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Nonlinear Regularized Wiener Filtering With Kernels:
Application in Denoising MEG Data

Corrupted by ECG
Ibtissam Constantin, Cédric Richard, Member, IEEE, Régis Lengellé, and Laurent Soufflet

Abstract—Magnetoencephalographic and electroencephalo-
graphic recordings are often contaminated by artifacts such as eye
movements, blinks, and cardiac or muscle activity. These artifacts,
whose amplitude may exceed that of brain signals, may severely
interfere with the detection and analysis of events of interest. In
this paper, we consider a nonlinear approach for cardiac artifacts
removal from magnetoencephalographic data, based on Wiener
filtering. In recent works, nonlinear Wiener filtering based on
reproducing kernel Hilbert spaces and the kernel trick has been
proposed. However, the filter parameters are determined by
the resolution of a linear system which may be ill conditioned.
To deal with this problem, we introduce three kernel methods
that provide powerful tools for solving ill-conditioned problems,
namely, kernel principal component analysis, kernel partial least
squares, and kernel ridge regression. A common feature of these
methods is that they regularize the solution by assuming an
appropriate prior on the class of possible solutions. We avoid
the use of QRS-synchronous averaging techniques, which may
induce distortions in brain signals if artifacts are not well detected.
Moreover, our approach shows the nonlinear relation between
magnetoencephalographic and electrocardiographic signals.

Index Terms—Cardiac artifacts extraction, nonlinear Wiener fil-
tering, regularization, reproducing kernel Hilbert spaces.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) and magne-
toencephalography (MEG) are noninvasive techniques

able to provide direct information about the neural brain activity
with high temporal resolution. They record, respectively, the
electrical fields and magnetic fields generated from neural cur-
rents inside the brain. Since magnetic fields are not distorted
while passing through the skull and the scalp, MEG may have
better spatial resolution for source localization. EEG and MEG
measurements are often corrupted by artifacts, such as cardiac
artifacts, generated by heart activity [1]. These artifacts can be
several times stronger in magnitude than the signals of interest
and may severely impede the extraction of relevant information.

A common strategy used for artifact rejection consists in
discarding portions of brain signals that exceed a preselected
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criterion threshold. However, this technique may lead to a
significant loss of data, particularly when artifacts occur too
frequently. Other approaches based on linear models have been
applied extensively. The most popular one is regression in the
time [2], [3], or frequency domain [4], [5]. This approach de-
pends on one or more recorded artifact channels to estimate
the denoised brain signals. Further linear methods rely on spa-
tial filtering such as signal space projection (SSP) [1], [6], [7],
principal component analysis (PCA) [8]–[11], common spatial
subspace decomposition (CSSD) [12], and independent compo-
nent analysis (ICA) [11], [13]–[19]. SSP subtracts from brain
measurements the noise components oriented along specified
spatial vectors. It requires a good model of the artifactual source
or a considerable amount of data where the artifact amplitude is
much higher than brain signals. PCA and CSSD decompose an
epoch of MEG or EEG channels into several orthogonal com-
ponents and identify and remove the artifactual components.
They differ in the way these components are determined. PCA
determines an orthogonal basis in which the variance of the data
is large. This is achieved by the diagonalization of the covariance
data matrix. The orthogonal components are found by projecting
the data onto the basis vectors. In contrast, CSSD looks for or-
thogonal components by joint diagonalization of the data matrix
and the pure artifact matrix. Both PCA and CSSD perform well
if the signal and noise components are orthogonal to each other.
Otherwise, they will mix the signals of interest and artifacts. ICA
can be viewed as an extension of PCA and CSSD that has been
developed in the context of blind source separation problems.
ICA aims to decompose the data into statistically independent
components by optimizing a suitable contrast function. It in-
cludes JADE [11], [20], Infomax [11], [21], FastICA [11], [22],
and TDSEP [11], [23], [24]. Compared to PCA and CSSD, ICA
removes the orthogonality constraint and forces components
to be approximately independent. In general, there is no reason
to assume that artifact signals are orthogonal to the signals of
interest, and therefore ICA is usually more efficient than PCA
and CSSD. Nonlinear techniques based on neural networks have
also been considered. In [25], a neural network has been set up
in order to estimate the ECG artifacts that corrupt MEG signals.
The filter output is a sum of nonlinear functions of past samples,
and the algorithm requires a triggered version of the ECG refer-
ence channel. Estimation of neural network parameters has been
achieved by a backpropagation-like algorithm. Selection of the
network architecture, which controls generalization and remains
an open problem, has not been detailed. The authors have shown
that the filter outperforms standard linear filters.
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Recently, several nonlinear kernel-based algorithms have
been proposed within the context of the theory of reproducing
kernel Hilbert spaces (RKHSs). They have been applied suc-
cessfully to a wide range of applications. The main ingredient
of kernel-based methods is the so-called kernel trick, which
provides the technical basis of learning in arbitrarily high-di-
mensional spaces, by means of kernel functions defined on
pairs of input patterns. In recent work, a nonlinear Wiener filter
based on RKHS and the kernel trick has been proposed. As
for a linear Wiener filter, the filter parameters are determined
by solving a linear system of equations. The filter design is
simple, and its generalization ability is governed by a few
tunable variables. Unlike neural networks, it does not require
the choice of a particular architecture before training. Various
filter structures can be selected by choosing different kernels
from a wide class of functions verifying a certain condition.
In this paper, we apply nonlinear kernel-based Wiener filtering
to the problem of cardiac artifacts extraction from MEG data.
We introduce three kernel methods that provide powerful tools
for solving ill-conditioned problems, namely, kernel principal
component analysis (KPCA) [26], [27], kernel partial least
squares (KPLS) [28], and kernel ridge regression (KRR) [29],
[30]. A common feature of these methods is that they regularize
the solution by assuming an appropriate prior on the class of
possible solutions.

