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a b s t r a c t 

Zero-attracting least-mean-square (ZA-LMS) algorithm has been widely used for online sparse system 

identification. Similarly to most adaptive filtering algorithms and sparsity-inducing regularization tech- 

niques, ZA-LMS appears to face a trade-off between convergence speed and steady-state performance, 

and between sparsity level and estimation bias. It is therefore important, but not trivial, to optimally set 

the algorithm parameters. To address this issue, a variable-parameter ZA-LMS algorithm is proposed in 

this paper, based on a model of the stochastic transient behavior of the ZA-LMS. By minimizing the excess 

mean-square error (EMSE) at each iteration on the basis of a white input assumption, we obtain closed- 

form expression of the step-size and regularization parameter. To improve the performance, we introduce 

the same strategy for the reweighted ZA-LMS (RZA-LMS). Simulation results illustrate the effectiveness of 

the proposed algorithms and highlight their performance through comparisons with state-of-the-art al- 

gorithms, in the case of white and correlated inputs. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Adaptive filtering methods are powerful tools for online sys-

em identification [1,2] . Within the myriad of algorithms proposed

n the literature, the least-mean-square (LMS) algorithm has been

idely used since it is robust and provides reasonably good per-

ormance with low computational complexity. Several applications

ave recently shown the need for online sparse identification tech-

iques. A driving force behind the development of such algorithms

s, for instance, the channel estimation problem because, although

he number of coefficients of the impulse response can be large,

nly a few of them may have significant values. It is therefore im-

ortant to endow the conventional LMS algorithm with the ability

o provide enhanced performance for such scenarios. 

In recent years, several algorithms based on the LMS were pro-

osed to promote the sparsity of the estimate. The proportion-

te normalized LMS (PNLMS) [3] and its variant called improved

NLMS (IPNLMS) [4] update each filter coefficient independently

y adjusting the adaptation step-size in proportion to the esti-
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ated filter coefficient. Another family of sparsity-inducing algo-

ithms is motivated by the compressive sensing theory, which pro-

ides a unified framework for estimating sparse signals [5,6] . In

lace of the � 0 -norm, which provides an exact count of the non-

ero coefficients but leads to NP-hard optimization problems (non-

eterministic polynomial-time solvable decision problems), other 

parsity-inducing norms can be used as a surrogate to overcome

his difficulty [7] . The use of the � 1 -norm is a popular choice [8] .

or instance, the authors in [9] consider an � 1 -norm regularizer,

nd introduce the zero-attracting LMS and the reweighted zero-

ttracting LMS for sparse system identification. It is shown that

he ZA-LMS and the RZA-LMS perform better than the LMS in

parse scenarios. However adjusting the algorithm parameters, in-

luding the step size and the regularization parameter, remains a

ricky task. On the one hand, as for usual adaptive algorithms, the

tep-size plays a crucial role to control the trade-off between the

onvergence speed and the asymptotic performance. A small step-

ize leads to slower convergence but improved asymptotic perfor-

ance, while a large step-size leads to faster convergence but at

he cost of a higher power of the residual error, or even instabil-

ty of the algorithm [1,2] . On the other hand, the regularization pa-

ameter controls the trade-off between the sparsity of the estimate

nd the estimation bias. A large regularization parameter associ-

ted with the � 1 -norm strongly promotes the sparsity of the solu-

ion. This however causes a larger bias of the non-zero parameter

ector entries. Reweighted � 1 -regularization allows to reduce this

ias. However, an improper value of the regularization parameter
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may even worsen the estimation performance. Though techniques

such as regularization path and cross validation help characterize

the influence of this parameter [10] , they are inappropriate for on-

line learning settings. 

Variable parameter strategies provide simple but efficient so-

lutions for optimizing the trade-off between fast convergence and

low misadjustment [11] . For LMS, several variable step-size strate-

gies have been proposed in the literature to address this issue. In

most cases, the step-size adapts over time depending on the es-

timation error. Related works include [11–13] . A variable step-size

version of the PNLMS, called NPVSS-IPNLMS, is proposed in [11] . It

combines the IPNLMS and a variable step-size NLMS (VSS-NLMS)

strategy [14] . However, while achieving a lower misadjustment, the

convergence speed of NPVSS-IPNLMS slows down significantly af-

ter an initial phase. The zero-attracting variable step-size LMS (ZA-

SSLMS) and the reweighted zero-attracting variable step-size LMS

(RZA-VSSLMS) introduced in [12] use the variable step-size strategy

reported in [15] . A significant improvement in the convergence rate

as well as in the misadjustment error can be observed. Another

variable step-size RZA-LMS strategy based on a nonlinear relation-

ship between the step-size and the power of the noise-free prior

error, called VSS-RZA-LMS, is considered in [13] . Nevertheless, the

misadjustment improvement appears to be limited. It is worth not-

ing that some extra parameters are introduced into all these algo-

rithms, but setting their proper values is a nontrivial task, similar

to the selection of an appropriate step size. 

Motivated by our recent work [16] , where a new model is de-

rived for the transient behavior of the ZA-LMS algorithm, we pro-

pose in this paper to design a variable-parameter ZA-LMS (VP-

ZA-LMS) algorithm where the step-size and the regularization pa-

rameter are both adjusted in an online manner. Unlike heuristic

strategies considered in the literature, our method is based on an

optimization step that minimizes the EMSE at each iteration. In-

deed, it turns out to be a quadratic function of the step-size and

the regularization parameter when considering the transient model

in [16] under a white input assumption. This yields closed-form

expressions of the step-size and regularization parameter at each

iteration, leading to a faster convergence as well as a lower mis-

adjustment. To further improve the performance, we apply this

strategy to the RZA-LMS, leading to a variable-parameter RZA-LMS

(VP-RZA-LMS) algorithm. Simulation results illustrate the enhanced

performance of our algorithms compared with ZA-LMS, RZA-LMS

and other variable step-size algorithms used in sparse system iden-

tification applications. We summarize the contributions of this

work as follows: 

1. Compared to the existing literatures, this work is the first one

that derives a variable-parameter strategy based on a theo-

retical model of the filter performance. The proposed algo-

rithm jointly adjust the step-size and regularization parameter

in some optimal sense. 

2. Unlike existing works on ZA-LMS that focus on the real-valued

data case, we derive an extension to complex-valued systems. 

3. While working well for ZA-LMS/RZA-LMS, the proposed frame-

work can be extended to several other adaptive filters having

similar structure, such as the LMS with � 0 -norm penalty, the

group ZA-LMS, etc. 

Before proceeding, note that this work and [16] are both related

to the transient behavior of the ZA-LMS algorithm but they address

different issues. The analysis in [16] focuses on how deriving an

accurate model for the transient behavior of ZA-LMS. The current

work uses an approximate model that allows us to automatically

adjust the algorithm parameters in an online way. 

