally, section IV validates the proposed mixing
model using synthetic and real data.

Sensor

IFOV

(a)

Sensor

IFOV

(b)

Fig. 1. Illustration of two forms of the adjacency effect resulting from: (a)
multiple reflections involving the targeted surface and an adjacent surface, (b)
reflection off an adjacent surface that is then scattered in the atmosphere into
the sensor’s instantaneous field of view (IFOV).

II. NONLINEAR MIXING MODEL

A. Model Description

First, we assume that the image is partitioned into patches
or groups of pixels, and that the pixels in each patch are
associated with a vector-valued nonlinear function. For ease
of notations, assume that the available observations S =
[s1, . . . , sN ] belong to the same patch and that they are
associated with the function f . The proposed nonlinear model
decomposes the spectrum of a pixel into the sum of a linear
and nonlinear part:

sn = slin
n + f(ṽn) + en, (4)

where slin
n =

∑M
i=1 ai,nri, ṽn = col({slin

i }i∈Cn), col(·) is an
operator that stacks its arguments on top of each other, and
Cn is a set of indices of c pixels including the n-th pixel and
its c−1 neighbours (for example Cn = {n, n−1, n+1}). The
nonlinear contribution in (4) is expressed in terms of the pixel
and its neighbors linear mixtures. This is in accordance with
several bilinear models such as the post polynomial nonlinear
mixing (PPNM) model [13] which expresses the nonlinear
contribution solely in terms of slin

n . The inconvenience of
model (4) is that ṽn depends on the unknown abundances. As a
result, the corresponding optimization problem is not convex
since the function f is unknown itself. In order to have a
convex optimization problem, we propose to approximate slin

i

by si, hence equation (4) becomes:

sn = slin
n + f(vn) + en, (5)

where vn = col({si}i∈Cn), and it is assumed that f(vn) and
en are small compared to slin

n . The latter assumption holds
provided that the signal to noise ratio (SNR) is relatively
high and that the linear part dominates the nonlinear one.
The vector-valued approach offers an elegant and flexible way
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to jointly estimate multiple nonlinear functions at all bands
since f(vn) implicitly corresponds to having different scalar-
valued functions per band, i.e. f(vn) = [f1(vn) . . . fL(vn)]>.
As mentioned previously, the same nonlinear function is
associated with all the pixels in the corresponding patch. It is
important to note that the patch should contain enough pixels
in order to have a good estimation of the nonlinear function.
Moreover, it should be small enough to reflect the variability
of the nonlinear function in the different regions of the image.

B. RKHS of vector-valued functions

The nonlinear function f used in (5) is a vector-valued func-
tion, its evaluation is a vector with L components representing
the nonlinear contributions present in sn at each band:

f : RL c → RL
vn → f(vn).

(6)

As mentioned previously, we assume that f belongs to H̃k, a
RKHS of vector-valued functions associated with the follow-
ing kernel function:

k̃ : RL c × RL c → RL×L

(vn,vn′) → k̃(vn,vn′).
(7)

Unlike the scalar-valued case, the kernel is a positive semi-
definite matrix in RL×L rather than a positive scalar value.
The overall Gram matrix K̃ associated with the function f is
the matrix obtained from the evaluation of the kernel function
(7) at all observation couples. It is a block matrix, such that
the block indexed by (n, n′) is given by:

K̃n,n′ = k̃(vn,vn′). (8)

The Gram matrix consists of N×N blocks, where each block
is an L × L matrix as defined in (8). As a result, K̃ is an
LN × LN matrix. The representer theorem for vector-valued
functions parallels the theorem in the scalar valued case.
According to [30], f(vn) can be expressed as an expansion
of the kernel function over all training points:

f(vn) =
∑N
n′=1 k̃(vn,vn′)αn′ , (9)

where αn′ ∈ RL. As a result, estimating the nonlinear
function reduces to estimating the coefficients {αn′}Nn′=1.
As mentioned previously, if ṽn was not approximated with
vn the resulting optimization problem would be non-convex.
It can be seen from equation (9) that the expression of
f(ṽn) incorporates a product between unknown variables,
namely between the kernel function acting on the unknown
abundances (through ṽn) and the unknown kernel coefficients.
Finally, the norm of the function f in the RKHS H̃k can be
written as:

‖f‖2H̃k
=

N∑
n=1

N∑
n′=1

α>n k̃(vn,vn′)αn′ , (10)

which gives a natural measure of the complexity of the
function [30], [31].

C. Kernel design

The kernel function k̃(vn,vn′), as defined in equation (7),
is an L×L matrix. The design of the kernel allows to jointly
define the nonlinearity and include prior information regarding
the similarity between the outputs of the nonlinear function at
different bands. The authors of [30], [32] describe two possible
kernel classes known as the transformable and the separable
kernels. In what follows we describe these two classes of
kernels, and explain their relevance in the nonlinear unmixing
context.

1) Transformable and separable kernels: The first class of
matrix valued kernels is known as transformable kernels. In
the transformable case, the kernel k̃(vn,vn′) is defined in a
component-wise fashion through a scalar valued kernel. Each
component of the kernel is defined as:[

k̃(vn,vn′)
]
`,`′

= k(T `vn,T `′vn′), (11)

where k is a scalar valued kernel, and T ` is an operator that
extracts the c reflectance values in vn corresponding to the `-
th band. More precisely, T `vn = col({s`,i}i∈Cn) is a vector
with c components. The scalar valued kernel acts jointly on
pixels and bands indices, (n, n′) and (`, `′) respectively. The
relevance of the transformable kernel is that the Gram matrix
encodes the similarity between all pairs of pixels at all bands.
Hence, it exploits all these correlations in order to jointly
estimate the L components of the nonlinear function.