This paper is organized as follows. In the next section, we
present some elements on nonlinear Wiener filtering and its con-
nections with RKHS. In Section III, some necessary prerequi-
sites on the theory of RKHS are given. We derive the Wiener
filter in RKHS in Section IV. In Section V, we describe KPCA,
KPLS, and KRR methods, and we derive the regularized kernel-
based Wiener filter. The filter is experimented with on simulated
data for nonlinear system identification. Experimental results in
MEG signals nonlinear denoising are presented in Section VI.
Some concluding remarks are given in Section VII.

II. NONLINEAR WIENER FILTERING

We consider a filter every material or programmed structure
applied to a quantity of interest in order to extract significant in-
formation in the sense of a given criterion. This quantity may,
for example, be generated from noisy sensing devices or be
issued from communication channels subject to perturbations.
The canonical form of the filtering problem is proposed in Fig. 1.
It comprehends an input and a desired output , supposed to
be centered and real-valued without loss of generality. We note

as the committed error. The objective consists in
the selection of a model and the implementation of an opera-
tional technique for determining its parameters. Linear Wiener
theory is applied to jointly wide-sense stationary processes and
consists in finding the parameters [31]

(1)

Fig. 1. Block diagram and notations.

that minimize the variance of the error . By introducing the
following notations:

the solution of the problem is obtained by solving Wiener–Hopf
equation

(2)

where denotes the mathematical expectation. The previous
expression can be written in compact matrix form

(3)

where and denote and , respec-
tively. Note that the linearity of the filter facilitates its design, to
the detriment of its capacity to give satisfactory solution to every
problem. To overcome such a limit, while keeping a comparable
structure to (1), we can map the observation into a high-di-
mensional feature space by means of a nonlinear application
and then consider the filter . As previously,
can be determined by solving the Wiener–Hopf equation

(4)

In the literature, many nonlinear filter structures have been
elaborated on the basis of this principle, e.g., polynomial filters
[32]–[34]. However, a major drawback of this approach is the
computational burden associated with the large dimension of
the new space. The design of a second-order polynomial filter,
for example, requires the use of a nonlinear map , based
on the components of and their second-order products. The
number of parameters to be estimated equals 3 2
and is already prohibitive with regard to the relative simplicity
of the filter. This can be the source of practical difficulties
when such a strategy is adopted. In the field of pattern recogni-
tion, several results on RKHS have made analogous practices
possible. By authorizing the synthesis of generalized linear
structures without explicitly evaluating the map , RKHSs
have given new perspectives within the framework of kernel
methods, particularly with support vector machines [26],
[29], [35], kernel Fisher discriminant [36], [37], and kernel
second-order discriminant [38], [39], for solving classification
and regression problems.

