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Abstract—Current and future radio interferometric arrays such as
LOFAR and SKA are characterized by a paradox. Their large number
of receptors (up to millions) allow theoretically unprecedented high
imaging resolution. In the same time, the ultra massive amounts of
samples makes the data transfer and computational loads (correlation
and calibration) order of magnitudes too high to allow any currently
existing image reconstruction algorithm to achieve, or even approach, the
theoretical resolution. We investigate here decentralized and distributed
image reconstruction strategies which select, transfer and process only
a fraction of the total data. The loss in MSE incurred by the proposed
approach is evaluated theoretically and numerically on simple test cases.

I. INTRODUCTION

Since the commissioning of the first large radio interferometers in
the 70s and 80s (such as the VLA in the USA and the WSRT) radio
astronomy in the range of large wavelengths has grown dramatically,
particularly with the development of more and more extended antenna
arrays. In the prospect of the most sensitive radio telescope ever
built, the SKA which will be operational in the 2020s, several new
generation radio telescopes are being built or planned (LOFAR in the
Netherlands, ASKAP and the Murchison Widefield Array Australia,
e-MERLIN in the UK, e-EVN based in Europe, MeerKAT in South
Africa, JVLA the United States).

As an example, LOFAR consists of 48 groups of antennas (sta-
tions), among which approximately 35,000 elementary antennas are
located in the Netherlands. The “superterp”, the heart of LOFAR
is a super-station: a cluster of six stations. Eight other stations,
totalizing approximately 13,000 antennas are located in the sur-
rounding countries. A project of a new super-station in Nançay
(F) is under consideration. Within each station, antennas form a
phased array which allows for digital beamforming simultaneously
in several directions and frequency bands. The beam-formed data
from the stations are centralized at the University of Groningen
in the Netherlands where a supercomputer is responsible for the
combination of the beam data from all stations. The resulting data
are then stored on a cluster of ASTRON, the Netherlands Institute
for Radio Astronomy, where the images (and other deliverables)
are reconstructed. As a mean of comparison SKA will totalize 2.5
millions antennas, with a square kilometer collecting area distributed
over an area of ≈ 5,000 km diameter.

Beyond specific objectives that distinguish these new fully digital
“software telescopes”, they are all characterized by a great flexibility.
Another common point is the amount of data which must be trans-
ferred to the central computer and processed. It amounts to 1 ter-
abit/second for LOFAR and will be of the order of 14 exabyte/day
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for SKA (more than 100 times the global internet traffic). LOFAR
uses a 1.5 Blue Gene/P for the data reduction and the computation of
correlations. IBM et ASTRON will develop by 2024 a supercomputer
to process and store 1 petabytes of data everyday [2].

This correspondence investigates the possibility to distribute the
image reconstruction over the super-stations. The main objective is
to avoid centralization of the sampled electromagnetic fields acquired
by all stations in order to reduce the data transfer and the exponential
increase in the calibration and computational load.

Section II recalls the basis of radio astronomy with aperture
synthesis and proposes a strategy where each super-station uses all
its antenna and one reference signal from the other super-stations.
The loss of performances that follows is evaluated on a simple
model using the Cramér Rao Lower Bound (CRLB). Section III
shows that the image reconstruction problem can be written as a
global variable consensus problem with regularization. Numerical
simulations illustrate the performances of the proposed approach. A
concluding section presents perpectives.

II. APERTURE SYNTHESIS FOR RADIO ASTRONOMY

A. Standard aperture synthesis model

This section provides the basic equations of radio astronomy
with multiple sensor array and describes a partial aperture synthesis
strategy which aims to reduce data transfer, allowing a decentralized
image reconstruction.

To simplify the notations and without loss of generality, we will
not make explicit the wavelengths dependence and the Earth rotation
and assume punctual antennas. The coordinates of the stations (within
each station, a beam is created from the phased array) in a plane
perpendicular to the line of sight are denoted as rj and the map
of interest (the “image” of a region of the sky) is x(p) where p
denotes the angular coordinates on the sky. The fundamental equation
of interferometry relates the Fourier transform of the map to the
spatial coherency (visibility) of the incoming electromagnetic field.
A measurement of the coherency is obtained by correlating the signal
acquired by a pair of stations (i, j) properly delayed located at ri
and rj , giving in the noiseless case a point of visibility at spatial
frequency u` = rj − ri:

v(u`) =

∫
x(p)e−2πu

t
`pdp (1)

See for example [9], [10] for a comprehensive description of radio
astronomy and signal processing related tools.