The second class of matrix valued kernels is known as the
separable kernels. This class of kernels allows to incorporate
prior information regarding the similarities between the differ-
ent components of the vector valued function. The separable
kernel is defined as the product between a scalar kernel acting
on the input and an L × L positive semi-definite matrix
encoding the similarities between the nonlinear contributions
at different bands, i.e. between the different components of f .
For this class, the kernel is defined as follows:

k̃(vn,vn′) = k(vn,vn′)E, (12)

where E is an L×L positive semi-definite matrix. The norm
of f gives further insight on how E encodes the similarities
between the nonlinear contributions at different bands. In fact,
the norm of f in H̃k [33], [34] is given by:

‖f‖2H̃k
=

N∑
`=1

N∑
`′=1

E†`,`′〈f`, f`′〉Hk , (13)

where E† is the pseudo inverse of E , the scalar valued nonlin-
ear functions f1, . . . , fL belong to the RKHS Hk associated
with k, such that f = [f1, . . . , fL]>. Note that in the case
of the separable kernel, given (8) and (12), the overall Gram
matrix can be written in the following form:

K̃ = K ⊗ E, (14)

where ⊗ is the Kronecker product, and K is the N × N
Gram matrix associated with the scalar valued kernel, namely
kn,n′ = k(vn,vn′). Hereafter, we investigate a special struc-
ture for the matrix E . First, we assume that there exits prior in-
formation about the closeness between nonlinear contributions
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at different bands, i.e. between the functions f1, . . . , fL. This
prior can be modeled by a graph. We denote by W ∈ RL×L
the adjacency matrix of this graph [35]. More precisely, when
two bands are likely to have similar nonlinear contributions,
the corresponding nodes are connected by an edge and asso-
ciated with a positive similarity weight w`,`′ > 0, otherwise
w`,`′ is set to zero. The authors of [33] show that when E† is
related to W as follows:{

E†`,`′ = −w`,`′ , if ` 6= `′,

E†`,` =
∑N
`′=1 w`,`′ , otherwise,

(15)

using (13), the norm of f in H̃k can be rewritten as:

‖f‖2H̃k
=

L∑
`=1

‖f`‖2Hkw`,` +
1

2

L∑
`=1

L∑
`′=1

‖f` − f`′‖2Hkw`,`′ .

(16)
From a regularization point of view, the norm of f as given by
equation (16) is known as the graph regularizer. It penalizes
the norms of the individual functions in addition to the
differences between each pair of functions, hence forcing them
to be similar. Moreover, the strength of the similarity between
each pair of functions is determined by the corresponding
weight. More precisely, a high value of w`,`′ promotes a
strong similarity between f` and f`′ , and conversely, a low
value of w`,`′ promotes a weak similarity between the two
functions. In other words, the norm of f as given by equation
(16) promotes similarity between the estimated nonlinearities
at different bands in accordance with the prior information
reflected through the graph. Finally, note that when E = IL,
the norm of f reduces to the sum of the individual norms of
its components f`′ . This corresponds to the case where there
is no prior information between the nonlinearities at different
bands.

In general, it is very likely that the nonlinear contributions at
consecutive bands have smooth spectral variations. This prior
information can be represented by a linear graph, where each
node is connected to nodes at adjacent bands with unit weight.
Nevertheless, more complex similarities can be incorporated
using the graph structure. For example, in certain scenes
nonlinear contributions can be dominant in certain spectral
domains and less dominant in other spectral domains [24],
[36]. This prior information can be represented by a clustered
graph, where only nodes in spectral domains with similar
nonlinear behavior are connected to each other.

2) Scalar kernel choice: The transformable and the sepa-
rable kernels are both defined respectively in equations (11)
and (12) using a scalar valued kernel k. Similarly to the case
of functions in scalar valued RKHS, the choice of the kernel
corresponds to a certain representation of the input data in
a higher dimensional space known as the feature space [19].
Hence, looking at the feature space can provide guidelines for
choosing an appropriate kernel.

We focus on the polynomial and Gaussian kernels due
to their successful application to nonlinear unmixing in the
scalar valued case [21], [37]. In particular, the second order
homogeneous polynomial kernel:

k(vn,vn′) = (vn
>vn′)

2, (17)

can be written as the inner product of the feature maps of vn
and vn′ , where the feature map is defined as follows:

φ(vn) = [(vn,1)2, . . . (vn,Lc)
2,
√

2(vn,1vn,2)2,

. . .
√

2(vn,1vn,Lc)
2,
√

2(vn,2vn,3)2, . . .
√

2(vn,2vn,Lc)
2, . . .

√
2(vn,Lc−1vn,Lc)

2].

(18)

The feature map of the second order homogeneous polynomial
kernel maps its input vector to all the possible pairwise
products between its components. This can be seen as a rep-
resentation of all possible second order interactions between
the spectral values in the input vector. On the other hand, the
Gaussian kernel:

k(vn,vn′) = exp(−‖vn − vn
′‖2

2σ2
), (19)

can be expressed as an infinite series of higher order polyno-
mial kernels:

k(vn,vn′) =
∞∑
j=0

(vn
>
vn′)

j

σ2jj!
exp(−‖vn‖

2

2σ2
)exp(−‖vn

′‖2

2σ2
).

(20)
Theoretically, the Gaussian kernel represents the case where
an endless number of reflections occurs in the scene since
it incorporates all higher order interactions between the input
spectra. The drawback of the Gaussian kernel is that its feature
map also contains a constant and a linear contribution (for
j = 0 and j = 1 in equation (20)) which can hinder the
estimation accuracy. Nevertheless, the Gaussian kernel shows
satisfying results in practice as will be seen in the experiments.

III. ESTIMATION ALGORITHM

A. Optimization problem

In this section we derive the optimization problem aimed
at estimating the abundances and the nonlinear function based
on model (5). Assuming that the noise is white, Gaussian,
with zero mean, and a possibly unknown variance, adopting a
maximum likelihood estimation leads to the least square (LS)
optimization problem:

min
A,f∈H̃k

1
2

∑N
n=1 ‖sn −Ran − f(vn)‖2, (21)

where R = [r1, . . . , rM ], and an = [a1,n, . . . , aM,n]>. Prob-
lem (21) mainly ensures that the estimated model matches the
observations. Nevertheless, the estimation of the abundances
and the nonlinear function based on (21) is an underdetermined
problem. As a result, it requires regularization and taking into
account additional constraints on the abundances. For these
reasons, we shall consider the following optimization problem:

min
A,f∈H̃k

1
2

∑N
n=1 ‖sn −Ran − f(vn)‖2

+λ
2 ‖f‖

2
H̃k

+ µJ (A)

subject to ai,n � 0 ∀ i = 1, · · ·M ,n = 1, · · ·N,∑M
i=1 ai,n = 1 ∀n = 1, · · · , N,

(22)

where A = [a1, . . . ,aN ], λ and µ are tuning parameters
that control the tradeoff between the LS term and the two
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regularization terms. The first regularization, namely the `2-
norm of f in H̃k, constrains the complexity of the estimated
function [31]. Furthermore, in the case of the separable kernel,
it corresponds to the graph regularizer (16) which promotes
smoothness between the outputs of f according to the graph
structure. As a result, the tuning parameter λ controls the
trade-off between fitting the data and smoothing the nonlinear
contributions by scaling the graph weights in expression (16).
If λ is set to zero, then no smoothness is promoted between the
spectral bands. On the other hand, the larger the value of λ, the
smoother the nonlinear contributions at neighboring spectral
bands in the graph. The second regularizer, namely J (A),
aims at incorporating prior information about the abundances.
For example, in the experiments we use the Frobenius norm
of the abundances:

J (A) =
1

2
‖A‖2F, (23)

giving preference to abundance estimates having a small
squared `2 norm for each pixel. Note that for very large
values of the tuning parameter µ in (22) the abundance
estimates for all pixels and all endmembers tend to be equal
to 1

M due to the positivity and sum-to-one constraints. As
shown in the next section III-B, using another expression
for J (A) is not cumbersome and affects one step in the
iterative algorithm. Nevertheless, an advantage of using the `2
norm of the nonlinear function and the Frobenius norm of the
abundances is that each regularization is strictly convex with
respect to the corresponding unknown variable. Hence, the
overall optimization problem is strictly convex with respect to
all the unknown variables. Finally, the proposed optimization
problem (22) imposes the positivity and sum-to-one constraints
on the estimated abundances. Some of the nonlinear mixing
models in the literature keep the sum-to-one constraint, as for
example [13], [37]. It can be argued that this constraint should
be relaxed to

∑M
i=1 ai,n ≤ 1 especially when dealing with real

hyperspectral data. Even if this constraint is strictly enforced
in the proposed optimization problem (22), it can be relaxed
by introducing a shade endmember in the endmember matrix
[38]. Furthermore, we show in the next section that dropping
this constraint requires a simple modification of the iterative
algorithm.

B. Iterative algorithm

In this section, we use the alternating direction method of
multipliers (ADMM) [39] to solve the proposed optimization
problem (22). The ADMM is a primal dual splitting method
based on the augmented Lagrangian [40], [41]. Following the
ADMM strategy, new variables and the corresponding con-
sensus constraints are introduced in (22) in order to decouple
the various terms in the objective function. We reformulate the
optimization problem (22) in the following equivalent manner:

min
X,Z,f∈H̃k

1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2

+λ
2 ‖f‖

2
H̃k

+ µJ (Z) + IRM×N+
(Z)

subject to AX + BZ = C,

(24)

with

A =

(
IM×M

1>M

)
, B =

(
−IM×M

0>M

)
, C =

(
0M×N

1>N

)
(25)

where X and Z are the ADMM variables, and IRM×N+
(Z) is

the indicator of RM×N+ (i.e., IRM×N+
(Z) = 0 if Z ∈ RM×N+

and IRM×N+
(Z) = ∞ if Z /∈ RM×N+ ). Compared to problem

(22), A was substituted by X and Z, and a consensus
constraint between the new variables was introduced. The pos-
itivity constraint was moved to the objective function through
the indicator function, and the sum-to-one was incorporated
within the equality constraint. As mentioned in the previous
section, the sum-to-one constraint can be relaxed by adding a
shade endmember to R. Another alternative for relaxing the
sum-to-one is by changing the definition of the matrices in
(25) to:

A = IM×M , B = −IM×M , C = 0M×N . (26)

The augmented Lagrangian associated with problem (24) is
given by:

Lρ(X,Z,f ,Λρ) = 1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2

+λ
2 ‖f‖

2
H̃k

+ µJ (Z) + IRM×N+
(Z)

+tr(Λ>ρ (AX + BZ − C)) + ρ
2 ‖AX + BZ − C‖2F,

(27)
where Λρ is the matrix of Lagrange multipliers associated
with the linear constraints in (24), and ρ is the penalty
parameter. At each iteration, the ADMM algorithm consists of
minimizing the augmented Lagrangian (27) sequentially. First,
it is minimized with respect to the unknown variables {X,f}
and then with respect to Z while in each minimization keeping
the other variables fixed to their previous estimate. Finally,
it consists of updating the Lagrange multipliers matrix Λρ

associated with the linear constraints. This approach allows
to break the optimization problem into a sequence of smaller
and simpler sub-problems. The ADMM steps at each iteration,
namely the {X,f} minimization step, the Z minimization
step, and the update of the Lagrange multipliers, are developed
hereafter. To keep the notations simple, we drop the iteration
index.

1) {X,f} minimization step: This step consists of min-
imizing the augmented Lagrangian with respect to {X,f}.
After discarding the terms independent of {X,f} in (27),
this step reduces to the following optimization problem:

min
X,f∈H̃k

1
2

N∑
n=1
‖sn −Rxn − f(vn)‖2 + λ

2 ‖f‖
2
H̃k

+

tr(Λ>ρ AX) + ρ
2 ‖AX + BZ − C‖2F.

(28)

We rewrite (28) in the following equivalent form:

minX,f∈H̃k,E
1
2

N∑
n=1
‖en‖2 + λ

2 ‖f‖
2
H̃k

+ tr(Λ>ρ AX)

+ρ
2 ‖AX + BZ − C‖2F

subject to en = sn −Rxn − f(vn),

∀n = 1, · · · , N,
(29)
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where E = [e1, . . . , eN ], and solve its dual problem. The
Lagrangian associated with problem (29) is given by:

L(X,f ,E,Λ) = 1
2

N∑
n=1
‖en‖2 + λ

2 ‖f‖
2
H̃k

+ tr(Λ>ρ AX)

+
∑N
n=1

v>
n (sn −Rxn − f(vn)− en)

+ρ
2 ‖AX + BZ − C‖2F,

(30)
where Λ = [ v

1, · · · , v

N ] is the matrix of Lagrange multipliers
associated with the linear constraints in (29). The partial
derivatives of the Lagrangian with respect to the primal
variables, namely X,f and E, are:

∂L
∂X = ρA>AX −R>Λ + A>Λρ + ρA>(BZ − C),
∂L
∂f = λf(·)− 1

λ

∑N
j=1 k̃(·,vj) v

j ,

∂L
∂E = E −Λ.

(31)
Setting the gradient of the partial derivatives in (31) to zero
gives the primal variables as a function of the Lagrange
multipliers:
X∗ = (A>A)−1

ρ (R>Λ∗ −A>Λρ − ρA>(BZ − C)),

f∗(·) = 1
λ

∑N
j=1 k̃(·,vj) v∗

j ,

E∗ = Λ∗.