III. RKHS AND MERCER’S CONDITION

Let be a reproducing kernel Hilbert space consisting of
mappings from a compact to and let
denote the dot product defined on . As the Riesz representation
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TABLE I
SOME EXAMPLES OF TYPICAL MERCER KERNELS

theorem states, there is a unique function of which
verifies the following reproducing property:

(5)

for every . A proof of this may be found in [40]. Here
is the representer of evaluation at and is the repro-

ducing kernel associated with . In particular,
spans and the dot product has just to be defined on

it. Denoting the function by , (5) implies

(6)

for all , . The kernel then evaluates the dot product
of every pair of elements of mapped into , without any
explicit knowledge of either or . The key idea of the kernel
technique used in this paper, commonly known as the kernel
trick, is to choose the kernel rather than the mapping . Of
course, not every function can serve as a kernel. According
to the Hilbert–Schmidt theory [41], any continuous symmetric
function can be expanded as follows:

(7)

where and are eigenvalues and eigenfunctions that satisfy

(8)

A sufficient condition to ensure that is a dot product in some
Hilbert space is that all the s in (7) are positive. According
to Mercer’s theorem [42], this condition is achieved if and only
if

(9)

for all fulfilling . From (7), it is straight-
forward to construct a map into a potentially infinite-dimen-
sional space which satisfies (6). For example, we might use

. In [43], it has been re-
ported that (9) corresponds to the statement that is a positive
definite kernel.

A typical example of kernels is the polynomial kernel
, , of homogeneous

or inhomogeneous type . It follows from [44] that
polynomial kernels satisfy Mercer’s condition. Radial kernels
are also Mercer kernels that have received significant attention
in statistical and machine learning communities. They depend
on . We count among them the Gaussian kernel defined
by , where is the kernel
bandwidth. This kernel is characterized by a continuum of
eigenvalues which means that the components of are not
in limited number as for the polynomial kernels. Empirical

findings show that Gaussian kernel ensures generally good per-
formance under general smoothness assumptions and should be
considered if no additional knowledge of the data is available.
The above-mentioned examples fall in two main classes of
kernels: dot-product kernels involving and translation
invariant kernels depending on . Other examples may be
found in Table I. See also [45] and [46]. Moreover, there exist
simple rules for designing valid kernels on the basis of given
Mercer kernels, e.g., the sum and the product of two kernels are
also Mercer kernels [46].

In the context of function estimation, an important theorem
in RKHS [47], which provides a framework for solving a wide
range of optimization problems, states that any function min-
imizing a criterion of the form

with a monotonic increasing function on , admits a rep-
resentation of the form

(10)

This theorem is referred to as the representer theorem. It shows
that the optimal solution in is constrained to lie in the space
spanned by a set of basis functions , .
The are known as training samples. The essence of
the proof of the representer theorem is that every function
in the Hilbert space can be decomposed into two compo-
nents, a component in the subspace spanned by ,

, and a component orthogonal to it, i.e.,
, where ,

for all . By (5), it follows that
, which means that the values of at the data

points , are not affected by . They only
depend on the coefficients .

IV. WIENER FILTERING IN RKHS

Let be an RKHS defined by a kernel . Let denote the
mapping function from to . Referring to the previous sec-
tion, the output of the Wiener filter , with sat-
isfying (4), may be written as

(11)

where the parameters are to be determined in order to min-
imize the variance of the error . As with a linear Wiener
filter, we make the assumption that the mapped function
as well as the desired output are centered. We shall return
to this point later. Notice that the filter output is not explic-
itly based on the analytical expression of . It is implicitly de-
fined by the choice of a reproducing kernel . For example, the
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use of the polynomial kernel leads
to a Volterra filter of degree , whose dual formulation is pro-
vided by . The latter does not
require the evaluation of . Remember that the compo-
nents of are products of degree less than or equal to
composed of the components of . Finally, the solution of the
problem is obtained by solving an analogous system to (3) in
which is substituted to

. It translates to

(12)

As can be seen, the number of parameters to be estimated is in-
dependent of the complexity of the filter, which is characterized
by the polynomial degree in the particular case of Volterra filter.
The advantage of linear-in-the-parameters estimation remains.
In practice, the correlation matrices and are unknown.
They must be replaced by their estimates, which can be com-
puted easily from the vectors and the corresponding
desired responses by

and ,
where and . Conse-
quently, we have

(13)

The last equality results from the fact that is symmetric.
As pointed out previously, we assume that the data are cen-

tered. Given , , this may be achieved by
replacing the element of with [27]

(14)

In a compact matrix form, the previous expression can be
written

(15)

where denotes the identity matrix and the
matrix whose elements all equal one. Consider now a set of

new observations for which we wish to eval-
uate the output of the filter. The corresponding filter output is
given by

(16)

where is the matrix whose entries are
. Similarly to (14), must be modified as

(17)

where is the matrix with all its elements equal to
one.