Computation of v(u`) obviously requires the transfer of signals
from stations i and j in the same place. The stations are nor-
mally grouped in “super-stations” (e.g. the superterp for LOFAR)
accounting for low frequencies (‖ri − rj‖2 small). Resolution is



then increased by correlating signals between stations that can be
located up to thousands of kilometers from each other.

B. Reduced synthesis aperture model

In general, all possible correlations are computed in order to
maximize the (u, v) coverage (set of ul). This requires a centralized
system architecture and the resulting measurements correspond to a
filtering of the visibility function v(u) by the Full Aperture (FA)
spatial transfer function

AF (u) =

(∑
k

δ(r − rk) ∗
∑
l

δ(r − rl)

)
(u) (2)

=

M∑
`=1

w`δ(u− u`) = AL(u) +AFH(u) (3)

where the weights w` count the number of beam pairs measuring
the same spatial frequency u` and M is the number of different
sampled frequencies. The term AL(u) is associated to “intra-super-
stations” low-frequency correlations and AFH(u) to high-frequency
“inter-super-stations” correlations. Note that in order to simplify the
derivations, we will also denote super-station a single remote station.

In order to reduce the amount of transferred data, we propose to
investigate a solution which consists in:

1) exploiting all the low-frequencies by computing locally all
the correlations inside each super-station. In this case, the
low frequency term associated to the spatial transfer function
(denoted as AR(u)) is still AL(u). Denote as Sk the set of
indices associated to the beams in super-station k.

Al,l(u) =
∑

m,n∈Sl

δ(u− (rm − rn)) + δ(u+ (rm − rn))

AL(u) =
∑
l

Al,l(u)

2) Recovering the high frequency information by transferring only
one single beam signal from each super-station to all other
remote super-stations. If ck is the index of the reference beam
in super-station k transferred to the other super-stations, the
resulting sampling pattern of visibilities associated to super-
stations k and l is, see Fig. 1:

Ak,l(u) =
∑
m∈Sk

δ(u− (rm − rl))

ARH(u) =
∑
k 6=l

Ak,l(u)

This solution is motivated by the fact that it allows to correctly sample
the high frequencies, at the cost of a reduced SNR, while reducing the
number of transfered electromagnetic signals. Other strategies than
transferring a single antenna signal are of course possible. A solution
which aims to preserve the SNR is to replace the signal indexed by
ck by averaging of neighboring beams. It is important to emphasize
that in this case the bias introduced by the averaging of nearby beams
must be negligible. This gain in SNR will be denoted as ρ ≥ 1 in the
sequel. Finally, the overall Reduced Aperture (RA) antenna spatial
transfer function is:

AR(u) = AL(u) + ρARH(u) (4)

This strategy reduces the transfer of beams data w.r.t. a centralized
processing as long as the number of stations inside each super-station
is larger than the number of super-stations: for Nss super-stations of
Ns stations each, the first requires Nss(Nss − 1) transfers whereas
the second NssNs.

Sl

Sk

ck

cl

Fig. 1. Reduced Aperture (RA) synthesis using super-stations k and l.

C. Analysis of performances on a simple model

In order to evaluate analytically the loss related to the use of RA
synthesis w.r.t. to a FA we consider a simple one dimensional case
where the map is a shifted Gaussian shape with flux α:

x(p) =
α

η
√

2π
e
− (p−p0)2

2η2 (5)

The unknown parameters are θ = (α, η, p0). The visibilities are:

v(u`) = αe2πu`p0e−2π2η2u2
` + n`, ` = 1 . . .M (6)

where n` is a measurement noise assumed independent Gaussian
circular with n` ∼ Nc(0, w−1

` σ2). The coefficient w−1
` takes into

account the variance reduction that occurs when the visibility v(u`)
is estimated from w` different baselines.