(32)
To derive the Lagrange dual problem, the primal variables are
substituted in (30) by their expressions from (32). This results
in a quadratic form with respect to the Lagrange multipliers,
and yields the following dual problem:

maxΛ − 1
2 vec(Λ)>Qvec(Λ) + vec(Λ)>p, (33)

with{
Q = ILN×LN + 1

λK̃ + 1
ρIN×N ⊗D,

p = vec(S + 1
ρR(A>A)−1A>(Λρ + ρ(BZ − C))),

(34)
where D = R(A>A)−1R>, vec(·) is an operator that stacks
the columns of a matrix on top of each other. As a result, the
{X,f} minimization step reduces to solving the following
linear equation system:

Q vec(Λ∗) = p, (35)

with LN unknown variables. Once Λ∗ is determined, it is
substituted in (32) in order to evaluate the updated abundances.
Note that the nonlinear function does not need to be evaluated
at each iteration. It can be evaluated once, after the ADMM
algorithm has converged.

2) Z minimization step: This step consists of minimizing
the augmented Lagrangian with respect to Z. After discarding
the terms independent of Z in (27) and accounting for the
special structure of the matrices A, B, and C given in (25),
problem (36) reduces to the following optimization problem:

minZ
ρ
2 ‖Z −X‖

2
F − tr(Λ>ρ Z) + µJ (Z) + IRM×N+

(Z).

(36)

In particular, when J (Z) is the Frobenius norm (23), problem
(36) reduces to the following positively constrained least
squares problem:

minZ
1
2 ‖Z −

ρ
ρ+µ (X + 1

ρΛρ)‖2F + IRM×N+
(Z). (37)

The solution of problem (37) is obtained by a projection onto
the positive orthant:

Z = ρ
ρ+µ (X + 1

ρΛρ)+ , (38)

where (·)+ = max (0, ·) is applied component wise. As
mentioned previously, J (Z) can be set to a regularization
other than the Frobenius norm. For example, we demonstrate
the case of the `1 norm known for promoting sparse abun-
dances. In this case, problem (36) reduces to the following
optimization problem:

minZ
1
2 ‖Z − (X + 1

ρΛρ)‖2F + µ
ρ ‖Z‖1 + IRM×N+

(Z).

(39)
The solution of (39) is the well-known soft thresholding [42]
applied to the projection onto the positive orthant:

Z = softµ
ρ

((X +
1

ρ
Λρ)+), (40)

where softµ
ρ

(·) = sgn(·)(| · | − µ
ρ )+, and the soft thresholding

operator is applied component wise. The solution in equation
(40) can be simplified to:

Z = (X +
1

ρ
Λρ −

µ

ρ
)+ , (41)

where similarly to (38), (·)+ = max (0, ·) is applied compo-
nent wise. It is important to note that the sum to one constraint
should be relaxed in (24) when the `1 norm is considered.
Otherwise, J (Z) would be a constant in the feasible set, i.e.
when the abundances are positive and sum to one [43].

3) Update of the Lagrange multipliers: The last step
consists of updating the Lagrange multipliers according to the
following rule,

Λ→ρ = Λρ + ρ(AX + BZ − C), (42)

where Λ→ρ denotes the updated matrix of Lagrange multipliers.
This step can be seen as a gradient ascent of the augmented
Lagrangian with respect to the Lagrange multiplier. Further-
more, it evaluates the running sum of the constraint residuals.

C. Implementation details

The ADMM steps described in the previous section are
repeated until convergence. As suggested in [39], a reasonable
stopping criteria is that the primal and dual residuals must be
smaller than some tolerance thresholds, namely,

‖AX + BZ − C‖F ≤ εpri, (43)

‖ρA>B(Z→ −Z)‖F ≤ εdual, (44)

The pseudocode of the proposed algorithm is given in Al-
gorithm 1. The most computationally expensive step in the
iterative algorithm is the X minimization step which requires
solving an LN×LN system of linear equations (35). Solving
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the system of linear equations would have a memory complex-
ity O(L2N2) and a runtime complexity O(L3N3). As is, the
proposed algorithm is more tractable with multispectral data
than with hyperspectral data where the number of bands L
is higher. Nevertheless, we do not need to compute the exact
solution. The ADMM algorithm will converge even if the X
minimization step is carried out only approximately [39], [41].
This allows us to solve (35) using an iterative algorithm which
can reduce the runtime complexity and can make the proposed
algorithm less computationally expensive even with relatively
high values of L. The Conjugate Gradient method (CG) [44] is
one of the most widely used iterative techniques for solving a
large linear system of equations where Q is a positive definite
matrix as in (35). The CG can yield the exact solution after
LN iterations, but in practice a good initialization yields faster
convergence [45]. At each iteration of the CG, the dominating
operation is a matrix vector multiplication involving Q. In
general, the number of operations required for multiplying Q
by a vector is O(L2N2).

In the case of the separable kernel, both the memory and the
runtime complexity can be reduced furthermore by exploiting
the fact that Q is the sum of Kronecker products. In fact, Q
can be written as follows:

Q = IL ⊗ IN +
1

λ
K ⊗ E +

1

ρ
IN ⊗D, (45)

where we have replaced K̃ by its expression from (14). For an
efficient implementation of the product between Q and some
vector vec(J ) where J is an L × N matrix, the following
relationships can be used:{

(K ⊗ E)vec(J ) = vec(EJK),

(IN ⊗D)vec(J ) = vec(DJ )
(46)

Given (45) and (46), the overall product between Q and some
vector vec(J ) is given by:

Qvec(J ) = vec(J ) +
1

λ
vec(EJK) +

1

ρ
vec(DJ ). (47)

Equation (47) is expressed in terms of ordinary matrix prod-
ucts, which means that we do not have to compute any Kro-
necker products. Compared to the case where the Kronecker
product is evaluated, the memory complexity is reduced from
O(L2N2) to O(L2+N2) and the number of operations at each
iteration is reduced from O(L2N2) to O(max(L2N,LN2)).

Similarly to the previous case, the memory and the runtime
complexity of the CG method can be reduced furthermore
when using the transformable kernel. Even though K̃ can not
be replaced by a Kronecker product of smaller matrices as in
(45), it can be approximated by a product of smaller matrices.
For example, this can be done using the Nystrom approxima-
tion, see [46] (chap. 18.1) for more details. Nevertheless, it is
important to note that the Nystrom approximation introduces
errors in the estimation of the Gram matrix. This is in contrast
with the first approach, proposed with the separable kernel,
where exploiting the properties of the Kronecker product does
not alter the exact estimation of the Gram matrix. In order
to have a fair comparison between the separable and the

transformable kernels, the Nystrom approximation is not used
in the experiments.