V. REGULARIZED WIENER FILTER

The resolution of (13) requires the inversion of a matrix
whose dimensions are equal to the number of training samples.
The problem may be ill conditioned and the solution unstable.
In [48], KPCA [26], [27] has been used to obtain a regularized
solution to this problem. In this section, we compare KPCA
with two other kernel-based regularization techniques: KPLS
[28] and KRR [29], [30]. These methods are nonlinear exten-
sions of PCA [8]–[11], partial least squares (PLS) [49], [50],
and ridge regression (RR) [51]. They have been applied suc-
cessfully in various fields of signal processing—for example,
within the context of object recognition, text categorization, and
data analysis. In this section, they are used in a filtering context,
to design a regularized Wiener filter. Throughout this section,
we assume that the data are centered as explained previously.

A. KPCA

A way to regularize the solution of an ill-conditioned problem
is to project the input data in a lower dimensional space and then
derive the solution in the reduced space. This is a form of regu-
larization since it restricts the class of reachable solutions of the
filter design problem. KPCA is an efficient method for dimen-
sionality reduction in RKHS. It looks for orthogonal directions
in so as to maximize

(18)

under the constraint . It can be shown that the solu-
tion is provided by the diagonalization of the correlation matrix
in , estimated by

(19)

where . Therefore, the problem
consists of finding the eigenvalues and the eigenvectors

of satisfying

(20)

Replacing in (20) with its expression in (19) leads to

(21)

As can be seen from (21), every eigenvector with nonzero eigen-
value lies in the span of . This can be written as

(22)

Using this definition of , (20) translates to

(23)

Premultiplying with , (23) becomes

(24)

Let denote the th eigenvector of corresponding to the
nonzero eigenvalue and the associated eigenvector of .
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To ensure that the eigenvectors have unit norm in the feature
space, should be divided by .

Let be the projection of on a subset associ-
ated to the largest eigenvalues. The th element of is called
the th principal component (PC) of [11]. We have

(25)

where and . The last
equation results from (22). We now have to determine the
Wiener filter operating on . The output of the filter is defined
by

(26)

where is the unknown parameter vector. According to (13),
is given by

(27)

where . Combining (25) and (26)
leads to

(28)

Note that is diagonal: . In the
case , the mapped functions do not un-
dergo any dimensionality reduction and the solution is identical
to ordinary kernel-based Wiener filtering. However, to avoid nu-
merical problems, the smallest eigenvalues of should
be discarded. Procedures for the selection of can be found in
[9] and [52]–[55]. Holdout cross-validation will be used in this
paper.

B. KPLS

Like KPCA, KPLS projects the data onto a lower di-
mensional space to reduce the set of possible solutions. There
is, however, one essential difference with KPCA: in KPCA, the
projection is determined without reference to the desired re-
sponse, whereas in KPLS, the observed response plays an im-
portant role. The KPLS method has been developed in [28] for
multiple output variables. In this paper, we derive KPLS for one
single output variable. The KPLS problem can be stated as

such that (29)

which yields

such that (30)

This constrained optimization problem can be solved by
searching the saddle point of the Lagrangian function

(31)

where denotes the Lagrange multiplier. Differentiating with
respect to and setting the result to zero leads to

(32)

Considering the constraint , the solution is given by

(33)

The numerator in (33) depends explicitly on . However, as
will be shown, the determination of the filter parameters may be
achieved without explicit knowledge of . The quantity required
for this purpose is

(34)

which is the first PC of . The remaining PCs may be retrieved
in a recursive manner as follows: we seek directions in so as
to provide a low-rank approximation of . Let , ,

, and . In a least square sense, the best rank-one
approximation of is given by

(35)

where is determined so as to minimize with
respect to and therefore

(36)

Likewise, the desired output vector is approximated by

(37)

where solves . It is given by

(38)

To determine the next vector , we deflate the matrices and
according to

and then apply (34). The deflation of affects as follows:

(39)

(40)

The last equality is obtained by substituting with its expres-
sion in (36). After extracting PCs, and are approximated
by

(41)

(42)

