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1.1 Introduction

Time-frequency representations provide a powerful tool for nonstationary
signal analysis and classification, supporting a wide range of applications [12].
As opposed to conventional Fourier analysis, these techniques reveal the evo-
lution in time of the spectral content of signals. In [7, 39], time-frequency
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analysis is used to test stationarity of any signal. The proposed method con-
sists of a comparison between global and local time-frequency features. The
originality is to make use of a family of stationary surrogate signals for defining
the null hypothesis of stationarity and, based upon this information, to de-
rive statistical tests. An open question remains, however, about how to choose
relevant time-frequency features.

Over the last decade, a number of new pattern recognition methods based
on reproducing kernels have been introduced. These learning machines have
gained popularity due to their conceptual simplicity and their outstanding
performance [30]. Initiated by Vapnik’s Support Vector Machines (SVM) [36],
they offer now a wide class of supervised and unsupervised learning algo-
rithms. In [17, 18, 19], the authors have shown how the most effective and
innovative learning machines can be tuned to operate in the time-frequency
domain. The present paper follows this line of research by taking advantage
of learning machines to test and quantify stationarity. Based on one-class
support vector machines, our approach uses the entire time-frequency repre-
sentation and does not require arbitrary feature extraction. Applied to a set
of surrogates, it provides the domain boundary that includes most of these
stationarized signals. This allows us to test the stationarity of the signal under
investigation.

This paper is organized as follows. In Section 1.2, we introduce the surro-
gate data method to generate stationarized signals, namely, the null hypothesis
of stationarity. The concept of time-frequency learning machines is presented
in Section 1.3, and applied to one-class SVM in order to derive a stationarity
test in Section 1.4. The relevance of the latter is illustrated by simulation
results in Section 1.5.

1.2 Revisiting stationarity

1.2.1 A time-frequency perspective

Harmonizable processes define a general class of nonstationary processes
whose spectral properties, which are potentially time-dependent, can be re-
vealed by suitably chosen time-varying spectra. This can be achieved, e.g.,
with the Wigner-Ville Spectrum (WVS) [12], defined as

Wx(t, f) :=
∫

E {x (t + τ/2)x∗ (t − τ/2)} e−i2πfτ dτ, (1.1)

where x stands for the analyzed process. Such a definition guarantees fur-
thermore that second order stationary processes, which are a special case of
harmonizable processes, have a time-varying spectrum that simply reduces to
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the classical (stationary, time-independent) Power Spectrum Density (PSD)
at every time instant.

In practice, the WVS has to be estimated on the basis of a single observed
realization, a standard procedure amounting to make use of spectrograms (or
multitaper variations [4]) defined as

Sx(t, f ; h) :=
∣∣∣∣
∫

x(τ)h∗(τ − t) e−i2πfτ dτ

∣∣∣∣
2

, (1.2)

where h stands for some short-time observation window. In this case too,
the concept of stationarity still implies time-independence, the time-varying
spectra identifying, at each time instant, to some frequency smoothed version
of the PSD. It follows however from this TF interpretation that, from an
operational point of view, stationarity cannot be an absolute property. A more
meaningful approach is to switch to a notion of relative stationarity to be
understood as follows: when considered over a given observed time scale, a
process will be referred to as stationary relative to this observation scale if
its time-varying spectrum undergoes no evolution or, in other words, if the
local spectra Sx(tn, f ; h) at all different time instants {tn; n = 1, . . . , N} are
statistically similar to the global (average) spectrum

S̄x(tn, f ; h) :=
1
N

N∑

n=1

Sx(tn, f ; h) (1.3)

obtained by marginalization.
Based on this key point, one can imagine to design stationarity tests via

some comparison between local and global features within a given observation
scale [7] or, more generally, to decide whether an actual observation differs
significantly from a stationary one within this time span. The question is
therefore to have access to some stationary reference that would share with
the observation the same global frequency behavior, while having a time-
varying spectrum constant over time. As proposed in [7], an answer to this
question can be given by the introduction of surrogate data.