The elements of the Fisher information matrix I(θ) are computed
using the Slepian-Bangs formula [8, p. 293] which gives:

I(θ) =
2

σ2

 S0 −2π2αS2 0
−2π2αS2 4π4α2S4 0

0 0 4π2α2S2

 (7)

Sq =

M∑
`=1

w`u
q
`e
−4π2η2u2

` (8)

Note that I(θ) is not a function of the source position p0.
We compare the CRLBs on α, η and p0 for two spatial transfer

functions. In both cases the aperture configuration consists of two
uniform sub-apertures separated by D in order to sketch the behaviour
of two super-stations:

rk = −D/2− k∆, k = 0 . . . L (9)

rL+k+1 = D/2 + k∆, k = 0 . . . L (10)

where D > (L+ 1)∆. In the FA mode, and for u ≥ 0:

AL(u) =
L∑
`=0

2(L+ 1− `)δ(u− `∆)

AFH(u) =
L∑

`=−L

(L+ 1− |`|)δ(u− (D + (`+ L)∆))

L is assumed even, L = 2q and we consider in the RA mode
that ck = ±q: the reference beam is in the middle of the opposite
super-station. As noted above, the low frequency term AL(u) does
not change. The high frequency spatial transfer function is now for
u ≥ 0:

ARH(u) =

L∑
`=0

δ(u− (D + (`+ q)∆))

The source width η plays a central role in the estimation. For
a point source, η → 0, high frequency measurements will bring a
lot of information while performances for a very extended source
(η →∞) will be independent of the inter-stations visibilities. Figs. 2
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Fig. 2. 1D illustration of AF (u) and AR(u). Bottom plot shows |v(u)| for
2 characteristic values of η.
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Fig. 3. CRLB for the FA: CRLBF (·), and the RA: CRLBR(·).

and 3 give the results obtained for a configuration defined by L = 4,
D = 10 and ∆ = 0.1. The source parameters are α = 1, p0 = 0
and results are given for different values of η. The gain ρ is fixed to
ρ = 2. Fig. 2 shows the two spatial transfer functions AF (u) and
AR(u). Fig. 3 shows the CRLBs associated to AF (u) and AR(u),
denoted respectively as CRLBF and CRLBR. The thresholding effect
when η ≈ 0.05 reflects the shape of the visibility modulus given
in Fig. 2: the frequency contribution of the source at the inter-
station baseline becomes negligible for η > 0.05. For η < 0.05
the order of magnitude of the loss of performances is 4dB. This loss
of performance naturally strongly depends on ρ, e.g. when ρ = 1 the
loss is 13dB.

III. DISTRIBUTED IMAGE RECONSTRUCTION WITH PARTIAL

APERTURE SYNTHESIS MODEL

A. Decentralized map reconstruction

The classical model for the map reconstruction is obtained vec-
torizing the sampled map x ∈ (R+)N and the visibilities v ∈ CM ,
M < N , and reads [5], [6]:

v = Gx+ n, G = WTF (11)

where F is the N × N Fourier transform matrix, W is a diagonal
weighting-matrix including various operations (calibration, signal to
noise weighting), and T is a 0/1 binary M ×N matrix which codes
the sampling of the visibilities in the frequency plane. The noise
vector is assumed n ∼ Nc(0, σ2I). With these assumptions, the
image restoration problem is usually casted as the general inverse
problem:

x̂ = arg min
x∈(R+)N

‖v −Gx‖22 + Ω(x) (12)

where the regularization term Ω(x) can be for example a sparse
analysis [3], a sparse synthesis [11] or a hybrid prior [4].
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Fig. 4. Left: sensor array configuration (without Earth rotation). Final (u, v)
coverage in normalized frequencies for FA, Eq. (3) and RA, Eq. (4).

Denoting T †v the zero-padded visibilities and y = F †T †v the
so called “dirty image”, (11) can be rewritten as

y = Hx+ e (13)

where H = F †T †WTF is a (circulant) convolution matrix. Using
∀z ‖T †z‖2 = ‖z‖2 and F †F = I , we have ‖v −Gx‖2 = ‖y −
Hx‖2 and the inverse problem (12) turns to be equivalent to the
deconvolution problem

x̂ = arg min
x∈(R+)N

‖y −Hx‖22 + Ω(x) (14)