Algorithm 1 : [X,F ] = NDU(S,R, λ, µ, ρ)

1: Precompute A,B,C, K̃,Q
2: Initialize Z,Λρ

3: while respri > εpri or resdual > εdual do
4: p = vec(S + 1

ρR(A>A)−1A>(Λρ + ρ(BZ − C)))

5: vec(Λ) = Q−1p % See section III-C
6: X = 1

ρ (A>A)−1(R>Λ−A>Λρ − ρA>(BZ − C))

7: Zold = Z
8: if J (Z) = ‖Z‖2F then
9: Z = ρ

ρ+µ (X + 1
ρΛρ)+

10: else if J (Z) = ‖Z‖1 then
11: Z = (X + 1

ρΛρ − µ
ρ )+

12: end if
13: Λρ = Λρ + ρ(AX + BZ − C)
14: respri = ‖AX + BZ − C‖F

15: resdual = ‖ρA>B(Z −Zold)‖F
16: end while
17: F = 1

λK̃vec(Λ)
18: F = reshape(F , L,N)

IV. EXPERIMENTS

A. Synthetic data: Illustrative examples

1) Data generation: The proposed approach is first il-
lustrated using synthetic data. Several patches were gener-
ated according to three mixing models that incorporate the
main assumptions underlying the proposed nonlinear mixing
model, i.e., bilinear contributions, adjacency effects, and band
selectivity. The bilinear contributions are created by adding
pairwise products of spectra, the adjacency effect is created
by adding bilinear contributions from neighboring pixels, and
band selectivity is created by assigning a different weight
to the nonlinear contributions at different bands. The three
mixing models (MM) are denoted as MM 1, MM 2, and MM
3, and they are defined as follows:
• MM 1 (bilinear contributions):

sn = slin
n + u slin

n � slin
n + en (48)

• MM 2 (bilinear contributions + adjacency effects):

sn = slin
n + u

∑n+2
i=n−2 γn,i s

lin
i � slin

i + en (49)

• MM 3 (bilinear contributions + adjacency effects + band
selectivity):

sn = slin
n + u

∑n+2
i=n−2 γn,i s

lin
i � slin

i � h+ en
(50)

where u in equation (48) is an attenuation parameter set to
0.2 in all the simulations, the coefficients γn,i in equation
(49) assign a different weight to the bilinear contributions
coming from neighbors, the coeficients were set to γn,n−2 =
γn,n+2 = 0.05, γn,n−1 = γn,n+1 = 0.3 and γn,n = 0.4,
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and h in equation (50) is an L dimensional vector where
each component assigns a different weight to the nonlinear
contribution at the corresponding band. Figure 2 (a) shows
the entries of h that were used for the experiments. In fact, h
was chosen such that it favors nonlinear contributions at the
center of the spectrum and attenuates nonlinear contributions
at the extremities of the spectrum. Note that h is unknown
by all the unmixing methods used in the experiments. Several
patches were created with N = 100 pixels using different
numbers of endmembers and different values of the SNR. The
endmembers were selected from the USGS spectral library of
minerals. Their frequency bands are in the range 400− 2560
nm, and were decimated such as to have L = 20 bands. Figure
2 (b) shows five endmembers spectra used in the simulations.
The abundances were generated using a Dirichlet distribution
with a unit shape parameter.

2) Unmixing methods: We tested three nonlinear unmixing
algorithms. The first algorithm is the extended endmember
matrix method. It considers the linear mixing model where
the endmember matrix is extended by adding the pairwise
products of the endmembers [47]. This algorithm is denoted
as Ext in the experiments, it consists of solving a positively
constrained least squares problem and has no tuning parame-
ters. The second algorithm is based on the scalar RKHS model
described in equation (3) and proposed in [21], it is denoted
as khype in the experiments. Compared to the proposed opti-
mization problem (22), the abundances and nonlinear function
in khype are estimated for every pixel by solving the following
optimization problem:

min
an,Ψn∈Hk

1
2‖sn −Ran −Ψn(R)‖2 + λ

2 ‖Ψn‖2Hk
+µ

2 ‖an‖
2

subject to ai,n � 0 ∀ i = 1,∑M
i=1 ai,n = 1,

(51)

where Ψn(R) = [Ψn(rλ1
), . . . ,Ψn(rλL)]> and Ψn ∈ Hk

is a scalar valued function in the RKHS Hk associated with
a scalar kernel. Note that the original optimization problem
proposed for khype in [21] uses the same parameter to penalize
the norm of the abundances and the nonlinear function, i.e.
λ = µ. Given that NDU requires tuning two parameters λ
and µ, and in order to have a fair comparison between the
two algorithms, the modified khype’s optimization problem
in (51) has two distinct parameters λ and µ. Khype was
tested with a Gaussian (G) and a second order homogeneous
polynomial (P) kernel. The third algorithm is the one proposed
in this paper, it is denoted in what follows as NDU (Nonlinear
neighbor and band Dependent Unmixing). Similarly to khype,
NDU was tested with a Gaussian (G) and a second order
homogeneous polynomial (P) kernel. Furthermore, given that
the kernel in NDU is matrix valued, it was tested using a
transformable (Tr.) and a separable (Sp.) structure. In the
case of the separable kernel, the graph that represents the
similarities between the different bands is linear, i.e. each
band is connected to the previous and next band, with unit
weights. In order to determine vn, the neighborhood was set
to Cn = {n, n− 1, n+ 1}.

For NDU and khype, the tuning parameters were tested in

the range [10−4 10−3 10−2 10−1 1 10]. The standard devia-
tions of the Gaussian kernels used with khype and NDU were
chosen such that the resulting Gram matrices have their values
in the same range. In particular, we compute all the possible
distances between the inputs of the kernel, and set the value
of σ to the maximum distance found. The polynomial Gram
matrices were scaled in order to have their values in the range
[0 1]. Figure 3 shows the Gram matrices used with khype,
and NDU in different settings and obtained with M = 3
and SNR = 40 dB. The first column in Figure 3 shows
the L × L Gram matrices used by khype. The second and
third columns in Figure 3 show the Gram matrices used by
NDU obtained with a transformable and separable structure
respectively. Recall that the NDU Gram matrices are N ×N
block matrices, where each block is an L × L matrix. In the
case of the transformable kernel, each block is an L × L
Gram matrix itself. Figure 3 shows that a block or sub-Gram
matrix in the transformable kernel is similar the corresponding
khype Gram matrix even though it is calculated using the
observations themselves rather than the endmember matrix as
in khype, whereas for the separable kernel, each block is equal
to E† multiplied by the corresponding scalar valued kernel.