1.2.2 Stationarization via surrogates

The general idea is to build a reference of stationarity directly from the sig-
nal itself, by generating a family of stationarized signals which have the same
density spectrum as the initial signal. Indeed, given a density spectrum, non-
stationary signals differ from stationary ones by temporal structures encoded
in the spectrum phase. The surrogate data technique [35] is an appropriate
solution to generate a family of stationarized signals, by keeping unchanged
the magnitude of the Fourier transform X(f) of the initial signal x(t), and
replacing its phase by an i.i.d. one. Each surrogate signal x#(t) results from
the inverse Fourier transform of the modified spectrum, namely,

X#(f) = |X(f)| ejφ!(f),
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FIGURE 1.1: Spectrogram of a FM signal (left) and empirical mean of the
spectrograms of its surrogates (right).

with φ#(f) drawn from the uniform distribution over the interval [−π,π[. This
leads to as many stationary surrogate signals, x1, . . . , xn, as phase random-
izations φ1(f), . . . ,φn(f) are operated. An illustration of the effectiveness of
this approach in terms of its TF interpretation is given in Figure 1.1.

It has been first proved in [7] that surrogates are wide-sense stationary, i.e.,
their first and second order moments are time-shift invariant. More recently,
it has been established in [26] that surrogates are strict-sense stationary, the
proof proceeding as follows. Let us derive the invariance with respect to time
shifts of the (L + 1)-th order cumulant of the surrogate signal x(t), where the
subscript $ has been dropped for clarity

c(t; t1, . . . , tL) = cum(xε0(t), xε1(t + t1), . . . , xεL(t + tL))

where εi = ±1 and xεi(t) = x∗(t) when εi = −1 (we suggest the reader to refer,
e.g., [1], for a detailed description of the tools related to high-order analysis of
complex random processes). Let Φ(u) = E[ejφu] be the characteristic function
of the random phase φ. As it is uniformly distributed over [−π,π[, note that

Φ(k) = 0, ∀k ∈ Z∗. (1.4)

Using the multilinearity of the cumulants, we have

c(t; t1, . . . , tL) =
∫
|X(f0)| · · · |X(fL)|C(f0, . . . , fL) ej2πt

PL
i=0 εifi ej2π

PL
i=1 εitifi df0 · · · dfL

where C(f0, . . . , fL) = cum(ejε0φ(f0), . . . , ejεLφ(fL)). If one variable fi is differ-
ent from the others, the corresponding random variable ejε0φ(fi) is independent
from the others and C(f0, . . . , fL) = 0. Consequently, the joint cumulant of
the surrogate simplifies to

c(t; t1, . . . , tL) = CL+1

∫
|X(f)|L+1 ej2πft

PL
i=0 εi ej2πf

PL
i=1 εitidf
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where CL+1 = cum(ejε0φ, . . . , ejεLφ). Application of the Leonov-Shiryaev for-
mula to this cumulant leads to

CL+1 =
∑

P
(|P|− 1)! (−1)|P|−1

∏

B∈P
Φ(

∑
i∈B εi) (1.5)

where P runs through the list of all the partitions of {0, . . . , L} and B runs
through the list of all the blocks of the partition P . This expression can be
simplified using (1.4) and noting that

∑
i∈B εi ∈ Z. Consequently, Φ(

∑
i∈B εi)

is non-zero, and necessarily equal to 1, if and only if
∑

i∈B εi = 0.

• If L is even, whatever P , at least one block B of P has an odd cardinal.
For this block, we have

∑
i∈B εi ∈ Z∗ and, consequently, CL+1 = 0.

• If L is odd, the product in (1.5) is non-zero, and thus equal to 1, if and
only if

∑
i∈B εi = 0 for all B of P . Since

∑
B

∑
i∈B εi =

∑L
i=0 εi, this

product is non-zero if, and only if,
∑L

i=0 εi = 0.

As a conclusion, high-order cumulants of the surrogate signal x(t) are non-
zero only if

∑L
i=0 εi = 0. This implies that x(t) is a circular complex random

signal. Moreover, substitution of this constraint in (1.2.2) leads to

c(t; t1, . . . , tL) = CL+1

∫
A(f)L+1 ej2πf

PL
i=1 εiti df (1.6)

which proves that surrogates are strict-sense stationary.