The rest of this paper is organized as follows. Section 2 re-

views the ZA-LMS and RZA-LMS algorithms. The VP-ZA-LMS and

VP-RZA-LMS algorithms are derived in Sections 3 and 4 , respec-
ively. In Section 5 , computer simulations are performed to validate

he proposed algorithms and to show their superior performance.

ection 6 concludes the paper. 

Notation. Normal font x denotes scalars. Boldface small letters

 denote column vectors. All vectors are column vectors. Boldface

apital letters X denote matrices. The superscript ( · ) � denotes the

ranspose of a matrix or a vector. The inverse of a square matrix is

enoted by (·) −1 
. All-zero vector and all-one vector of length N are

enoted by 0 N and 1 N , respectively. The Gaussian distribution with

ean μ and variance σ 2 is denoted by N (μ, σ 2 ) . The operator

gn{ · } takes the sign of the entries of its argument. The operator

r{ · } takes the trace of its matrix argument. The operator | · | takes

he absolute value of the entries of its argument. The mathemat-

cal expectation is denoted by E {·} . The operators max { · , · } and

in { · , · } take the maximum and minimum value of their argu-

ents, respectively. 

. System model and zero-attracting LMS 

.1. System model and zero-attracting LMS 

To be consistent with ZA-LMS/RZA-LMS framework, and for the

ake of simplicity, we start by deriving our parameter adjustment

trategies in the case of real-valued signals. In Appendix C, we ex-

end ZA-LMS and RZA-LMS to complex-valued data, and then de-

ive the associated parameter adjustment strategies in a concise

anner. Consider an unknown system with input-output relation

haracterized by the linear model 

 n = x � n w 

� + z n (1)

ith w 

� ∈ R 

L denoting an unknown parameter vector, and x n ∈ R 

L 

 regression vector with a positive definite covariance matrix R x =
 { x n x � n } > 0 at instant n . The regression vector x n and the out-

ut signal y n are assumed to be zero mean. The error signal z n is

ssumed to be stationary, independent and identically distributed

i.i.d.), with zero mean and variance σ 2 
z , and independent of any

ther signal. Let J ( w ) denote the mean-square-error (MSE) cost,

amely, 

( w ) = 

1 

2 

E 

{
[ y n − w 

� x n ] 2 
}
. (2)

t is clear from (1) that J ( w ) is minimized at w 

� . 

The problem considered in this paper is to estimate the

nknown parameter vector w 

� , which is assumed to be

parse [3,17,18] . This problem can be addressed by minimizing the

ollowing regularized MSE cost: 

 

o 
ZA = arg min 

w 

J ZA ( w ) 

with J ZA ( w ) = 

1 

2 

E 

{
[ y n − w 

� x n ] 2 
}

+ λ‖ w ‖ 1 , 

(3)

here the � 1 -norm term, defined as ‖ w ‖ 1 = 

∑ L 
i =1 | w i | , is used to

romote the sparsity of the estimate, and λ≥ 0 is the regulariza-

ion parameter. A subgradient of J ZA ( w ) in problem (3) is given by:

J ZA ( w ) = R x w − p xy + λ sgn { w } (4)

here p xy = E { x n y n } is the correlation vector between x n and y n .

sing the instantaneous approximations R x ≈ x n x 
� 
n and p xy ≈ x n y n ,

he subgradient iteration leads to the ZA-LMS algorithm as derived

n [9] : 

 n +1 = w n + μ e n x n − ρ sgn { w n } , (5)

here e n is the estimation error given by: 

 n = y n − w 

� 
n x n , (6)

is a positive step-size, and ρ = μλ. 
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As the shrinkage parameter ρ in ZA-LMS algorithm does not

istinguish between zero and non-zero entries of w n , the zero-

ttracting term ρ sgn{ w n } results in significant bias for large en-

ries while promoting zero-valued ones. This behavior significantly

egrades MSE performance [9] . To get enhanced performance in

parse system identification, the RZA-LMS was proposed to rein-

orce the zero attractor. Consider the following optimization prob-

em: 

w 

o 
RZA = arg min 

w 

J RZA ( w ) 

with J RZA ( w ) = 

1 

2 

E 

{[
y n − w 

� x n 
]2 } + λ

L ∑ 

i =1 

log ( 1 + | w i | /ε ) . (7) 

he log-sum penalty 
∑ L 

i =1 log (1 + | w i | /ε) is considered as it be-

aves more similarly to the � 0 -norm than ‖ w ‖ 1 [6] . Similarly to

he ZA-LMS, using stochastic subgradient iterations yields the RZA-

MS update: 

 n +1 = w n + μ e n x n − ρ
sgn { w n } 
ε + | w n | , (8) 

here the division and the absolute value operator | · | in the third

erm on r.h.s. of (8) are applied in an element-wise manner, and ε
s a small positive parameter. 

.2. Motivation for using a variable-parameter strategy 

For ZA-LMS and RZA-LMS algorithms, the trade-off between

isadjustment and adaptation rate is mainly driven by the step-

ize μ, and the trade-off between sparsity and estimation bias by

he regularization parameter λ, or equivalently ρ . In order that ZA-

MS and RZA-LMS can provide accurate estimation results in un-

nown environments, without using prior information, an efficient

ariable-parameter strategy can be useful. Such a strategy is ex-

ected to satisfy the following requirements: 

• It should not introduce a significant number of extra parame-

ters. 
• Selecting an appropriate, if not optimal, value for a newly intro-

duced parameter should be easier than selecting an appropriate

step-size, or any other parameter in the original algorithm. Fur-

thermore, the performance of the algorithm should not be very

sensitive to these values. 
• The computational complexity of evaluating the time-variant

parameters should be of the same order as the adaptive algo-

rithm. For instance, a step size determined in O(L 2 ) does not

make sense for an LMS-type algorithm in O(L ) . 

These requirements may rule out several strategies in the liter-

ture, though they provide an efficient solution for the conflicting

equirements of fast convergence and low misadjustment. We will

ee that our strategy complies with these requirements. 

. Parameter design of ZA-LMS guided by a transient behavior 

odel 

.1. Transient behavior model of ZA-LMS 

Defining the weight error vector ˜ w n as the difference between

he estimated weight vector w n and w 

� , namely 

˜ 
 n = w n − w 

� , (9) 

he analysis of ZA-LMS consists of studying the evolution of the

rst and second-order moments of ˜ w n over time. To keep the cal-

ulations mathematically tractable, we introduce the independence

ssumption, which is commonly used when analyzing adaptive fil-

ering algorithms [1] : 
A1 : The weight-error vector ˜ w n is statistically independent of

he input vector x n . 

