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ABSTRACT

Adaptive diffusion techniques for processing time-
frequency representations were first proposed by Payot and
Gonçalvès in 1998 as an application of the Perona and Ma-
lik adaptive diffusion. In this communication we consider
both this technique and the anisotropic diffusion of Weick-
ert, which allows to tune orientation and shape of smoothing
kernels. We propose a new adaptive diffusion scheme where
the strength and the orientation of the anisotropic kernel are
locally tailored to the processed time-frequency representa-
tion. We provide a comparison with other signal-dependent
techniques. Finally we define a diffusion tensor that can be
used to process time-frequency representations of the affine
class, ensuring the preservation of their covariance proper-
ties.

1. INTRODUCTION

Because time-frequency representations (TFR) illustrate
evolutions of signals with respect to both time and fre-
quency, they have been largely used to deal with non-
stationary environment. Among the host of solutions that
have been proposed, Cohen class encloses bilinear TFR
that are covariant with respect to time shifts and frequency
shifts. Such tools lead to sharper representations of a sig-
nal than linear-based approaches, e.g., spectrograms, but
at the cost of undesirable cross-terms [1]. One main goal
of time-frequency smoothing is to improve readability by
removing these cumbersome cross-terms while preserving
the sharpness of signal terms. Here we present a way to
iteratively process representations with a smoothing ker-
nel whose shape and width can be tailored to the under-
lying representation. It consists of a diffusion-based tech-
nique [2, 3] extending previous works dedicated to the Co-
hen class [4] and the affine class [5].

In a first part we present both isotropic and anisotropic
homogeneous diffusion as smoothing techniques for the Co-

hen class. We relate these non-adaptive techniques with
spectrograms. In a second part we turn to adaptive ap-
proaches and describe the method presented by Gonçalvès
and Payot in [4]. As it acts on the strength of the diffu-
sion but not on the shape of the smoothing kernel, we then
propose an anisotropic generalization. It enables to act on
both the orientation and the width of the smoothing kernel
depending on a priori information about the processed sig-
nal. We illustrate its performances and compare it to other
signal-dependent methods. In a third part, as another illus-
tration of the flexibility of anisotropic diffusion, we turn to
the affine class and propose a diffusion tensor that garanties
the preservation of the affine covariance, yielding a new
technique for such a class.

2. HOMOGENEOUS DIFFUSION

Here we consider isotropic and anisotropic diffusion. In this
homogeneous setting, since the action of the diffusion is ho-
mogeneous over the whole time-frequency plane, smooth-
ing is not adapted to the underlying representation.

2.1. Isotropic diffusion

Among Cohen class, the spectrogram is a widely used tool.
As the square modulus of the short-time Fourier transform,
it can also be written as a convolution between the Wigner
distribution of the signal and that of the analyzing window.
Note that the Wigner distribution of a gaussian window is a
2D-gaussian kernel.
Interpreting a time-frequency representation as a tempera-
ture distribution one can consider its diffusion as follows:







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (∇t,fDx(t, f ; τ)),
(1)

where Wx is the representation to be processed, which plays
the role of the initial state of the diffusion process. The
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diffused representation Dx(t, f ; τ) denotes the energy dis-
tribution at the time instant τ . It is well known that the
fundamental solution of such classical heat equation is an
isotropic gaussian. Therefore the equation (1) has the fol-
lowing solution:

Dx(t, f ; τ) =
1

4πτ

∫∫

Wx(η, ν)e−
(t−η)2+(f−ν)2

4τ dηdν

(2)
Indeed the use of the heat equation on a Wigner distribu-
tion is equivalent to convolving it with a gaussian kernel
whose variance increases with the diffusion time τ . This
diffusion scheme is called isotropic since the kernel in (2)
is isotropic. Note that the convolution form of the solution
ensures the preservation of covariance with respect to time
and frequency shifts.