Remark — Making use of strictly stationary surrogates proved effective for
detecting nonstationarities in various scenarii, but the tests happen to be
very sensitive. For instance, when applied to realizations of actual stationary
processes, e.g., AR, the rejection rate of the null hypothesis turns out to be
higher than the prescribed confidence level [7, 38]. In a related way, one key
point of the approach is to encompass in a common (time-frequency) frame-
work stochastic and deterministic situations, stationarity referring to pure
tones in the latter case. In this case too, surrogates cannot really reproduce
the supposed stationarity of the observation. This is a natural outcome of
the intrinsically stochastic generation of surrogates, but this makes again the
test somehow pessimistic. The observation of such remaining limitations in
the use of classical surrogates for testing stationarity prompts to think about
related, possibly more versatile constructions. One possibility in this direction
is, rather than replacing the spectrum phase by an i.i.d. sequence, to modify
the original phase by adding some random phase noise to it. Depending on
the nature and the level of this added phase noise, one can get this way a
controlled transition from the original process (be it stationary or not) to its
stationary counterpart [6].

Once a collection of stationarized surrogate signals has been synthesized,
different possibilities are offered to test the initial signal stationarity [7, 39].
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A potential approach is to extract some features from the surrogate signals
such as distance between local and global spectra, and to characterize the null
hypothesis of stationarity by the statistical distribution of their variations in
time. Another approach is based on statistical pattern recognition. It consists
of considering surrogate signals as a learning set, and using it to estimate the
support of the distribution of the stationarized signals. This will be detailed
further in the next section.

1.3 Time-frequency learning machines

Most pattern recognition algorithms can be expressed in terms of inner
products only, involving pairs of input data. Replacing these inner products
with a (reproducing) kernel provides an efficient way to implicitly map the
data into a high-dimensional space, and apply the original algorithm in this
space. Calculations are then carried out without making direct reference to
the nonlinear mapping applied to input data. This so-called kernel trick is the
main idea behind (kernel) learning machines. In this section, we show that
learning machines can be tuned to operate in the time-frequency domain by
a proper choice of kernel. Refer to [18] for more details.

1.3.1 Reproducing kernels

Let X be a subspace of L2(C), the space of finite-energy complex signals,
equipped with the usual inner product defined by 〈xi, xj〉 =

∫
t xi(t)x∗

j (t) dt
and its corresponding norm. A kernel is a function κ(xi, xj) from X ×X to C,
with hermitian symmetry. It is said to be positive definite on X if [2]

n∑

i=1

n∑

j=1

ai a∗
j κ(xi, xj) ≥ 0 (1.7)

for all n ∈ N , x1, . . . , xn ∈ X and a1, . . . , an ∈ C. It can be shown that every
positive definite kernel κ is the reproducing kernel of a Hilbert space H of
functions from X to C, that is,

1. the function κxj : xi (→ κxj (xi) = κ(xi, xj) belongs to H, for all xj ∈ X ;

2. one has Θ(xj) = 〈Θ,κxj〉H for all xj ∈ X and Θ ∈ H,

where 〈 ·, ·〉H denotes the inner product in H. It suffices to consider the sub-
space H0 induced by the functions {κx}x∈X , and equip it with the following
inner product

〈Θ1,Θ2〉H0 =
n∑

i=1

m∑

j=1

ai,1 a∗
i,2 κ(xi, xj), (1.8)
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where Θ1 =
∑n

i=1 ai,1 κxi and Θ2 =
∑m

i=1 ai,2 κxi are elements of H0. We
fill this incomplete Hilbertian space according to [2], so that every Cauchy
sequence converges in that space. Thus, we obtain the Hilbert space H induced
by the reproducing kernel κ, called a reproducing kernel Hilbert space (RKHS).
One can show that every reproducing kernel is positive definite [2]. An example
of kernel is the Gaussian kernel defined by κ(xi, xj) = exp(−‖xi − xj‖2/2σ2),
with σ the kernel bandwidth. Other examples of reproducing kernels, and
rules for designing and combining them, can be found, e.g., in [16, 36].