3) Performance measures: The abundance estimation accu-
racy was evaluated using the root mean square error (RMSE)
defined as:

RMSEX =

√
1

MN
‖X −X?‖2F, (52)

where X represents the true abundances matrix and X? resp-
resents the abundances estimated by an unmixing algorithm.
In addition to the abundances, each one of the unmixing
algorithms estimates the nonlinear contributions. Let F and
F ? denote the true and estimated L × N matrices of non-
linear contributions. The estimation accuracy of F was also
evaluated using the RMSE defined as:

RMSEF =

√
1

LN
‖F − F ?‖2F. (53)

4) Simulation results: Tables I, II and III report the results
obtained using MM 1, MM 2, and MM 3 respectively. For each
case, we report the root mean square errors of the estimated
abundances (first term in brackets) and the estimated nonlinear
contributions (second term in brackets). For each set of exper-
iments, namely for each column in the tables, the best scores
for the RMSE of the estimated abundances and nonlinear
contributions are in bold. Khype and NDU require tuning two
parameters, namely λ and µ, for concision the parameters are
not reported in the tables. The estimation accuracy of the three
methods became worse when the noise level increased. The
same performance was observed for different values of M .
In general, Khype outperformed Ext, and NDU outperformed
both methods. Note that Ext gave results worse than NDU and
khype even when MM 1 was used. This is most probably due
to the fact that the sum to one constraint was not incorporated
in the implementation of Ext, unlike the case of khype and
NDU. In the majority of the cases, NDU gave the best RMSE
of the abundances and the nonlinear part when used with the
separable and polynomial kernel (Sp. + P). The polynomial
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Fig. 2. Fom left to right: (a) The components of vector h corresponding
to the weight of the nonlinear contribution at each band, (b) Endmembers
spectra used to generate the illustrative examples.

and the Gaussian kernels usually had comparable results in all
scenarios. The transformable kernel and the separable kernel
had comparable results only when MM 1 and 2 were used, i.e.
in tables I and II. However, the separable kernel outperformed
the transformable kernel when MM 3 was used, i.e. in table
III.

Figure 4 shows the true and estimated nonlinear contri-
butions for all pixels at all bands obtained with P = 3
and SNR=40 dB. The first row in Figure 4 shows the true
nonlinear contributions. Whereas the following rows show the
nonlinear contributions estimated with Ext, khype, NDU with
a transformable kernel, and NDU with a separable kernel. For
conciseness, we show the results with either the Gaussian or
the polynomial kernel for Khype and NDU. In particular, the
kernel that gave the best RMSE was chosen. Figure 4 mainly
allows to visually compare the estimation of the nonlinear
contribution obtained with the various methods and mixing
models. The first column in Figure 4 corresponds to the
results obtained with MM 1, i.e. with bilinear contributions.
It can be seen that khype and NDU slightly outperformed
Ext. The second column in Figure 4 corresponds to the
results obtained with MM 2, i.e. with bilinear contributions
and adjacency effects. The first figure in column 2 shows
that the true nonlinear contributions at adjacent pixels (i.e.
at adjacent columns in the image) have smooth variations. In
this case, NDU with both the transformable and the separable
kernel gave the smoothest results compared to Ext and khype.
Recall that the kernels used by NDU account for adjacency
effects through their input vector vn. The third column in
Figure 4 corresponds to the results obtained with MM 3,
i.e. with bilinear contributions, adjacency effects, and band
selectivity. In accordance with MM 3, the first figure in column
3 shows that the true nonlinear contributions are smooth,
they are the most pronounced at the center of the spectrum
and they are attenuated (almost zero) at the extremities of
the spectrum. In this case, NDU with the separable kernel
gave the best results. All the methods estimated the highest
nonlinear contributions at the center of the spectrum. However,
NDU with the separable kernel handled the attenuation of
the bilinear contributions at the extremities of the spectrum
better than the other methods. This is probably due to the
fact that the prior information on the similarities between the
nonlinear contributions at different bands is better in the case
of the separable kernel than in the transformable kernel. More

precisely, the separable kernel exploits the linear graph struc-
ture which promotes smooth variations at adjacent bands (i.e.
adjacent rows in the image). Whereas, the transformable kernel
exploits the correlations between all bands in order to estimate
the nonlinear contributions. Finally, note that the simulations
were performed using Matlab on a desktop machine with the
following specifications: 2.7 GHz Intel Core i5 processor and
8 GB RAM. With these machine specifications, Ext, khype
and NDU took on average 0.41, 0.11 and 3.3 ms per pixel,
NDU being the most computationally expensive algorithm.

B. Synthetic data: Illustrative example (L = 200)

We repeated the same simulations performed in the previous
section with L = 200 instead of L = 20. Nevertheless,
we only used the separable kernel with NDU and used the
approach proposed in section III-C to make the algorithm com-
putationally tractable. For concision, we only report the results
obtained with MM = 3, M = 3, and SNR = 40 dB. Figure 5
shows the nonlinear part estimated by the three methods, and
table IV reports the RMSE of the estimated abundances and
nonlinear contributions obtained with each method. In general,
the results are similar to the ones obtained with L = 20 in
the sense that the proposed approach outperformed khype and
ExtR and it was able to better account for the smoothness and
band-selectivity of the nonlinear contribution. Finally, note
that Ext, khype and NDU took on average 1.1, 2.1 and 60 ms
per pixel.

C. Real data: Gulf of Lion

1) Data set description and ground truth: The second set of
experiments considers real data estimated by the Meris spec-
trometer and captured over the gulf of Lion in the south east
of France. The image has 280× 330 pixels, 13 spectral bands
in the range 400− 800 nm, and a spatial resolution of 300 m.
This data set will be referred to as the “Meris” image in the
following and is depicted in Figure 6 (a). Furthermore, Figure
6 (b) shows the corresponding classification map provided
by Corine Land Cover (CLC) database [48]. Note that the
two images were coregistered, and the classification map was
chosen as close as possible to the date of the Meris image in
order to have a consistent comparison. The classification map
will be used for visual evaluation, in order to better evaluate
and interpret the unmixing results provided by the various
algorithms.

The CLC classification map has a spatial resolution ap-
proximately 10 times greater than the Meris data set’s spatial
resolution. Therefore, it was downscaled in order to obtain
spatial abundance maps for the Meris image [49]. The spatial
abundance of a certain class/endmember in a pixel in the
estimated low resolution image is the average of the cor-
responding class occurrences in the corresponding window
in the high resolution image. These maps are regarded as a
potential visual ground truth that allow to better evaluate and
interpret the unmixing results. The first row in Figure 8 shows
the ground truth obtained from the CLC classification map,
which corresponds to the proportions of three classes: water,
agricultural areas, and forests and semi natural areas.
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TABLE I
RMSE (×10−2) OBTAINED WITH MM 1. THE TWO TERMS IN BRACKETS ARE THE RMSE OF THE ESTIMATED ABUNDANCES (LEFT TERM) AND THE

NONLINEAR PART (RIGHT TERM).