Subtracting w 

� from both sides of (5) , and using e n = z n −
˜ 
 

� 
n x n , yields the update relation of ˜ w n : 

˜ 
 n +1 = 

˜ w n + μ x n z n − μ x n x 
� 
n ˜ w n − ρ sgn { w n } . (10)

he condition for stability and the mean performance of ZA-LMS

re analyzed in [9] . With the independence assumption A1 and

 n = z n − ˜ w 

� 
n x n , the mean-square-error (MSE) of the ZA-LMS is

iven by 

 { e 2 n } = σ 2 
z + tr { R x K n } , (11)

ith K n = E { ̃  w n ̃  w 

� 
n } . The quantity tr{ R x K n } is the excess-mean-

quare-error (EMSE) at time instant n , denoted by ζ n . The trace

f K n is the mean-square-deviation (MSD), denoted by ξn = tr { K n } .
o simplify the derivation, we introduce the whiteness assumption

2 : 

A2 : The input signal x n is a zero-mean white Gaussian signal

ith covariance matrix R x = σ 2 
x I . 

Correlation of the regressors usually makes the analysis of

daptive algorithms difficult [1] . Hence some analyses in the liter-

ture restrict themselves to this white input setting. The derivation

f our variable-parameter strategies would become highly chal-

enging without assumption A2 . However, it turns out that the re-

ulting algorithms continue to perform well with correlated inputs

ven when assumption A2 does not hold. 

Under the assumption A2 , the MSD is equal to EMSE up to a

caling factor, that is, 

n = σ 2 
x tr { K n } = σ 2 

x ξn . (12)

herefore, we need to determine a recursion for K n in order to

elate the MSD or EMSE at two consecutive time instants n and

 + 1 . Post-multiplying (10) by its transpose, taking the expecta-

ion, and using assumptions A1 and A2 , we get: 

 n +1 = K n + μ2 σ 2 
z R x + μ2 Q 1 + ρ2 Q 2 − μ

(
Q 3 + Q 

� 
3 

)
− ρ

(
Q 4 + Q 

� 
4 

)
+ μρ

(
Q 5 + Q 

� 
5 

)
(13) 

ith 

 1 = E 

{
x n x 

� 
n ˜ w n ̃  w 

� 
n x n x 

� 
n 

}
(14) 

 2 = E 

{
sgn { w 

� + 

˜ w n } sgn 

� { w 

� + 

˜ w n } 
}

(15) 

 3 = E 

{
˜ w n ̃  w 

� 
n x n x 

� 
n 

}
(16) 

 4 = E 

{
˜ w n sgn 

� { w 

� + 

˜ w n } 
}

(17) 

 5 = E 

{
x n x 

� 
n ˜ w n sgn 

� { w 

� + 

˜ w n } 
}
. (18) 

s for the above matrices Q 1 , . . . , Q 5 , we will sometimes drop the

xplicit reference to time instant n in order to keep the notation

ompact. 

Characterizing the evolution of terms Q 2 , Q 4 and Q 5 in an exact

anner is not trivial, as it is necessary to evaluate terms involv-

ng the nonlinear sgn{ · } operator. To address this difficulty, the

uthors in [19] use a zero-order approximation of these terms by

ubstituting the expectation of the product of two factors involv-

ng a sign function by the product of their expectations. In our

ecent work [16] , we succeeded in evaluating these terms in an

xact manner using a mild and reasonable joint Gaussian assump-

ion. However, the aforementioned works involve cumbersome cal-

ulations that are not suitable for an online implementation with

inear complexity. 
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3.2. Parameter design using a transient behavior model 

We now derive a parameter design strategy for ZA-LMS based

on its transient behavior model. Given the MSD ξ n at time instant

n , we seek the parameters that minimize the MSD at time instant

n + 1 , that is, 

{ μ� 
n , ρ

� 
n } = arg min 

μ,ρ
ξn +1 . (19)

Using the recursion (13) , and considering that ξn = tr { K n } , the

above optimization problem becomes: 

{ μ� 
n , ρ

� 
n } = arg min 

μ,ρ
tr { K n +1 } 

= arg min 

μ,ρ
tr { K n } + μ2 

[
σ 2 

z tr { R x } + tr { Q 1 } 
]

+ ρ2 tr { Q 2 } 
− 2 μ tr { Q 3 } − 2 ρ tr { Q 4 } + 2 μρ tr { Q 5 } . 

(20)

For the sake of notation, we define the following quantities: 

a = σ 2 
z tr { R x } + tr { Q 1 } (21)

b = tr { Q 2 } (22)

c = tr { Q 5 } (23)

p 1 = tr { Q 3 } (24)

p 2 = tr { Q 4 } . (25)

The objective function in matrix form can be written as: 

ξn +1 = [ μρ] H [ μ ρ] � − 2 [ p 1 p 2 ] [ μ ρ] � + ξn (26)

with 

H = 

[
a c 
c b 

]
, (27)

which is a quadratic function of [ μρ]. 

Lemma 1. The Hessian matrix H of (26) is positive semidefinite. 

As shown in Appendix A, matrix H can be written as the sum of

a covariance matrix of arbitrary variables and a positive semidefi-

nite matrix. Then H is positive semidefinite. For simplification pur-

poses, we shall further assume that H is positive definite since

a covariance matrix is almost always positive definite in prac-

tice [20] . Positive definiteness of H allows us to determine the op-

timal parameters that minimize the cost (20) via: 1 

[ μ� 
n ρ

� 
n ] 

� = H 

−1 [ p 1 p 2 ] 
� , (28)

namely, 

μ� 
n = 

bp 1 − cp 2 
ab − c 2 

(29)

ρ� 
n = 

ap 2 − cp 1 
ab − c 2 

. (30)

The above result cannot be used in practice since it requires statis-

tics that are not available within an online environment. We now

approximate these quantities in order to provide a parameter ad-

justment strategy with reasonable complexity. The subscript n in

the variables a n , b n , c n , p 1 n and p 2 n is now needed to make ex-

plicit time-dependence. 
1 Use the Moore–Penrose pseudoinverse of H otherwise. 

e

μ  
Under assumption A2 , the quantity a n can be evaluated as fol-

ows: 

 n = σ 2 
z tr { σ 2 

x I } + tr 

{ 

2 R x K n R x + tr { R x K n } R x 

} 

(31)

= σ 2 
z σ

2 
x L + (2 + L ) σ 2 

x ζn . (32)

ince the diagonal entries of Q 2 are squares of a sign function, the

uantity b n is given by: 

 n = L. (33)

e then evaluate the trace of Q 5 . Using the independence assump-

ion A1 yields: 

 n = σ 2 
x E 

{
˜ w 

� 
n sgn { w n } 

}
. (34)

he weight error vector ˜ w n = w n − w 

� in the above relation cannot

e evaluated since it requires to know w 

� , namely, the minimizer

f the MSE cost (2) . Let us now construct an approximation of w 

� 

t time instant n to be used in 

˜ w n . As already experienced success-

ully in another context [21] , one strategy is to use a local one-step

pproximation of the form: 

ˆ 
 

� 

n = w n − ηn ∇J( w n ) (35)

here ηn is a positive step-size to be determined. Given the MSD

n at time instant n , we seek ηn that minimizes ξn +1 . Following

he same reasoning as (19) –(30) leads to ηn = p 1 n /a n . Since the

rue gradient of J ( w ) at w n is not available in an adaptive imple-

entation, we can approximate it by using the instantaneous value

e n x n . Finally, we write: 