1.3.2 The kernel trick, the representer theorem

Substituting Θ by κxi in item 2 of the definition of RKHS in Section 1.3.1,
we get the following fundamental property

κ(xi, xj) = 〈κxi ,κxj 〉H (1.9)

for all xi, xj ∈ X . Therefore, κ(xi, xj) gives the inner product in H, the so-
called feature space, of the images κxi and κxj of any pair of input data xi

and xj , without having to evaluate them explicitly. This principle is called the
kernel trick. It can be used to transform any linear data processing technique
into a non-linear one, on the condition that the algorithm can be expressed in
terms of inner products only, involving pairs of the input data. This is achieved
by substituting each inner product 〈xi, xj〉 by a non-linear kernel κ(xi, xj),
leaving the algorithm unchanged and incurring essentially the same computa-
tional cost. In conjunction with the kernel trick, the representer theorem is a
solid foundation of kernel learning machines such as SVM [28]. This theorem
states that any function Θ of H minimizing a regularized criterion of the form

J((x1, y1,Θ(x1)), . . . , (xn, yn,Θ(xn))) + ρ(‖Θ‖2
H), (1.10)

with ρ a strictly monotonic increasing function on R+, can be written as a
kernel expansion in terms of the available data, namely,

Θ(·) =
n∑

j=1

aj κ(·, xj). (1.11)

In order to prove this, note that any function Θ of the space H can be de-
composed as Θ(·) =

∑n
j=1 aj κ(·, xj) + Θ⊥(·), where 〈Θ⊥(·),κ(·, xj)〉H = 0

for all j = 1, . . . , n. Using this with equation (1.9), we see that Θ⊥ does not
affect the value of Θ(xi), for all i = 1, . . . , n. Moreover, we verify that (1.11)
minimizes ρ since ρ(‖

∑n
j=1 aj κ(·, xj)‖2

H+‖Θ⊥‖2
H) ≥ ρ(‖

∑n
j=1 aj κ(·, xj)‖2

H).
This is the essence of the representer theorem.

1.3.3 Time-frequency learning machines: general principles

In this section, we investigate the use of kernel learning machines for pat-
tern recognition in the time-frequency domain. To clarify the discussion, we
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shall first focus on the Wigner distribution. This will be followed by an exten-
sion to other time-frequency distributions, linear and quadratic. Below, An

denotes a training set containing n instances xi ∈ X and the desired outputs
or labels yi ∈ Y.

Among the myriad of time-frequency representations that have been pro-
posed, the Wigner distribution is considered fundamental in a number of ways.
Its usefulness derives from the fact that it satisfies many desired mathemati-
cal properties such as the correct marginal conditions and the weak correct-
support conditions. This distribution is also a suitable candidate for time-
frequency-based detection since it is covariant to time shifts and frequency
shifts and it satisfies the unitarity condition [12]. The Wigner distribution is
given by

Wx(t, f) :=
∫

x(t + τ/2)x∗(t − τ/2) e−2jπfτ dτ (1.12)

where x is the finite energy signal to be analyzed (one can remark that, under
mild conditions, the Wigner-Ville Spectrum that has been previously con-
sidered, see eq. (1.1), is nothing but the ensemble average of the Wigner
distribution (1.12)). By applying conventional linear pattern recognition al-
gorithms directly to time-frequency representations, we seek to determine a
time-frequency pattern Φ(t, f) so that

Θ(x) = 〈Wx,Φ〉 =
∫∫

Wx(t, f)Φ(t, f) dt df (1.13)

optimizes a given criterion J of the general form (1.10). The principal difficulty
encountered in solving such problems is that they are typically very high
dimensional, the size of the Wigner distributions calculated from the training
set being quadratic in the length of signals. This makes pattern recognition
based on time-frequency representations time-consuming, if not impossible,
even for reasonably-sized signals. With the kernel trick and the representer
theorem, kernel learning machines eliminate this computational burden. It
suffices to consider the following kernel

κW (xi, xj) = 〈Wxi , Wxj 〉, (1.14)

and note that Wxi and Wxj do not need to be computed since, by the unitarity
of the Wigner distribution, we have