2.2. Anisotropic diffusion

One can modifie the diffusion process described above to
introduce anisotropy in the equivalent gaussian kernel. Fol-
lowing [3], we use a diffusion tensor that acts on the shape
of the kernel. The model (1) becomes







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (B∇t,fDx(t, f ; τ)).
(3)

Here the diffusion tensor B is a 2-by-2 matrix that allows
the diffusion to be different along both time and frequency
axes. More precisely, one can check that the fundamental
solution of such diffusion process is a gaussian kernel with
a covariance matrix depending on B−1 and τ . Denoting
z = (t, f) and y = (t′, f ′) ∈ IR

2, the solution of (3) is then:

Dx(z; τ) =
1

4π
√

det(τB)

∫

W (y)e−
(z−y)T (τB)−1(z−y)

4 dy

Indeed with a careful choice of the tensor B, the
smoothing can be adapted independently along the time and
the frequency axes. Note that choosing B as the identity
matrix leads to an isotropic diffusion as presented before.
The main requirement for this diffusion to be stable is the
positive definiteness of the tensor B. One can also design
tensors B with eigenvectors that are not aligned with the
time and frequency axes, yielding distributions that can be
related to spectrograms with linearly modulated gaussian
windows.

3. ADAPTIVE DIFFUSION

In this section, we show that anisotropy of diffusion can be
used to tailor smoothing to the local characteristics of the
distribution.

3.1. Adaptive isotropic diffusion

The first mention of adaptive diffusion for time-frequency
processing can be found in the work of Payot and Gonçalvès
[4]. They propose to use a conductance function b(t, f) to
locally control the action of diffusion as follows:







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (b(t, f)∇t,fDx(t, f ; τ)).
(4)

The selection of the conductance function depends on the
application on sight and on available a priori information.
In a context of signal analysis, it can be used to selectively
smooth cross-terms while preserving auto-terms [4]. For the
use of diffusion in a decision making context, one should
refer to [6]. Following Weickert terminology in contrast
with Perona and Malik, note that such a diffusion is called
isotropic since b is scalar.

Using the anisotropic setting presented in Section 2, we
shall now extend (4) to obtain a diffusion that is oriented
along the components of the analyzed distribution and tai-
lored via a priori information.

3.2. Anisotropic adaptive diffusion

As presented before, the anisotropic diffusion provides an
oriented smoothing. Some signals, such as linearly mod-
ulated signals for example, exhibit strongly oriented time-
frequency components. This suggests that including such
a knowledge in the diffusion process should lead to a tech-
nique that is more suited to the signal. In order to deter-
mine the orientation needed for the smoothing, one has to
estimate the orientation of time-frequency components. We
propose to use the gradient of the distribution ∇D for such
an estimation. Let P be the matrix whose first and second
columns are the gradient vector and its orthogonal. As the
mesure of orientation provided by ∇D may be very sen-
sitive to noise, averaging and normalizing it gives a local
mesure of the strongest orientation P̃ , see [3] for more de-
tails. We then design the conductance tensor B as follows:

B = P̃

(

1 0
0 λ

)

P̃T (5)

with λ > 1 in order to emphasize diffusion along the direc-
tion orthogonal to the gradient.The diffusion is then applied
according to






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f ((bB)(t, f)∇t,fDx(t, f ; τ)),
(6)

with b a conductance function as in (4). Note that this tech-
nique preserves membership to the Cohen class since it only
involves derivatives of the distribution.
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(d) Radially gaussian kernel (e) Adaptive diffusion (f) Anisotropic adaptive diffusion

Fig. 1. Comparison between different TFR of the same signal composed of two chirps and sinusoidal modulation.

3.3. Example and comparison

To illustrate this technique we consider a signal composed
of two chirps and a sinusoidal modulation in a context of
readability improvement. The goal is to remove the interfer-
ence terms of the Wigner distribution without loosing sharp-
ness of the signal terms. We know that usually spectrograms
do not suffer from interference terms. As suggested in [4],
we then can use this information to design b(t, f) as follows

b(t, f) =

(

1 +

(

Spx(t, f)

δ

)α)−1

, (7)

where Spx is the spectrogram of the signal. Figures (1.a)
and (1.b) illustrate the trade off between sharpness of sig-
nal terms and readability. In order to highlight the perfor-
mances of the anisotropic adaptive diffusion compared to
other adaptive methods, we show in Fig. (1.c) a reassigned
spectrogram [7] and, in Fig. (1.d), a distribution processed
with the optimal radially gaussian kernel [8]. In Fig. (1.f),
anisotropic diffusion (λ = 20) enforces smoothing along
the time-frequency components yielding a representation of
the sinusoidal modulation that is sharper than in Fig. (1.e).