SNR = 40 SNR = 30 SNR = 20

M = 3 M = 4 M = 5 M = 3 M = 4 M = 5 M = 3 M = 4 M = 5

Ext (4.03, 1.69) (3.91, 2.38) (3.36, 1.79) (5.10, 2.86) (4.48, 2.76) (4.91, 3.33) (6.93, 4.99) (9.50, 7.81) (9.42, 6.36)
Khype (G) (2.23, 0.74) (2.40, 1.18) (2.24, 1.11) (2.59, 1.33) (2.80, 1.19) (2.78, 1.23) (4.44, 1.89) (5.25, 1.71) (4.80, 1.60)
Khype (P) (1.80, 0.631) (2.06, 0.91) (1.96, 0.96) (2.86, 1.08) (2.60, 1.32) (2.78, 1.31) (4.57, 1.79) (4.69, 1.57) (4.34, 1.27)

NDU (Tr. + G) (1.78, 0.74) (1.34, 0.55) (1.21, 0.57) (1.76, 1.08) (2.27, 0.97) (2.09, 0.78) (4.42, 2.28) (5.34, 2.73) (4.52, 2.50)
NDU (Tr. + P) (1.02, 0.47) (0.81, 0.25) (1.10, 0.46) (1.50, 0.77) (2.23, 1.02) (1.98, 0.87) (2.51, 1.63) (4.82, 2.16) (5.01, 2.50)
NDU (Sp. + G) (2.65, 1.08) (3.49, 1.09) (3.29, 1.79) (3.40, 2.31) (4.69, 2.15) (2.83, 1.72) (3.33, 6.73) (4.97, 3.58) (4.41, 5.95)
NDU (Sp. + P) (2.91, 1.32) (3.09, 1.52) (2.87, 1.60) (3.07, 2.25) (3.65, 1.94) (2.57, 1.38) (3.01, 2.46) (4.26, 6.60) (4.27, 5.49)

TABLE II
RMSE (×10−2) OBTAINED WITH MM 2. THE TWO TERMS IN BRACKETS ARE THE RMSE OF THE ESTIMATED ABUNDANCES (LEFT TERM) AND THE

NONLINEAR PART (RIGHT TERM).

SNR = 40 SNR = 30 SNR = 20

M = 3 M = 4 M = 5 M = 3 M = 4 M = 5 M = 3 M = 4 M = 5

Ext (2.75, 1.59) (2.87, 1.42) (3.12, 1.50) (3.72, 1.66) (4.34, 2.88) (4.05, 3.29) (6.70, 3.82) (8.88, 5.95) (8.20, 6.02)
Khype (G) (1.75, 0.62) (1.45, 0.63) (1.20, 0.61) (2.82, 1.01) (2.52, 0.82) (2.29, 1.00) (4.40, 1.90) (5.26, 1.57) (5.27, 2.05)
Khype (P) (1.62, 0.60) (1.31, 0.55) (1.12, 0.53) (2.56, 0.86) (2.61, 0.89) (2.26, 1.05) (4.57, 1.70) (4.73, 1.51) (5.59, 2.21)

NDU (Tr. + G) (0.84, 0.58) (0.90, 0.36) (0.86, 0.40) (1.23, 0.54) (1.90, 0.52) (1.87, 0.70) (8.04, 3.82) (7.25, 3.42) (6.21, 3.60)
NDU (Tr. + P) (1.43, 0.60) (1.11, 0.33) (0.99, 0.37) (2.22, 0.72) (2.15, 0.43) (1.82, 0.61) (4.98, 2.66) (6.47, 2.89) (5.60, 2.81)
NDU (Sp. + G) (2.20, 0.91) (5.08, 1.71) (3.23, 1.46) (4.87, 2.51) (4.11, 1.90) (3.10, 2.07) (4.37, 6.94) (4.11, 3.44) (6.06, 3.69)
NDU (Sp. + P) (1.61, 0.63) (2.61, 1.07) (2.04, 1.18) (2.75, 1.76) (2.62, 1.17) (2.24, 1.53) (3.74, 6.99) (4.00, 2.26) (5.56, 2.59)

TABLE III
RMSE (×10−2) OBTAINED WITH MM 3. THE TWO TERMS IN BRACKETS ARE THE RMSE OF THE ESTIMATED ABUNDANCES (LEFT TERM) AND THE

NONLINEAR PART (RIGHT TERM).

SNR = 40 SNR = 30 SNR = 20

M = 3 M = 4 M = 5 M = 3 M = 4 M = 5 M = 3 M = 4 M = 5

Ext (3.71, 5.65) (7.45, 5.67) (5.89, 5.67) (4.40, 6.17) (8.59, 6.06) (7.04, 5.84) (7.47, 6.66) (10.1, 8.79) (10.2, 10.3)
Khype (G) (0.44, 2.47) (2.67, 1.95) (2.84, 1.53) (1.20, 2.57) (3.21, 2.04) (2.89, 1.51) (3.45, 2.58) (5.85, 1.98) (5.22, 1.70)
Khype (P) (1.11, 2.43) (3.33, 1.93) (3.04, 1.54) (1.51, 2.52) (3.63, 2.01) (3.14, 1.52) (2.94, 2.46) (5.87, 1.93) (5.21, 1.64)

NDU (Tr. + G) (3.63, 2.28) (5.92, 2.24) (4.55, 2.02) (6.09, 3.12) (7.39, 2.79) (5.06, 2.27) (9.63, 4.47) (10.4, 4.14) (8.81, 4.22)
NDU (Tr. + P) (6.54, 3.19) (5.79, 2.46) (5.02, 2.49) (7.90, 3.66) (7.30, 3.02) (5.29, 2.69) (10.0, 4.52) (10.0, 4.06) (8.98, 4.56)
NDU (Sp. + G) (0.51, 0.43) (1.05, 0.50) (0.90, 0.61) (1.20, 1.49) (1.61, 1.28) (2.41, 1.06) (2.54, 3.41) (5.10, 0.92) (4.93, 0.92)
NDU (Sp. + P) (0.41, 0.29) (0.90, 0.47) (0.80, 0.46) (1.07, 0.93) (1.54, 0.89) (2.47, 1.04) (2.53, 3.81) (5.10, 0.90) (4.89, 0.91)
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Fig. 5. True and estimated nonlinear contributions in all pixels at all bands
obtained with M = 3 and SNR=40 dB, the vertical and horizontal axis in
each figure represent the frequency band and the pixel number respectively.