κW (xi, xj) = |〈xi, xj〉|2. (1.15)

We verify that κW is a positive definite kernel by writing condition (1.7)
as ‖

∑
j aj Wxj‖2 ≥ 0, which is clearly verified. We are now in a position

to construct the RKHS induced by this kernel, and denoted by HW . It is
obtained by completing the space H0 defined below with the limit of every
Cauchy sequence

H0 = {Θ : X → R | Θ(·) =
∑

j

aj |〈· , xj〉|2, aj ∈ R, xj ∈ X}. (1.16)
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Thus, we can use the kernel (1.15) with any kernel learning machine proposed
in the literature to perform pattern recognition tasks in the time-frequency
domain. Thanks to the representer theorem, solution (1.11) allows for a time-
frequency distribution interpretation, Θ(x) = 〈Wx,ΦW 〉, with

ΦW =
n∑

j=1

aj Wxj . (1.17)

This equation is directly obtained by combining (1.11) and (1.13). We should
again emphasize that the coefficients aj are estimated without calculating
any Wigner distribution. The time-frequency pattern ΦW can be subsequently
evaluated with (1.17), in an iterative manner, without suffering the drawback
of storing and manipulating a large collection of Wigner distributions. The
inherent sparsity of the coefficients aj produced by most of the kernel learning
machines, a typical example of which is the SVM algorithm, may speed-up
the calculation of ΦW .

1.3.4 Wigner distribution vs. spectrogram

Let Rx(t, f) be a given time-frequency representation of a signal x. Pro-
ceeding as in the previous section with the Wigner distribution, we are led
to optimization problems that only involve inner products between time-
frequency representations of training signals:

κR(xi, xj) =
∫∫

Rxi(t, f)Rxj (t, f) dt df = 〈Rxi , Rxj 〉. (1.18)

This can offer significant computational advantages. A well-known time-
frequency representation is the spectrogram (1.2), whose definition can be
recast as

Sx(t, f ; h) = |〈x, ht,f 〉|2 ,

with ht,f(τ) := h(τ − t) e2jπfτ . The inner product between two spectrograms,
say Sxi and Sxj , is given by the kernel [18]

κS(xi, xj) =
∫∫

|〈xi, ht,f 〉〈xj , ht,f 〉|2 dt df.

Computing this kernel for any pair of surrogate signals yields

κS(xi, xj) =
∫∫ ∣∣∣〈|X |ejφi , Ht,f〉 〈|X |ejφj , Ht,f〉

∣∣∣
2
dt df, (1.19)

where Ht,f is the Fourier transform of ht,f . This has to be contrasted with
the Wigner distribution which, with its unitarity property, leads to some sub-
stantial computational reduction since

κW (xi, xj) = |〈xi, xj〉|2 =
∣∣∣
∫

|X(f)|2 ej(φi(f)−φj(f)) df
∣∣∣
2
. (1.20)
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We emphasize here that there is no need to compute and manipulate the
surrogates and their time-frequency representations. Given |X(f)|, only the
random phases φi(f) and φj(f) are required to evaluate the kernel κW of
eq. (1.20).

For the sake of simplicity, we illustrated this section with the spectrogram.
However, kernel learning machines can use any time-frequency kernels to per-
form pattern recognition tasks in the time-frequency domain, as extensively
studied in [17, 18, 19]. In the next section, we present the one-class SVM
problem to test stationarity using surrogate signals.

1.4 A non-supervised classification approach

Adopting a viewpoint rooted in statistical learning theory by considering
the collection of surrogate signals as a learning set, and using it to estimate the
support of the distribution of stationarized data, avoids solving the difficult
problem of density estimation that would be a pre-requisite in parametric
methods. Let us make this approach, which consists of estimating quantiles
of multivariate distributions, more precise.