ˆ 
 

� 

n = w n − g n (36)

ith g n = − p 1 n 
a n 

e n x n . Then, approximating the expectation in

34) by its instantaneous argument yields: 

 n ≈ σ 2 
x g � n sgn { w n } . (37)

he quantity p 1 n is given by: 

p 1 n = ζn . (38)

inally, as for quantity p 2 n , we have: 

p 2 n ≈ g � n sgn { w n } . (39)

s the EMSE ζ n is not available, and depends on the unknown pa-

ameter vector w 

� , we adopt the estimator ˆ ζn for ζ n : 

ˆ 
 n = β ˆ e n −1 + (1 − β) e n (40)

ˆ 
n = max { ̂  e 2 n − σ 2 

z , 0 } , (41)

hich provides an instantaneous approximation of the EMSE, with

being a temporal smoothing factor in the interval [0,1). To fur-

her improve the estimation accuracy of ζ n , we set ζn min 
by iterat-

ng ˆ ζn −1 via (20) at iteration n − 1 as a lower bound for ζ n , since

e have minimized tr{ K n } with respect to { μ, ρ} at iteration n − 1 .

ue to the approximation introduced in the theoretical derivation

nd the intrinsic properties of signal and noise realization, ζ n is no

ess than σ 2 
x tr { K n } . Rather than (41) , we then suggest to use: 

ˆ 
n = max 

{
ˆ e 2 n − σ 2 

z , ζn min 

}
. (42)

Non-negativity of μ and ρ is required. We did not consider this

onstraint in (20) in order to get closed-form solutions as given

y (29) and (30) . To overcome undesirable behavior of the algo-

ithm, we then need to apply the following hard thresholding op-

rators: 

� 
n = max { μ� 

n , 0 } (43)
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� 
n = max { ρ� 

n , 0 } (44) 

e further impose a temporal smoothing with smoothing factor

over parameters μ� 
n and ρ� 

n , as well as a possible predefined

pper bound μmax on the step-size to ensure the stability of the

lgorithm: 

n = min { γμn −1 + (1 − γ ) μ� 
n , μmax } (45) 

n = γ ρn −1 + (1 − γ ) ρ� 
n . (46) 

. Parameter design of RZA-LMS guided by a transient behavior

odel 

.1. Transient behavior model of RZA-LMS 

In order to derive a variable-parameter strategy for RZA-LMS al-

orithm, we first extend the transient behavior model of ZA-LMS

erived in [16] to RZA-LMS. As for ZA-LMS, we consider assump-

ions A1 and A2 to make the derivation tractable. Subtracting w 

� 

rom both sides of (8) , and using e n = z n − ˜ w 

� 
n x n , yields the update

elation of ˜ w n : 

˜ 
 n +1 = 

˜ w n + μ x n z n − μ x n x 
� 
n ˜ w n − ρ

sgn { w n } 
ε + | w n | . (47) 

aking the expectation of (47) , we get: 

 { ̃  w n +1 } = E { ̃  w n } − μ R x E { ̃  w n } − ρ E 

{
sgn { w n } 
ε + | w n | 

}
. (48)

imilarly to (11) and (12) , the MSE of RZA-LMS is given by 

 { e 2 n } = σ 2 
z + tr { R x K n } , (49)

nd its MSD ξ n is equal to the EMSE ζ n up to a scaling factor, that

s, 

n = σ 2 
x tr { K n } = σ 2 

x ξn . (50)

ikewise, K n can be calculated recursively as follows: 

 n +1 = K n + μ2 σ 2 
z R x + μ2 Q 1 + ρ2 Q 2 − μ

(
Q 3 + Q 

� 
3 

)
− ρ

(
Q 4 + Q 

� 
4 

)
+ μρ

(
Q 5 + Q 

� 
5 

)
(51) 

here Q 1 and Q 3 are given by (14) and (16) , respectively, and the

eweighting terms in Q 2 , Q 4 and Q 5 by: 

 2 = E 

{
sgn { w n } 
ε + | w n | 

sgn 

� { w n } 
ε + | w 

� 
n | 

}
(52) 

 4 = E 

{
˜ w n 

sgn 

� { w n } 
ε + | w 

� 
n | 

}
(53) 

 5 = E 

{
x n x 

� 
n ˜ w n 

sgn 

� { w n } 
ε + | w 

� 
n | 

}
. (54) 

.2. Parameter design with transient behavior model 

We derive now a parameter design strategy for RZA-LMS based

n a simplified model of its transient behavior model. Minimizing

he MSD ξn +1 with respect to parameters μ and ρ , based on re-

ursion (51) , leads to: 

 μ� 
n , ρ

� 
n } = arg min 

μ,ρ
ξn +1 (55) 

= arg min 

μ,ρ
tr { K n +1 } (56) 
d  
= arg min 

μ,ρ
tr { K n } + μ2 

[
σ 2 

z tr { R x } + tr { Q 1 } 
]

+ ρ2 tr { Q 2 } 
− 2 μ tr { Q 3 } − 2 ρ tr { Q 4 } + 2 μρ tr { Q 5 } . (57) 

ollowing the reasoning as in Section 3.2 leads to: 

� 
n = 

bp 1 − cp 2 
ab − c 2 

(58) 

� 
n = 

ap 2 − cp 1 
ab − c 2 

. (59) 

Likewise, we approximate the expectations that are not acces-

ible to provide a parameter adjustment strategy with appropriate

omputational complexity. The subscript n in the variables a n , b n ,

 n , p 1 n and p 2 n is now needed to make explicit time-dependence.

ince Q 1 and Q 3 have the same expressions as for the ZA-LMS,

e approximate a n and p 1 n by (32) and (38) , respectively. Using

52) and approximating the expectation by its instantaneous argu-

ent, b n is given by: 

 n ≈
L ∑ 

i =1 

(
1 

ε + | w n,i | 
)2 

, (60) 

here w n, i is the i -th entry of vector w n . We then evaluate the

race of Q 5 . Using the independence assumption yield: 

 n = σ 2 
x E 

{
sgn 

� { w n } 
ε + | w 

� 
n | ˜ w n 

}
. (61) 

s for ZA-LMS, we approximate ˜ w n by the stochastic gradient

f the cost function at time instant n , that is, g n = − p 1 n 
a n 

e n x n .

hen, approximating the expectation by its instantaneous argu-

ent yields: 

 n ≈ σ 2 
x g � n 

sgn { w n } 
ε + | w n | . (62) 

n a similar way to the evaluation of c n , we have: 

p 2 n ≈ g � n 

sgn { w n } 
ε + | w n | . (63) 

ext, we adopt the same approximation for ζ n as in (40) –(42) . As

n (43), (44) , we impose μ� 
n and ρ� 

n to be nonnegative. Finally, we

pply a temporal smoothing as in (45) –(46) , as well as possibly a

redefined upper μmax on the step-size to ensure the stability of

he algorithm: 

n = min { γμn −1 + (1 − γ ) μ� 
n , μmax } (64) 

n = γ ρn −1 + (1 − γ ) ρ� 
n . (65) 

We now summarize the proposed VP-ZA-LMS and VP-RZA-LMS

n Algorithm 1 . Since several steps of both algorithms are iden-

ical, we combine their presentations for compactness. As can be

een in Algorithm 1 , we introduce little extra parameters in VP-

A-LMS and VP-RZA-LMS. More importantly, these parameters can

e set pragmatically to some typical values. 