The vector v can be partitioned as:

v† = (v†1,·,v
†
2,·, . . .), v

†
k,· = (v†k,1,v

†
k,2, . . .) (15)

where vk,k denotes the vector of visibilities obtained by correlating
all the beams inside super-station k and vector vk,l, k 6= l, by
correlating beams in station k with reference beam indexed by cl
in station l. More specifically vk,k is associated to Ak,k(u) and vk,l
is associated to Ak,l(u), see sec. II.B. Using the same partitioning
for G, W and T , Eq (12) can be rewritten as :

x̂ = arg min
x∈(R+)N

∑
k

‖vk,· −Gkx‖22 + Ω(x) (16)

with Gk = W kT k. Using again the property of the zero padding
matrix T †k,· inside each norm in the sum (16), we obtain:

x̂ = arg min
x∈(R+)N

∑
k

‖yk,· −Hkx‖22 + Ω(x) (17)

where Hk = F †T †kW kT kF . Note that H =
∑
kHk and y =∑

k yk.
In (16), each sub-problem in the sum amounts to reconstruct x

from the intra-super-station and inter-super-station visibilities vk,·.
In (17), yk,· is a dirty image obtained using only the visibilities vk,·
and each sub-problem amounts to reconstruct x from yk,·.

Eqs. (16,17) are particularly interesting for the derivation of
distributed optimization algorithm, since they correspond to a global
variable consensus problem [1], [7]. The next subsections evaluate
the impact of the partial aperture models w.r.t. the standard model by
numerical simulations.

B. Array configuration and aperture synthesis

The shape of the sensor array used in the simulations consists
of 10 super-stations of 10 stations each, as shown in Fig. 4. The
stations follow a classical Y configuration with different rotations.
Ten measurements are performed in a range of 3 hours taking into
account the Earth rotation. The RA is obtained by computing for
each station the correlation with the center beam of the other super-
stations and with ρ = 2. For this experiment the ratio D/(L∆) is
20 and the visibilities are binned in a 256× 256 grid with Shannon
sampling. The corresponding (u, v) coverage is shown in Fig. 4.
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Fig. 5. Original image and its Fourier transform (up). Dirty images observed
with the full aperture (down left) and reduced aperture (down right).

The original image is shown in the upper part of Fig. 5 along
with its Fourier transform. Note that the image contains both low
and high frequency. The noise of variance σ2 is such that the
measured visibilities SNR is 70 dB. The observed dirty images are
also reported. The RA clearly leads to a less detailed dirty image.

C. Distributed image reconstruction

The image reconstruction is performed by solving problem (17)
with a regularized global variable consensus ADMM algorithm as
described in [1]. The regularization term is Ω(x) = λ‖x‖22 with
λ = 10−6. This regularization ensures that the problem is strictly
convex and limits the bias.

At each iteration, this algorithm requires to solve a large scale
linear problem of size the number of pixels N in each super-station,
[1, Eq. (7.6)]. This linear problem can be easily solved in the Fourier
domain as discussed in [5]. Note that the quadratic regularization can
be included in this step. The consensus step [1, Eq. (7.7)] is simply
a projection on the positive orthant. A super-station sends the current
image, Lagrangian multiplier and receive the consensus image.

Fig. 6 shows the reconstructed images obtained by solving (17)
with and without positivity constraints for both aperture cases, along
with the relative norm of the error ε. The FA leads obviously to
a better reconstruction in both cases. However, while the loss in
performance is rather important in the unconstrained case (ε = 15%
error instead of ε = 23%), this gap is significantly reduced with the
positivity constraint (ε = 9.5% error instead of ε = 12%).

IV. CONCLUSION AND PERSPECTIVES

This correspondence investigates a distributed strategy for the
image reconstruction problem in radio astronomy when the number
of stations inside each super-station is larger than the number of
super-stations. It relies on a reduced aperture synthesis where each
super-station uses all its beam and a single reference beam from
the other super-stations. Part of the missing information for each
super-station is then exchanged during the consensus step of the
distributed algorithm. The loss of performances, related to the use of
a reduced aperture synthesis, is evaluated on the image reconstruction
by computer simulations.

The approach proposed in the paper processes all the data after they
have been acquired. A natural extension is to reconstruct sequentially
the image. Among the benefits of this setup which perfectly fits
the operating mode of interferometers which progressively fill the
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Fig. 6. Reconstructed images and error ε. Up (down): reconstruction without
(with) positivity constraint. Left : FA mode, right : RA mode.

frequency plane using the Earth rotation, is the possibility to optimize
in real-time the observation mode. A straightforward solution is to
make a number of iterations of the reconstruction algorithm of section
III-C after each measurement and using a “warm start”. A much
more challenging perspective it to select sequentially the frequency
measurements used at each iteration. Whereas this communication
relies on a “deterministic” pattern of frequency measurements, a
better strategy would be to select at each iteration, among all
visibilities, the ones that optimize the reconstruction according to
some predefined criterion.
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