1.4.1 An overview on one-class classification

In the context considered here, the classification task is fundamentally a
one-class classification problem and differs from conventional two-class pat-
tern recognition problems in the way how the classifier is trained. The latter
uses only target data to perform outlier detection. This is often accomplished
by estimating the probability density function of the target data, e.g., using
a Parzen density estimator [24]. Density estimation methods however require
huge amounts of data, especially in high dimensional spaces, which makes
their use impractical. Boundary-based approaches attempt to estimate the
quantile function defined by Q(α) := inf{λ(S) : P (S) :=

∫
ω∈S µ(dω) ≥ α}

with 0 < α ≤ 1, where S denotes a subset of the signal space X that is
measurable with respect to the probability measure µ, and λ(S) its volume.
Estimators that reach this infinimum, in the case where P is the empirical dis-
tribution, are called minimum volume estimators. The first boundary-based
approach was probably introduced in [27], where the authors consider a class
of closed convex boundaries in R2. More sophisticated methods were described
in [21, 22]. Nevertheless, they are based upon neural networks training and
therefore suffer from the same drawbacks such as slow convergence and lo-
cal minima. Inspired by support vector machines, the support vector data
description algorithm proposed in [34] encloses data in a minimum volume
hypersphere. More flexible boundaries can be obtained by using kernel func-
tions, that map the data into a high-dimensional feature space. In the case
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Ω
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ξi
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FIGURE 1.2: Support vector data description algorithm

of normalized kernel functions, that is, such that κ(x, x) = 1 for all x, this
approach is equivalent to the one-class support vector machines introduced
in [29], which use a maximum margin hyperplane to separate data from the
origin. The generalization performance of these algorithms were investigated
in [29, 31, 37] via the derivation of bounds. In what follows, we shall focus on
the support vector data description algorithm.

1.4.2 One-class SVM for testing stationarity

Inspired by SVM for classification, the one-class SVM allows the descrip-
tion of the density distribution of a single class [33]. The main purpose is to
enclose the training data into a minimum volume hypersphere, thus defining
a domain boundary. Any data outside this volume may be considered as an
outlier, and its distance to the center of the hypersphere allows a measure
of its novelty. Here, we propose to use the set of surrogate signals to derive
the hypersphere of stationarity, in the time-frequency domain defined by a
reproducing kernel as given in Section 1.3.

Consider a set of n surrogate signals, x1, . . . , xn, computed from a given
signal x. Let Rx1 , . . . , Rxn denote their time-frequency representations and κ
the corresponding reproducing kernel. In this domain, we seek the hypersphere
that contains most of these representations. Its center Ω and radius r are
obtained by solving the optimization problem

min
Ω,r,ξ

r2 +
1
nν

n∑

i=1

ξi

subject to ‖Rxi − Ω‖2 ≤ r2 + ξi, ξi ≥ 0, i = 1, . . . , n.

As illustrated in Fig. 1.2, parameter ν ∈ ]0, 1] controls the tradeoff between
the radius r to be minimized, and the number of training data outside the
hypersphere characterized by the slack variables ξi = (‖Rxi − Ω‖2 − r2)+.
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Using Lagrangian principle, the optimization problem is reduced to

max
α

n∑

i=1

αi κ(xi, xi) −
n∑

i,j=1

αi αj κ(xi, xj)

subject to
n∑

i=1

αi = 1, 0 ≤ αi ≤
1
nν

, i = 1, . . . , n,

(1.21)

which can be solved with quadratic programming techniques. The resulting
non-zero Lagrange multipliers αi yield the center Ω =

∑
i αi Rxi , and the

radius r = ‖Rx! − Ω‖ with x# any data having 0 < α# < 1
nν .

For any signal x, the (squared) distance of its time-frequency representa-
tion to the center Ω can be written as

‖Rx − Ω‖2 = κ(x, x) − 2
n∑

i=1

αi κ(x, xi) +
n∑

i,j=1

αi αj κ(xi, xj).

As explained previously, we do not need to compute time-frequency represen-
tations to calculate this score, since only the values of the kernel are required.
The coefficients αi are obtained by solving (1.21), requiring only the evaluation
of κ for training data. This kernel trick is also involved in the proposed deci-
sion function, defined by comparing the test statistics Θ(x) = ‖Rx −Ω‖2− r2

to a threshold γ:

Θ(x)
nonstat.