. Simulation results 

Considering stationary and non-stationary system identification

roblems, we present now simulation results to illustrate the ef-

ectiveness of our algorithms. The input signal was a first-order AR

rocess defined by x n = α x n −1 + v n , where v n is an i.i.d. zero-mean

aussian variable with variance σ 2 
v = 1 − α2 (so that σ 2 

x = 1 ), and

is the correlation coefficient of x n . By varying the value of α, we

btained processes x n with different levels of correlation. The ad-

itive noise z n was an i.i.d. zero-mean white Gaussian noise with
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Algorithm 1: Variable-Parameter ZA-LMS (VP-ZA-LMS) and 

Variable-Parameter RZA-LMS (VP-RZA-LMS). 

1 Initialize parameters with typical values, e.g.: 

w 1 = 0 L , ρ0 = 0 , μ0 = 0 . 01 , ē 0 = e 1 , ζ1 min 
= e 2 1 , 

γ = 0 . 95 , β = 0 . 95 , μmax 

and repeat the following steps (iteration n = 1 , . . . , N); 

2 Calculate the estimation error e n of adaptive filter: 

e n = y n − w 

� 
n x n ;

Calculate the estimate ˆ ζn at iteration n : 

ē n = β ē n −1 + (1 − β) e n , ˆ ζn = max { ̄e 2 n − σ 2 
z , ζn min 

};
Calculate the values of a n , and p 1 n , at iteration n : 

a n = σ 2 
z σ

2 
x L + (2 + L ) σ 2 

x 
ˆ ζn , p 1 n = 

ˆ ζn ;
Calculate the estimate g n at iteration n : 

g n = − p 1 n 
a n 

e n x n ;

Calculate the values of b n , c n and p 2 n for VP-ZA-LMS and 

VP-RZA-LMS at iteration n : 

VP-ZA-LMS: b n = L, c n = σ 2 
x g � n sgn { w n } , 

p 2 n = g � n sgn { w n };
VP-RZA-LMS: b n = 

∑ L 
i =1 

(
1 

ε+ | w n,i | 
)2 

, c n = σ 2 
x g � n 

sgn { w n } 
ε+ | w n | , 

p 2 n = g � n 
sgn { w n } 
ε+ | w n | ;

Calculate the values of μ and ρ: 

μ� 
n = 

b n p 1 n − c n p 2 n 
a n b n − c 2 n 

, ρ� 
n = 

a n p 2 n − c n p 1 n 
a n b n − c 2 n 

;

Constrain the values of μ and ρ to be nonnegative: 

μ� 
n = max 

{
μ� 

n , 0 

}
, ρ� 

n = max 
{
ρ� 

n , 0 

}
;

Apply temporal smoothing over parameters μ� 
n and ρ� 

n , and 

possibly truncate μn : 

μn = min { γμn −1 + (1 − γ ) μ� 
n , μmax } , ρn = γ ρn −1 + (1 − γ ) ρn ;

Update the filter coefficients and the minimal EMSE: 

ζn +1 min 
= ̂

 ζn + σ 2 
x (μ2 

n a n + ρ2 
n b n − 2 μn p 1 n −2 ρn p 2 n + 2 μn ρn c n ) , 

VP-ZA-LMS: w n +1 = w n + μn e n x n − ρn sgn { w n } , 
VP-RZA-LMS: w n +1 = w n + μn e n x n − ρn 

sgn { w n } 
ε + | w n | . 
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Fig. 1. Learning curves of LMS, ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS, M- 

VSS-RZA-LMS, VP-ZA-LMS and VP-RZA-LMS algorithms in the case of a white input 

Gaussian signal. For the sake of clarity, the learning curves of the M-VSS-RZA-LMS 

are shown in dashed green. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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variance σ 2 
z = 0 . 01 . In all the experiments, the initial weight vec-

tor was set to the all-zero vector. The MSD learning curves were

obtained by averaging results over 100 Monte-Carlo runs. 

The VP-ZA-LMS and VP-RZA-LMS were compared with the

standard LMS, ZA-LMS [9] , RZA-LMS [9] , ZA-VSSLMS [12] , WZA-

SSLMS [12] and M-VSS-RZA-LMS 2 [13] algorithms. Note that ZA-

LMS, ZA-VSSLMS and VP-ZA-LMS operate with a fixed regular-

ization parameter, while RZA-LMS, WZA-VSSLMS, M-VSS-RZA-LMS

and VP-RZA-LMS are provided with a reweighting strategy. The
2 M-VSS-RZA-LMS denotes Modified-VSS-RZA-LMS algorithm. We slightly modi- 

fied the original VSS-RZA-LMS algorithm [13] by bounding the calculated step-size 

with a maximum value. We found in simulations that properly bounding the result 

of [13] can be crucial for ensuring the stability and robustness of this algorithm. 

n  

n  

c  

l  

s  
MS algorithm with fixed step-size ( μ = 0 . 01 ) was used as a base-

ine. First, we set the parameters of each algorithm, except the

MS, so that its initial convergence speed was almost the same as

he LMS and its steady-state MSD as small as possible. This gave us

 first set of learning curves, one curve for each algorithm. Then,

e set the parameters of each algorithm to obtain the same steady-

tate MSD as the LMS and the fastest convergence rate. This gave us

 second set of learning curves, one for each algorithm. For each al-

orithm, these two learning curves bound a region that was used

o characterize its convergence behavior compared to the LMS. 

Three experiments were designed to illustrate the performance

f all the algorithms with uncorrelated and correlated input sig-

als. Time-varying systems were also considered to characterize

heir tracking performance. All the parameters used in the experi-

ents are listed in Tables 2–5 of Appendix B. 

.1. Performance under a stationary system 

In the first experiment, we considered an unknown system of

rder L = 32 with weights defined by: 

 

� = [ 0 . 8 , 0 . 5 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 0 20 , −0 . 05 , −0 . 1 , 

− 0 . 2 , −0 . 3 , −0 . 5 , −0 . 8 ] 
� 
, (66)

ith 20 zero entries over 32. The correlation coefficient α was set

o 0 so that the input signal x n was uncorrelated and Gaussian

hich is consistent with our design assumption A2 . The learning

urves and performance regions of all the algorithms are provided

n Fig. 1 . The ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS and M-

SS-RZA-LMS outperformed the LMS. 