TABLE IV
ROOT MEAN SQUARE ERROR RMSE (×10−2) OF THE ABUNDANCES AND

NONLINEAR CONTRIBUTION OBTAINED WITH THE SYNTHETIC DATA
USING M = 4 AND L = 200 FOR SNR = 40 DB.

RMSEX RMSEF

ExtR 1.97 3.1

Khype (G) 0.86 1.86

Khype (P) 1.37 1.89

NDU (Sep. + G) 0.55 0.30

NDU (Sep. + P) 0.43 0.21

2) Unmixing results: We extracted 3 and 4 endmembers
using virtual component analysis VCA [50]. We noticed that
each time one of the endmembers extracted by VCA was not
meaningful in the sense that the corresponding abundance map
was not spatially coherent. Nevertheless, in the case with 4 ex-
tracted endmembers the three abundance maps corresponding
to the meaningful endmembers were relatively in accordance
with the estimated ground truth. In what follows we only show
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the results obtained with four endmembers. Figure 7 shows
the estimated endmembers spectra, note that endmember 4
corresponds to the outlier. The abundance maps for each
endmember were estimated using the fully constrained least
squares approach (FCLS), Ext, khype and NDU. The separable
kernel was used with NDU with a linear graph as in the exper-
iments with synthetic data. Both khype and NDU were tested
using a Gaussian and a second order homogeneous polynomial
kernel. As in the previous section, vn was defined using the
pixels and its neighboring pixels spectra. In particular, the
four neighbors were chosen, namely the upper, lower, left and
right neighbors of each pixel. The tuning parameters λ and
µ were set to 10 and 10−4 respectively for both khype and
NDU. Unlike khype and Ext that were applied on each pixel
separately, the image was divided into 10 × 10 patches and
NDU was applied on each patch.

Table V reports the root mean square error (RMSE) and
the average spectral angle (ASA) of the reconstructed image
using each algorithm. The RMSE is computed for all the
observations in the image, and the ASA is given in radian.
Table V shows that NDU scored the best results in terms
of both the RMSE and the ASA. The results obtained with
Ext slightly improved the ones obtained with FCLS. Khype
outperformed both methods, Ext and FCLS, and had results
very close to the ones obtained with NDU. Figure 8 shows that
the abundance maps estimated by the various algorithms are
rather similar. As mentioned previously, the fourth endmember
corresponds to noise hence its abundance maps are not shown
in Figure 8. Figure 9 shows the nonlinear part estimated
by NDU and khype at band 10. In fact, most of the areas
where nonlinear contributions appear are mainly located on
the boundaries of agricultural areas (endmember 2) surrounded
by forests and semi-natural areas (endmember 3). Note that
the nonlinear contributions estimated by NDU are relatively
spatially smoother than the ones estimated by khype. However,
NDU results exhibit some artifacts due to the fact that the
image was partitioned into square patches.

Finally, Figure 10 compares the nonlinear contribution
estimated by NDU and khype at all bands for the pixels
delimited by rows 171 and 180 and columns 231 and 240.
Both algorithms estimated the highest nonlinear contributions
for this particular region. However, the nonlinear contributions
have different variations throughout the spectral bands. NDU
estimated the highest nonlinear contributions at the higher
frequency bands whereas khype estimated almost the same
level of nonlinearity at all frequency bands. Furthermore, NDU
estimated smooth nonlinear contributions at adjacent pixels
compared to khype. It can be concluded that NDU captures
more spectral variability throughout the spectral bands and that
it provides smooth nonlinear contributions at adjacent pixels.

V. CONCLUSION

This paper proposed a new kernel based nonlinear mixing
model for hyperspectral data. The proposed vector-valued
function is able to account for band dependent and neighboring
nonlinear contributions. The proposed framework has several
characteristics. It allows to handle in a unified framework
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Fig. 7. Endmembers spectra estimated by VCA for the Meris data set.

several types of nonlinearities depending on the choice of
the kernel function. Unlike nonlinear models proposed in the
literature, it considers a different nonlinear function for each
spectral band. The fact that the nonlinear function acts on the
reflectance vectors observed in the corresponding pixel and its
neighbors is intended to account for nonlinearities originating
from the ground cover of the pixel and its neighbors. Further-
more, the separable kernel design can be used to incorporate
prior information regarding the similarities between nonlinear
contributions at different bands. In particular, a linear graph
was proposed to promote smooth nonlinear variations between
adjacent bands. The performance of the proposed approach
was validated on synthetic and real data estimated by the
Meris spectrometer and captured over the gulf of Lion in
the south east of France. Finally, note that the proposed
approach requires partitioning the image into patches which
can result in artifacts in the estimated nonlinear part. Future
work should aim at attenuating those artifacts through an
extension of the vector-valued approach. More precisely, the
vector-valued framework can be adapted such as to promote
smoothness between the estimated nonlinear contributions at
adjacent bands and between the nonlinear functions at adjacent
patches simultaneously. Furthermore, the proposed approach
requires the extraction of the endmembers beforehand using
some endmember extraction algorithm. Future work should
aim at extending the proposed algorithm to the unsupervised
case where the endmembers are jointly estimated with the
abundances and nonlinear function.
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Fig. 8. Abundance maps of the first three endmembers obtained with VCA and corresponding to the Meris real data set. The abundance maps of End. 1, 2,
and 3 correspond to water, agricultural areas, and forests and semi natural areas respectively.
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Fig. 9. Nonlinear contributions at all pixels at band 10 obtained with: (a)
khype used with a Gaussian kernel (G) and (b) NDU used with a separable
and polynomial kernel (Sp.+P).
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Fig. 10. Nonlinear contributions at all bands in some of the pixels in the
Meris data set. The horizontal and vertical axis correspond to the pixel and
frequency index respectively.

TABLE V
ROOT MEAN SQUARE ERROR RMSE (×10−2) AND AVERAGE SPECTRAL
ANGLE (ASA) IN RADIAN OF THE RECONSTRUCTED SPECTRA OBTAINED

WITH THE MERIS DATA SET.

RMSE ASA
FCLS 1.14 0.0393

Ext 1.13 0.0343

Khype (G) 0.66 0.0338

Khype (P) 1.04 0.0381

NDU (Sep. + G) 0.41 0.0152

NDU (Sep. + P) 0.45 0.0204
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