≷
stat.

γ. (1.22)

The signal x under study is considered as nonstationary if its time-frequency
representation lies outside the hypersphere of squared radius r2+γ; otherwise,
it is considered as stationary. The threshold γ has a direct influence upon the
test performance [30]. For instance, with a probability greater than 1− δ, one
can bound the probability of false positive by

∆ =
1
γn

n∑

i=1

ξi +
6ω2

γ
√

n
+ 3

√
log(2/δ)

2n
, (1.23)

where ω is the radius of the ball centered at the origin containing the support
of the probability density function of the class of surrogate signals. Here γ
can be fixed arbitrarily in eq. (1.22), so as to set the required false positive
probability, for which ∆ is an upper bound.

We shall now propose another use of eq. (1.23) as a measure of stationarity
of the signal x under investigation. If x lies inside the hypersphere of the
surrogate class, the score of stationarity is arbitrarily fixed to one. Else, one
can set γ depending on the signal x to ‖Rx−Ω‖2−r2, so that the signal would
lie on the decision boundary. Then, eq. (1.23) gives a bound ∆(x) on the false
positive probability that should be assumed for the signal to be classified as
stationary. The closer x is to the hypersphere boundary, the closer to one
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∆(x) is; the closer ∆(x) is to zero, the greater the contrast between x and the
surrogates is. Hence, ∆(x) has the meaning of a stationarity score. See [7] for
more details.

1.4.3 Spherical multidimensional scaling

Multidimensional scaling (MDS) is a classical tool in data analysis and vi-
sualization [9]. It aims at representing data in a d-dimensional space, where d
is specified a priori, such that the resulting distances reflect in some sense the
distances in the higher-dimensional space. The neighborhood between data is
preserved, whereas dissimilar data tend to remain distant in the new space.
MDS algorithm requires only the distances between data in order to embed
them into the new space. Consider the set of time-frequency representations of
surrogate signals {Rx1 , . . . , Rxn}, and the inner product between two represen-
tations defined as in (1.18). We can apply classical MDS in order to visualize
the data in a low-dimensional Euclidean space. On the condition that Rx sat-
isfies the global energy distribution property

∫∫
Rx(t, f) dt df ∝

∫
|x(t)|2dt,

such as the spectrogram or the Wigner distribution, the time-frequency rep-
resentations of surrogate signals lie on an hypersphere centered at the origin.
This non-Euclidean geometry makes it desirable to place restrictions on the
configuration obtained from the MDS analysis. This can be done by using a
Spherical MDS technique, as proposed in [9], or more recently in [25], which
forces points to lie on the the two-dimensional surface of a sphere.

In the experimental results section, we shall use spherical MDS analysis
to visualize the time-frequency configuration of the signal x under study and
the surrogate signals, and the decision boundary that discriminates between
the null hypothesis of stationarity and its nonstationary alternative.

1.5 Illustration

In order to test our method, we used the same two AM and FM signals as
in [39]. While not covering all the situations of nonstationarity, these signals
are believed to give meaningful examples. The AM signal is modeled as

x(t) = (1 + m sin(2πt/T0)) e(t)

with m ≤ 1, e(t) a white Gaussian noise, T0 the period of the AM. In the FM
case,

x(t) = sin(2π(f0t + m sin(2πt/T0)))

with f0 the central frequency. Based on the relative values of T0 and the signal
duration T , three cases can be distinguished for each type, AM and FM:
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• T . T0: The signal contains a great number of oscillations. This peri-
odicity indicates a stationary regime.

• T ≈ T0: Only one oscillation is available. The signal is considered as
nonstationary.

• T 0 T0: With a small portion of a period, there is no change in the
amplitude or the frequency. It is considered as a stationary signal.