The VP-ZA-LMS and VP-RZA-LMS algorithms are characterized

y single learning curves in Fig. 1 . The evolution of their step-size

nd regularization parameter over time is represented in Figs. 3

nd 4 , respectively. It is observed in Fig. 1 that the proposed

P-RZA-LMS algorithm significantly outperformed the other algo-

ithms, by reducing the steady-state MSD and increasing the con-

ergence speed. Though the proposed VP-ZA-LMS algorithm did

ot outperform all the RZA-LMS-type algorithms, it performed sig-

ificantly better than the ZA-LMS-type algorithms with a faster

onvergence speed and a lower steady-state MSD. Moreover, the

earning curves of VP-ZA-LMS and VP-RZA-LMS algorithms were

till decreasing when they were stopped. It is seen in Figs. 3 and
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Fig. 2. Learning curves of LMS, ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS, M- 

VSS-RZA-LMS, VP-ZA-LMS and VP-RZA-LMS algorithms in the case of a correlated 

Gaussian input signal ( α = 0 . 5 ). For the sake of clarity, the learning curves of the 

M-VSS-RZA-LMS are shown in dashed green. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Step-sizes of VP-ZA-LMS and VP-RZA-LMS algorithms in the case of white 

and correlated ( α = 0 . 5 ) input signals. 
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 that the VP-ZA-LMS and VP-RZA-LMS algorithms set the step-size

nd the regularization parameter to large values at the initial phase

f the adaptation to ensure fast convergence. Next, they gradually

ecreased the step-size and used nearly constant regularization pa-

ameter to reach a low misadjustment error as well as a reasonable

evel of sparsity. 

In the second experiment, we used the same setting except that

he correlation coefficient α was set to 0.5. The learning curves and

erformance regions of all the algorithms are provided in Fig. 2 .

he ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS and M-VSS-RZA-

MS outperformed the LMS. 

The VP-ZA-LMS and VP-RZA-LMS algorithms are characterized

y single learning curves in Fig. 2 . The evolution of their step-

ize and regularization parameter over time is represented in

igs. 3 and 4 , respectively. Though there was some performance

egradation of VP-RZA-LMS algorithm compared with the first

xperiment, the VP-RZA-LMS algorithm still yielded the lowest

teady-state MSD along with the fastest convergence speed among

ll the competing algorithms. Interestingly, the VP-ZA-LMS algo-
Fig. 4. Regularization parameter λ of (a) VP-ZA-LMS and (b) VP-RZA-LMS a
ithm maintained the performance improvement observed in the

rst experiment, and outperformed all the competing ZA-LMS-type

lgorithms both with its convergence speed and steady-state per-

ormance. Despite the loss of the whiteness assumption A2 , the

P-ZA-LMS and VP-RZA-LMS algorithms still work well with cor-

elated inputs. Besides, observe that both algorithms set the step-

ize and the regularization parameter to large values at the initial

hase, next changed them to reach a compromise between conver-

ence rate, MSD and estimation bias (sparsity). 

.2. Tracking performance in a non-stationary environment 

In the third experiment, we compared the tracking performance

f VP-ZA-LMS and VP-RZA-LMS algorithms with the other compet-

ng algorithms. The order of the unknown time-varying system was

et to L = 32 . 

From instant n = 1 to 80 0 0, we set the system parameter vec-

or to w 

� 
1 
, with 20 null entries over 32. At n = 8001 , the sys-

em parameter vector was changed to the non-sparse one w 

� 
2 . At

 = 16001 , we changed the system parameter vector to w 

� 
3 
, with

2 null entries over 32. The parameter vectors w 

� 
1 
, w 

� 
2 

and w 

� 
3 
lgorithms in the case of white and correlated input signal ( α = 0 . 5 ). 
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Fig. 5. Transient behaviors of LMS, ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS, 

M-VSS-RZA-LMS, VP-ZA-LMS and VP-RZA-LMS algorithms, in the presence of time 

varying systems driven by colored Gaussian input signal with correlation coefficient 

α = 0 . 5 . All the algorithms were set up to reach the same steady-state MSD as the 

LMS (and the fastest convergence speed) during the first 80 0 0 iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Transient behaviors of LMS, ZA-LMS, RZA-LMS, ZA-VSSLMS, WZA-VSSLMS, 

M-VSS-RZA-LMS, VP-ZA-LMS and VP-RZA-LMS algorithms, in the presence of time 

varying systems driven by colored Gaussian input signal with correlation coefficient 

α = 0 . 5 . All the algorithms were set up to have the same initial convergence rate as 

the LMS (and the lowest steady-state MSD) during the first 80 0 0 iterations. 

Fig. 7. Step-sizes μ of VP-ZA-LMS and VP-RZA-LMS for time varying system identi- 

fication with correlation coefficient α = 0 . 5 . 
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were defined as: 

w 

� 
1 = [ 0 . 8 , 0 . 5 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 0 20 , −0 . 05 , 

− 0 . 1 , −0 . 2 , −0 . 3 , −0 . 5 , −0 . 8 ] 
� ; (67)

w 

� 
2 = 

[ 
0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 

0 . 01 , 1 10 , −0 . 01 , −0 . 05 , −0 . 1 , −0 . 2 , −0 . 3 , −0 . 4 , 

− 0 . 5 , −0 . 6 , −0 . 7 , −0 . 8 − 0 . 9 

] 
� ; (68)

w 

� 
3 = 

[ 
1 . 2 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 , 0 . 5 , 0 . 4 , 0 . 2 , 0 . 1 , 

0 . 01 , 0 12 , −0 . 01 , −0 . 1 , −0 . 2 , −0 . 4 , −0 . 5 , −0 . 6 

− 0 . 7 , −0 . 8 , −0 . 9 , −1 . 2 

] 
� . (69)

The input signal was Gaussian correlated with correlation coeffi-

cient α = 0 . 5 . The LMS algorithm with fixed step-size (μ = 0 . 01)

was used as a baseline. 

First, we set the parameters of each algorithm, except LMS, to

obtain the same steady-state MSD as LMS during the first 80 0 0

iterations. Next, we set the parameters of each algorithm so that

its initial convergence speed was almost the same as LMS. Figs. 5

and 6 plot the learning curves resulting from these two experi-

ments, respectively. Because the hyperparameters of these two al-

gorithms remained unchanged in the two experiments, the learn-

ing curves of the VP-ZA-LMS and VP-RZA-LMS algorithms are iden-

tical in Fig. 5 and Fig. 6 . The evolution of their step-size and regu-

larization parameter over time is provided in Figs. 7 and 8 , respec-

tively. 