For selecting the appropriate number of PCs, one may refer to
[52]–[55]. In this paper, as for KPCA, holdout cross-validation
will be used. The next step is to determine the Wiener filter
in the reduced space spanned by the vectors , where
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. For notation convenience, we drop the hat
from and . The solution is given by

(43)

Combining (41) and (42), (43) translates to

(44)

The matrix is an upper triangular matrix and is al-
ways invertible [49]. However, and are directly related to

and cannot be computed [see (33) and (36)]. To overcome this
problem, we may write [56]

(45)

(46)

(47)

where and is the diagonal matrix with

element , for . We then
deduce

(48)

and therefore the regularized Wiener filter is defined as

(49)

where . The last equality results from
(47). It appears that the filter output does not explicitly depend
on . The KPLS algorithm proceeds as follows.

1) Define and .
2) For to 1, compute

•

• .
• ,

.
3) compute .

C. KRR

The main idea behind KRR is that the filter is determined by
minimizing a cost function that includes the sum-square error
function and a quadratic penalty term. The first term enforces
closeness to the data, while the second ensures smoothness of
the solution. A regularization parameter controls the tradeoff
between these two antagonistic terms. RR in the feature space
can be stated as follows:

such that

(50)

where is the regularization parameter . The Lagrangian
function is provided by

(51)

where are the Lagrange multipliers. It follows from the
saddle point condition that the partial derivatives of with
respect to the primal variables and have to vanish for
optimality. This yields [29], [30]

(52)

(53)

Resubstituting these equations in (51) and rewriting this equa-
tion in matrix form leads to the following dual problem:

(54)

Differentiating with respect to and setting the result to zero,
we obtain

(55)

and therefore

(56)

D. Experiments on Simulated Data

To assess the performance of the proposed approach, we con-
sider the nonlinear difference equation proposed in [57]

(57)
where and are, respectively, the input and the desired
output of the system. We assume that is corrupted by an ad-
ditive zero-mean white Gaussian noise with standard deviation
equal to 0.06. The input is generated according to a normal
distribution with mean 0.2 and standard deviation 0.1. Three
implicit data transformations were considered by selecting the
Gaussian, the inhomogeneous polynomial, and the linear ker-
nels, with . The criterion used to measure the performance
of our approach was

NMSE (58)

which represents the normalized mean-square error. A low value
of NMSE clearly indicates a good performance of the denoising
process. A 3000-sample set was generated by iterating from the
initial desired output . It was split into three subsets, of
1000 samples each, for training, holdout cross-validation, and
testing, respectively. The filter was designed using the data in
the training set. The optimum filter parameters, i.e., the dimen-
sion of the input vector , the kernel parameters and , the
number of PCs , and the regularization parameter were de-
termined so as to minimize NMSE on the cross-validation set.
The filter performance was evaluated on the testing set.

Table II reports the results obtained with KPCA, KPLS, and
KRR, respectively. It indicates the optimum filter parameters as
well as the values of NMSE on the training, cross-validation,
and testing sets. We observe that the three methods considered
here exhibit similar good performances on the testing set for the
Gaussian and polynomial kernels. However, in terms of number
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TABLE II
COMPARISON RESULTS FOR KPCA, KPLS, AND KRR ON SIMULATED DATA

(a) (b) (c)

Fig. 2. (a) Subset of sensors locations. (b) MEG signals. The simultaneous recorded ECG is shown at the bottom. (c) The averaged signals in synchrony with the
R wave of the ECG.

of selected PCs, we notice that KPLS requires fewer PCs than
KPCA. This could be expected since KPLS takes into consid-
eration the desired output to determine the projection in the re-
duced-space. Comparing the three kernels, we can see that both
Gaussian and polynomial kernels are equally efficient and pro-
duce an NMSE on the testing set in the range 52.3–52.9%. They
clearly outperform the linear kernel.

VI. APPLICATION TO MEG SIGNALS DENOISING

The magnetic field generated by the brain neuronal activity
is extremely weak, varying from 0.01 to a few picotesla (pT).
The cardiac magnetic field that reaches a few hundred picotesla
is much stronger and can severely alter MEG measurements. In
[1], it has been argued that cardiac artifacts observed in MEG
recordings are mainly produced by the electrical heart activity.
The contribution of blood pulsations is insignificant. Cardiac
artifacts can be identified by recording the ECG signal. In
Fig. 2(b), a subset of MEG channels measured from different
locations of the scalp (a) is shown with the simultaneously
recorded ECG. The sharp R wave of the ECG is clearly visible

on MEG data. Fig. 2(c) shows the averaged signals in synchrony
with the R wave of the ECG. The most contaminated channels
are located in the temporal area.