For each experiment reported in Fig. 1.3, 50 surrogate signals were gener-
ated from the AM or FM signal x(t) to be tested. The results are displayed
for T0 = T/100, T = T0 and T0 = 100 T , allowing to consider stationarity
relatively to the ratio between observation time T and modulation period T0.
The one-class SVM algorithm was run with the spectrogram kernel (1.19) and
parameter ν = 0.15. Then, spherical MDS analysis was applied for visualiza-
tion purpose only. In each figure, the surrogate signals are shown with blue
stars and the signal to be tested with a red triangle. The minimum-volume
domain of stationarity is represented by the black curve. It should be noticed
that this curve and the data are projections from the high-dimensional space
of time-frequency distributions onto a sphere in R3 for visualization, meaning
that the representation is inherently distorted. The tested signals are clearly
identified as nonstationary in the case T = T0 (the red triangle of the sig-
nal being outside the circle corresponding to the minimum-volume domain of
stationarity), and can be considered as stationary in the cases T0 = T/100
and T0 = 100 T (the red triangle of the signal being inside the circle). These
results are consistent with those obtained in previous works, using either the
distance or the time-frequency feature extraction approach [7]. Here, the test
is performed without suffering from the prior knowledge required to extract
relevant features.

1.6 Conclusion

In this paper, we showed how time-frequency kernel machines can be used
to test stationarity. For any given signal, a set of stationarized surrogate sig-
nals is generated to train a one-class SVM, implicitly in the time-frequency
domain by using an appropriate kernel. The originality here is the use of the
whole time-frequency information, as opposed to feature extraction techniques
where prior knowledge is required. This was proved effective for detecting non-
stationarities with simulation results.

The resampling strategy actually used to generate surrogate signals is how-
ever quite strict in the sense that, after the phase replacement by some i.i.d.
sequence, a possibly nonstationary signal is turned into a stationary one with-
out any consideration about the fact that this property has to be understood in
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a relative sense that incorporates the observation scale. In this respect, strict
stationarity may appear as a too strong commitment, and prompts to think
about more versatile constructions of stationary-relaxed surrogate signals. One
perspective in this direction is to alter the original phase by embedding it into
noise [6]. Depending on the nature and the level of these phase fluctuations,
we could get this way a controlled transition from the original process to its
stationary counterpart.

There has been preliminary attempts to use surrogates for testing the
stationarity of some actual data: signals in biophysics [5], or in mechanics [8],
and an adaptation to images is reported in [13].

Let us now turn to potential astronomical applications. Searching for ev-
idence of non-stationarity in the temporal properties of astrophysical objects
and phenomena are fundamental to their study, as in the case of Galactic
black holes switching from one spectral state to another. For instance, among
the basic properties characterizing an Active Galactic Nucleus, the X-ray vari-
ability is one of the most commonly used. This question has been explored
by researchers in the case of NGC 4051 [15], Mrk 421 [10, 11], 3C 390.3 [14],
and PKS 2155-304 [40]. One of the most popular approaches is to measure
the fluctuation of the power spectral density (PSD), by fitting a simple power
law model [20], or by estimating the so-called excess variance [23]. As an al-
ternative, analysis in the time domain using the structure function (SF) is
also often considered [32]. Note that PSD with model fitting and SF should
provide equivalent information as they are related to the auto-correlation func-
tion of the process at hand. It is unfortunate that, with this techniques, it is
not possible to prove non-stationarity in a model independent way. Nonlinear
analysis using scaling index method, which measures both global and local
properties of a phase-space portrait of time series, has also been considered in
the literature [3].

Although its effective application to real astrophysical data has not yet
been considered, it is believed that the approach proposed here could be a
useful addition to such existing techniques by shedding a new light on sta-
tionarity vs. nonstationarity issues.
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FIGURE 1.3: Spherical MDS representation of the surrogate signals (∗)
and the test signal ("), in AM (left) and FM (right) situations. From top to
bottom, T0 = T/100, T = T0 and T0 = 100 T , with T = 1024. The minimum-
volume domain of stationarity is represented by the black curve. The tested
signals are identified as nonstationary in the case T = T0 (the red triangle
of the signal being outside the circle corresponding to the minimum-volume
domain of stationarity), and can be considered as stationary in the cases
T0 = T/100 and T0 = 100 T (the red triangle of the signal being inside the
circle). Other parameters are as follows – (AM): m = 0.5; (FM): f0 = 0.25,
m = 0.02, and SNR = 10 dB.
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