Results in Figs. 5 and 6 show that the VP-ZA-LMS and VP-RZA-

LMS algorithms converged as fast as the other algorithms when

estimating the sparse parameter vector w 

� 
1 while maintaining a

lower misadjustement error. The estimation of the non-sparse pa-

rameter vector w 

� 
2 

caused a moderate degradation of their perfor-

mance. As shown in Fig. 5 , their convergence speeds slowed down

compared to the other algorithms but they reached a smaller resid-

ual error. It is seen in Fig. 6 that M-VSS-RZA-LMS performed the

best. The estimation of w 

� 
3 confirms the good performance and

tracking capability of VP-ZA-LMS and VP-RZA-LMS in practice. Re-
ults in Fig. 7 shows that VP-ZA-LMS and VP-RZA-LMS set the step-

ize and the regularization parameter to large values in order to

nsure tracking and promote sparsity at the beginning of each esti-

ation phase. Then they gradually reduced these values to ensure

mall MSD. 

To conclude these experiments, it should be noted that adjust-

ng the hyperparameters of all the algorithms competing with VP-

A-LMS and VP-RZA-LMS was not a trivial task. On the contrary,

ur algorithms used the same hyperparameters for all the simula-

ions, initially set to typical values. 

.3. Computational complexity 

We summarize in Table 1 the computational complexity of all

he algorithms used in the experiments. We restrict our focus to

eal-valued identification problems. The computational complexity

s measured in terms of real additions, real multiplications, and

ign operations. Note that M-VSS-RZA-LMS requires evaluating the

rror function erf( · ) function at each iteration. As this can be done
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Fig. 8. Regularization parameters λ of (a) VP-ZA-LMS and (b) VP-RZA-LMS for time varying system identification with correlation coefficient α = 0 . 5 . 

Table 1 

Computational complexity of the competing algorithms. 

Algorithms # additions # multiplications # sign operations # num. integrations 

LMS 2 L 2 L + 1 

ZA-LMS 3 L 3 L + 1 L 

RZA-LMS 4 L 5 L + 1 L 

ZA-VSSLMS 3 L + 1 3 L + 5 L 

WZA-VSSLMS 4 L + 1 5 L + 5 L 

M-VSS-RZA-LMS 6 L + 1 8 L + 7 L 1 

VP-ZA-LMS 4 L + 12 5 L + 30 L 

VP-RZA-LMS 6 L + 11 9 L + 29 L 

Table 2 

Parameters used in Fig. 1 , to get the same initial convergence rate as the LMS. 

Algorithms μ | ρ λ | λ′ ε | ζ μmax μmin γ | δ α | β

LMS 0.01 

ZA-LMS 0.01 0.003 

RZA-LMS 0.01 0.0 0 0 05 0.0 0 02 

ZA-VSSLMS 0.0 0 08 2/(3 σ 2 
x · L ) 0.0 0 01 0.00212 0.95 

WZA-VSSLMS | 0.0 0 02 | 0.001 2/(3 σ 2 
x · L ) 0.0 0 01 0.0018 0.95 

M-VSS-RZA-LMS | 3 × 10 −7 0.995 0.05 0.01 | 0.0 0 0 01 | 1.3 

Table 3 

Parameters used in Fig. 1 , to get the same steady-state MSD as the LMS. 

Algorithms μ | ρ λ | λ′ ε | ζ μmax μmin γ | δ α | β

LMS 0.01 

ZA-LMS 0.0113 0.003 

RZA-LMS 0.013 0.0 0 0 05 0.0 0 02 

ZA-VSSLMS 0.0 0 08 2/(3 σ 2 
x · L ) 0.0 0 01 0.0055 0.95 

WZA-VSSLMS | 0.0 0 05 | 0.001 2/(3 σ 2 
x · L ) 0.0 0 01 0.0063 0.95 

M-VSS-RZA-LMS | 1 . 5 × 10 −5 0.995 0.05 0.0145 | 0.0 0 0 01 | 11 

Table 4 

Parameters used in Figs. 2 and 6 , to get the same initial convergence rate as the LMS. 

Algorithms μ | ρ λ | λ′ ε | ζ μmax μmin γ | δ α | β

LMS 0.01 

ZA-LMS 0.01 0.006 

RZA-LMS 0.01 0.0 0 0 08 0.0 0 02 

ZA-VSSLMS 0.0 0 08 2/(3 σ 2 
x · L ) 0.0 0 01 0.0028 0.95 

WZA-VSSLMS | 0.0 0 02 | 0.001 2/(3 σ 2 
x · L ) 0.0 0 01 0.0022 0.95 

M-VSS-RZA-LMS | 3 × 10 −7 0.995 0.05 0.01 | 0.0 0 0 01 | 1.3 

b  

i  

i  

Z  

Z

6

 

a  

B  
y numerical integration or using a lookup table, the correspond-

ng computational load is not detailed in Table 1 . It is observed

n Table 1 that the computational complexity of the proposed VP-

A-LMS and VP-RZA-LMS algorithms is of the same order as the

A-LMS and RZA-LMS algorithms. 
L  
. Conclusion 

In this paper, we introduced the VP-ZA-LMS and VP-RZA-LMS

lgorithms to address online sparse system identification problems.

ased on a stochastic model of the transient behavior of the ZA-

MS, we proposed to minimize the EMSE with respect to the step-
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Table 5 

Parameters used in Figs. 2 and 5 , to get the same steady-state MSD as the LMS. 

Algorithms μ | ρ λ | λ′ ε | ζ μmax μmin γ | δ α | β

LMS 0.01 

ZA-LMS 0.012 0.003 

RZA-LMS 0.0145 0.0 0 0 08 0.0 0 02 

ZA-VSSLMS 0.0 0 08 2/(3 σ 2 
x · L ) 0.0 0 01 0.0057 0.95 

WZA-VSSLMS | 0.0 0 041 | 0.001 2/(3 σ 2 
x · L ) 0.0 0 01 0.0065 0.95 

M-VSS-RZA-LMS | 1 . 75 × 10 −5 0.995 0.05 0.016 | 0.0 0 0 01 | 10.6 
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size and the regularization parameter simultaneously, at each it-

eration. This led to a convex optimization problem with a closed-

form solution. Simulation results demonstrated the effectiveness of

VP-ZA-LMS and VP-RZA-LMS algorithms over other existing vari-

able step-size ZA-LMS-type and RZA-LMS-type algorithms, without

requiring extra computational effort. Compared to the competing

algorithms, VP-ZA-LMS and VP-RZA-LMS depend on a few number

of hyperparameters that do not drastically affect the performance.

Considering the locations of zero-valued coefficients can be clus-

tered, a variable parameter algorithm of group ZA-LMS is further

derived and provided in report [22] . 