A. Data Acquisition

MEG measurements were performed in a magnetically
shielded room, using a whole-head MEG system (BTi Magnes
2500 WH) with 148 sensors. ECG was simultaneously recorded
as an external channel. Each MEG sensor consists of a mag-
netometer coupled to a superconducting quantum interference
device (SQUID). SQUIDs are immersed in liquid helium at
a temperature of 269 C. They convert the magnetic flux
to voltage. Magnetometers are more sensitive than gradiome-
ters and allow the measurement of signals generated by deep
sources in the brain. Since they are very sensitive to noise, a set
of 11 reference sensors (5 gradiometers and 6 magnetometers)
located far enough from the scalp is used to detect the envi-
ronmental noise. The subjects were recorded eyes closed in
different vigilance states (awake and sleep), in a lying position,
the head centered touching the inner back of the MEG helmet.
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TABLE III
COMPARISON RESULTS FOR KPCA, KPLS, AND KRR ON MEG DATA

MEG and ECG signals were digitized at a 254.31 Hz sampling
frequency and bandpass filtered [0.1; 50 Hz].

B. Kernel-Based Wiener Filtering

We applied our method on MEG data highly corrupted by
ECG, recorded from the sensor at position 13 in Fig. 2. The
recorded ECG was used as the reference signal (input of the
kernel regularized Wiener filter). The MEG signal was used
as the desired output, so the residue is the denoised MEG
signal. As a measure of performance, we used the normalized
mean-square error (58). Three databases of 3000 samples were
constituted for training, holdout cross-validation, and testing,
respectively. The optimum filter parameters were determined
by minimizing NMSE on the cross-validation set. Table III
shows the results obtained for the three kernels. We notice that
the Gaussian kernel achieves the best performance whereas
the linear kernel yields the lowest performance. This result is
observed for all methods KPCA, KPLS, and KRR. The min-
imum value of NMSE on the testing set is reached with KPCA.
In order to verify whether the observed differences in NMSEs
for nonlinear and linear kernels are statistically significant, we
performed the one-sided tests

NMSE NMSE
NMSE NMSE

and

NMSE NMSE
NMSE NMSE

of comparison of NMSEs which, considering the definition of
NMSE, are equivalent to tests of comparison of the estimated
variances of the residues. Under some technical conditions
(independence and gaussianity of the residue), and under the
null hypothesis, it can be shown that the probability density
function of the statistic , defined as the ratio between two
NMSEs, is central Fisher with degrees of freedom
for the numerator and the denominator. If the level of sig-
nificance is chosen to be equal to 0.1, then the hypothesis

is accepted if the observed ratio is smaller than the
critical value . For the Gaussian
kernel, the corresponding value of when KPCA is used is

. Since falls in the region of
rejection of for a 0.1-level test, the hypothesis should
be discarded. This confirms that the Gaussian kernel yields
better performance than the linear kernel. Regarding , no
significant differences between polynomial and linear kernels
were found. Likewise, we resorted to statistic in order to
determine whether NMSEs are significantly different across

Fig. 3. KPLS results with Gaussian kernel. C1: ECG reference signal. C2: es-
timated ECG contribution in MEG signal. C3: denoised MEG. C4: corrupted
MEG.

Fig. 4. KPLS results with linear kernel. C1: ECG reference signal. C2: es-
timated ECG contribution in MEG signal. C3: denoised MEG. C4: corrupted
MEG.

KPCA, KPLS, and KRR. The results indicated that there is no
significant differences between the performance of the three
methods. Concerning the number of PCs, and in agreement
with what was stated previously, we notice that KPLS entails
an NMSE almost equal to that obtained with KPCA, with
significantly fewer PCs. Figs. 3 and 4 present KPLS results for
the Gaussian and linear kernels. The highest two curves show
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Fig. 5. The first 15 independent components determined by TDSEP. The ECG
reference signal is shown at the bottom. IC 11 can be readily attributed to ECG
source.

the contaminated and the denoised MEG signals. Curves C1 and
C2 show the ECG reference channel and the estimated artifact
signal.