4. ANISOTROPIC AFFINE DIFFUSION

One can also use the anisotropic diffusion scheme to ensure
properties for the smoothed representation. As a second il-
lustration, we then turn to the affine class. As a reminder,

we first briefly present the affine operator which underlies
the affine class. Next we propose a diffusion tensor B en-
suring preservation of affine covariance during diffusion.

4.1. The affine class

The affine class is based on the affine operator [9], here
denoted as A. This class encompasses all the distribu-
tions that reflect the application of this operator to the sig-
nal. The affine operator acts on the set L2(IR) as Ax(t) =
√

|a0|x ((t − t0)/a0), where t0 is the amount of time shift-
ing and a0 the amount of dilatation of the signal. A time-
frequency representation Ωx is covariant with respect to this
operator if it obeys the following relation:

ΩAx(t, f) = Ωx

(

t − t0
a0

, a0f

)

. (8)

As both the isotropic and the anisotropic diffusion are lin-
ear, one can check that the affine covariance, central for
the affine class, is not preserved during such diffusion pro-
cesses.

4.2. Affine diffusion

Using a diffusion tensor that is function of the frequency,
we can design a diffusion scheme that keeps this covariance
untouched. In order to design such a scheme, we propose to
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use the following anisotropic affine diffusion:










Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f

((

f−2 0
0 f2

)

∇t,fDx(t, f ; τ)

)

.

(9)
Here B is no longer constant but now consists of a diag-
onal matrix with eigenvalues f−2 and f2. The choice of
this diffusion tensor ensures preservation of the affine co-
variance as it is now proved. At τ = 0, the covariance is
satisfied as the processed Wigner distribution belongs to the
affine class. Moreover the diffusion term can be developed
as follows:

∂Dx(t, f ; τ)

∂τ
= divt,f (B∇t,fDx(t, f ; τ))

= divt,f

(

f−2 ∂Dx

∂t
(t, f)~ut + f2 ∂Dx

∂f
(t, f) ~uf

)

= f−2 ∂2Dx

∂t2
(t, f) + f2 ∂2Dx

∂f2
(t, f) + 2f

∂Dx

∂f
(t, f).

For a shifted and scaled signal Ax(t), the diffusion reads

∂DAx (t, f ; τ)

∂τ
= divt,f

(

f−2

a0

∂Dx

∂t

(

t − t0
a0

, a0f

)

~ut

+f2a0
∂Dx

∂f

(

t − t0
a0

, a0f

)

~uf

)

= (fa0)
−2 ∂2Dx

∂t2

(

t − t0
a0

, a0f

)

+(a0f)
2 ∂2Dx

∂f2

(

t − t0
a0

, a0f

)

+2 (a0f)
∂Dx

∂f

(

t − t0
a0

, a0f

)

=
∂Ax(t′, f ′); τ)

∂τ

∣

∣

∣

∣ t′ = (t − t0)a
−1
0

f ′ = a0f.

Using recurrence, the relation

DAx(t, f ; τ) = Dx

(

t − t0
a0

, a0f ; τ

)

completes the proof of covariance. Here we have used the
degrees of freedom provided by the anisotropic diffusion (3)
in order to obtain additional properties. Strictly speaking,
this scheme is not homogeneous as the diffusion tensor B
depends on the frequency. Finally note that adaptive affine
diffusion schemes can be obtained by combining this tensor
with conductance functions b(t, f) as in (4).

5. CONCLUSION

In this paper, we have proposed a generalization of the adap-
tive diffusion introduced in [4]. We have illustrated its abil-

ity in a signal analysis context, obtaining TFR that is sharp
and readable even for signal terms mixed with interference
terms. We then have turned to the affine class and proposed
a diffusion tensor that preserves covariance with respect to
time shift and dilatation. This technique is indeed an alter-
native to the time-scale setting proposed in [5].
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