Appendix A. Proof of Lemma 1 

We have 

H = 

[
σ 2 

z tr { R x } + tr { Q 1 } tr { Q 5 } 
tr { Q 5 } tr { Q 2 } 

]
. (70)

It can be observed that H can be decomposed into two additive

components H 1 and H 2 such that 

H = H 1 + H 2 , (71)

with 

H 1 = 

[
tr { Q 1 } tr { Q 5 } 
tr { Q 5 } tr { Q 2 } 

]
(72)

and 

H 2 = 

[
σ 2 

z tr { R x } 0 

0 0 

]
. (73)

We now prove that matrix H 1 is positive semidefinite. Using the

definition of Q 1 , Q 2 and Q 5 in (14), (15) and (18) , H 1 can be writ-

ten as 

H 1 = E 

{[
tr { x n x � n ˜ w n ̃  w 

� 
n x n x 

� 
n } tr 

{
x n x 

� 
n ˜ w n sgn � { w 

� + 

˜ w n } 
}

tr 
{

x n x 
� 
n ˜ w n sgn � { w 

� + 

˜ w n } 
}

tr 
{

sgn { w 

� + 

˜ w n } sgn � { w 

� + 

˜ w n }} 
]}

. 

(74)

Using that tr { A B } = tr { B A } , we have 

H 1 = E 

{[
˜ w 

� 
n x n x 

� 
n x n x 

� 
n ˜ w n sgn � { w 

� + 

˜ w n } x n x � n ˜ w n 

sgn � { w 

� + 

˜ w n } x n x � n ˜ w n sgn � { w 

� + 

˜ w n } sgn { w 

� + 

˜ w n } 
]}

= E 

{
V n V 

� 
n 

}
, (75)

where 

 n = 

[
˜ w 

� 
n x n x 

� 
n 

sgn � { w 

� + 

˜ w n } 
]
. (76)

Matrix H 1 is thus positive semidefinite. Considering that the diag-

onal entries of H 2 are nonnegative, we conclude that H is positive

semidefinite. 

Appendix B. Parameters used for simulations 

The parameters used for LMS, ZA-LMS, RZA-LMS, ZA-VSSLMS,

WZA-VSSLMS, M-VSS-RZA-LMS algorithms in the simulations are
eported in Tables 2 –5 . Some pairs of columns, standing for dif-

erent parameters, are merged into a single column for com-

actness. The corresponding symbols can be distinguished by

he symbol “|”, standing for “or” in the Tables. The parameters

sed for VP-ZA-LMS and VP-RZA-LMS algorithms are provided

n Algorithm 1 . They remained unchanged for all the experi-

ents as we observed that they did not drastically affect the

erformance. 

ppendix C. Algorithms for complex-valued signals 

In the complex domain, the unknown system is characterized

y: 

 n = w 

� H x n + z n (77)

ith ( · ) H the conjugate transpose, and w 

� , x n , z n , y n ∈ C 

L . Consider

he regularized costs: 

 

o 
ZA = arg min 

w 

1 

2 

E 

{ 

| y n − w 

H x n | 2 
} 

+ λ‖ w ‖ 1 (78)

nd 

 

o 
RZA = arg min 

w 

1 

2 

E 

{ 

| y n − w 

H x n | 2 
} 

+ λ
L ∑ 

i =1 

log (1 + | w i | /ε) (79)

here ‖ w ‖ 1 = 

∑ L 
i =1 

√ 

Re { w i } 2 + Im { w i } 2 , with Re{ · } and Im{ · }

he real part and the imaginary part of its complex argument, re-

pectively. Using steepest descent method of complex-valued sig-

als [1,20,23] : 

 n +1 = w n − 2 μ [ ∇ w 

J( w n ) ] 
H 
, (80)

ith instantaneous approximation for statistics, we have: 

 n +1 = w n + μ x n e 
∗
n − ρ

(
βn ◦ s n 

)
(81)

here ◦ is the Hadamard product, ( · ) ∗ is the complex conjugate

perator, ρ = μλ, and e n = y n − w 

H 
n x n is the estimation error. In

81) , s n and βn are L × 1 vectors with j th entry given by: 

 n, j = 

{ w n, j 

‖ w n, j ‖ 1 when ‖ w n, j ‖ 

1 
� = 0 

0 when ‖ w n, j ‖ 

1 
= 0 

(82)

nd 

n, j = 

{
1 for ZA-LMS 

1 
‖ w n, j ‖ 1 + ε for RZA-LMS . 

(83)

t should be mentioned that in (81) the correction term associated

o regularization terms are calculated in an elementwise manner

ia the definition of complex gradient in [1] with using subgradi-

nts for non-differential points. 

Using assumptions A1 and A2 , and following a similar deriva-

ion as in (9)–(13), we have: 

 n +1 = K n + μ2 
(
σ 2 

z R x + Q 1 

)
+ ρ2 Q 2 − μ

(
Q 3 + Q 

H 
3 

)
− ρ

(
Q 4 + Q 

H 
4 

)
+ μρ

(
Q 5 + Q 

H 
5 

)
(84)
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[
 

[  

[  

 

ith 

 n = E 

{
˜ w n ̃  w 

H 
n 

}
(85) 

 1 = E 

{
x n x 

H 
n ˜ w n ̃  w 

H 
n x n x 

H 
n 

}
(86) 

 2 = E 

{ 

( βn ◦ s n ) · ( βn ◦ s n ) 
H 
} 

(87) 

 3 = E 

{
˜ w n ̃  w 

H 
n x n x 

H 
n 

}
(88) 

 4 = E 

{ 

˜ w n · ( βn ◦ s n ) 
H 
} 

(89) 

 5 = E 

{ 

x n x 
H 
n ˜ w n ( βn ◦ s n ) 

H 
} 

. (90) 

ased on the transient behavior model, we then minimize tr { K n +1 }
ith respect to parameters μ and ρ: 

 

μ� 
n , ρ

� 
n } = arg min 

μ,ρ
tr { K n } + μ2 a + ρ2 b − μ( p 1 + p ∗1 ) 

− ρ( p 2 + p ∗2 ) + μρ( c + c ∗) , (91) 

here: 

 = σ 2 
z tr { R x } + tr { Q 1 } (92) 

 = tr { Q 2 } (93) 

 = tr { Q 5 } (94) 

p 1 = tr { Q 3 } (95) 

p 2 = tr { Q 4 } . (96) 

t can be checked that coefficients a and b are real. The objective

unction can then be written as follows: 

n +1 = [ μρ] H [ μ ρ] � − [ p 1 + p ∗1 p 2 + p ∗2 ] [ μ ρ] � + ξn , (97)

ith 

 = 

⎡ 

⎣ 

a 
c + c ∗

2 

c + c ∗

2 

b 

⎤ 

⎦ (98) 

onsidering that H is a positive definite Hessian matrix, the opti-

al parameters are given by: 

 μ� 
n ρ

� 
n ] 

� = H 

−1 
[ 

p 1 + p ∗1 
2 

p 2 + p ∗2 
2 

] � 
, (99) 
amely, 

� 
n = 

b Re { p 1 } − Re { c} Re { p 2 } 
ab − Re { c} 2 (100) 

� 
n = 

a Re { p 2 } − Re { c} Re { p 1 } 
ab − Re { c} 2 . (101) 

pproximating the quantities a via a = σ 2 
z σ

2 
x L + (1 + L ) σ 2 

x ζn and

, c, p 1 , p 2 in the same manner as in the real-valued case com-

letes the algorithm. 
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