C. Comparison With ICA

In order to illustrate the competitiveness of our approach, it
was compared to state-of-the-art ICA method, which is com-
monly used in filtering brain signals. ICA is an unsupervised
technique that decomposes the measured data into statistically
independent components. Among various algorithms devised
for solving the ICA problem, we used TDSEP [11], [23], [24],
which is based on the joint diagonalization of several time-
lagged correlation matrices, defined as

(59)

where denotes the observed data vector at time and is
some lag constant. In [23], the authors have shown that the use
of multiple time delays improves TDSEP performance. The si-
multaneous diagonalization is achieved by first whitening the
data using PCA and then performing a number of orthogonal
transformations or Jacobi rotations. TDSEP is unable to sepa-
rate signals that have identical spectra. It has been pointed out
in [58] that the time delay operation corresponds to filtering with
a sinusoidal comb filter whose comb finger distance is inversely
proportional to the time delay. This implies that using larger
time delays yields higher frequency resolution. In this applica-
tion, we used the same experimental conditions as previously.
In order to mitigate the overlearning effect which is particu-
larly severe in MEG applications [14], [59], a dimensionality re-
duction was applied to the high-dimensional MEG data during
the whitening stage by discarding the smallest eigenvalues of

Fig. 6. TDSEP output on the testing set. C1: ECG reference signal. C2: es-
timated ECG contribution in MEG signal. C3: denoised MEG. C4: corrupted
MEG.

. The best results were obtained with
and 21 PCs. They are reported in Figs. 5 and 6. Fig. 5 displays
the first 15 independent components. Component IC 11 reflects
the cardiac contamination present in MEG recordings. Fig. 6 de-
picts the output of TDSEP on the testing set. We notice that the
resulting performances of TDSEP are quite unsatisfactory when
compared to the results obtained with Wiener filtering. This is
confirmed by the value of NMSE on the testing set, which is
equal to 0.958. This result can be explained by the blind nature
of ICA and the lack of information about ECG source. We con-
clude that, when an ECG recorded signal is available, Wiener
filtering techniques are more convenient for filtering MEG data
than ICA. Otherwise, ICA should be applied. Within this con-
text, a nonlinear kernel version of TDSEP [60] could be used to
remove cardiac artifacts from MEG signals.

VII. CONCLUSION

Kernel-based methods have become a standard tool in data
modelling. The purpose of using kernels is to avoid explicit
mapping in a high-dimensional feature space for solving non-
linear problems. In this paper, we presented an efficient compu-
tational approach to nonlinear Wiener filtering problem based
on kernels. We showed that the Wiener–Hopf equation is solved
by the resolution of a linear system which may suffer from
ill conditioning. To overcome this problem, we proposed three
kernel-based regularization methods: KPCA, KPLS, and KRR.
We applied our method to the problem of cardiac artifacts re-
duction from MEG data. A nonlinear model constructed with
Gaussian kernel outperformed the linear model. Finally, a com-
parison with a current state-of-the-art method, ICA, was pro-
vided. ICA adopts a different approach for solving the filtering
problem, based on the assumption that the underlying compo-
nents of the measured data are statistically independent. We
showed that Wiener filtering induces significantly better perfor-
mance than ICA and should be used if an ECG reference signal
is available.
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This paper leaves much room for further improvements. We
considered in the experiments three kernels, which have shown
outstanding performance in many problems: the Gaussian, poly-
nomial, and linear kernels. The choice of a particular kernel was
determined by minimizing NMSE on the validation set. Other
kernel selection methods have been proposed in the literature
[61]–[65], which can be used in many kernel algorithms. This
subject deserves further in-depth studies in order to fully ex-
ploit the potential of kernel methods. On the other hand, the
kernel-based Wiener filter discussed in this paper requires sta-
tionarity of the data to be processed. In the nonstationary case,
adaptive algorithms should be used in order to update the pa-
rameters of the filter when a new observation is available. In
the literature, there exist a wide variety of linear adaptive fil-
tering schemes such as the least mean square and the recursive
least squares algorithms. Nevertheless, the extension of these al-
gorithms to their kernel counterparts is a very challenging task
since, as is suggested by the representer theorem, the number
of kernel functions in the filter output grows linearly with the
number of observations. Recently, attempts have been made to
defeat the problem [66]–[68]. Another important direction of re-
search would be to investigate this problem in depth in order to
extend kernel-based Wiener filtering to the nonlinear adaptive
case.
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