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ABSTRACT

In this work, a diffusion-type algorithm is proposed to solve
multitask estimation problems where each cluster of nodes
is interested in estimating its own optimum parameter vec-
tor in a distributed manner. The approach relies on minimiz-
ing a global mean-square error criterion regularized by a term
that promotes piecewise constant transitions in the parame-
ter vector entries estimated by neighboring clusters. We pro-
vide some results on the mean and mean-square-error conver-
gence. Simulations are conducted to illustrate the effective-
ness of the strategy.

Index Terms— Distributed optimization, diffusion adap-
tation, multitask learning, cooperation, sparse regularization.

1. INTRODUCTION

Consider a distributed adaptive estimation problem where a
connected network ofN nodes is employed to simultaneously
estimate a number of parameter vectors from noisy measure-
ments using in-network processing. Depending on the num-
ber of parameter vectors, we distinguish between two types of
networks. In a single-task network, all agents are interested
in estimating the same parameter vector. In a multitask net-
work, nodes are organized into clusters and agents within the
same cluster are interested in estimating a common parame-
ter vector (also called task). Different clusters will generally
have different (though related) tasks. Diffusion strategies for
single-task networks have been proposed and analyzed in the
literature rather extensively (see, e.g., [1–4] and the references
therein). These strategies are attractive since they are scal-
able, robust, and enable continuous learning and adaptation
in response to concept drifts.

In comparison, diffusion multi-task strategies have been
approached in two main ways. In a first scenario, no prior
information on possible relationships between the tasks is as-
sumed. In this case, it was argued in [5] that the diffusion
iterates will converge to a Pareto optimal solution when con-
fronted with multi-objective optimization problems consist-
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ing of a sum of individual costs with possibly different min-
imizers. In [6, 7], strategies are developed for selecting the
combination weights adaptively in order to enable automatic
network clustering and subsequent cooperation over the clus-
tered agents. In a second scenario, diffusion strategies are
derived by exploiting prior information about relationships
among the tasks. A couple of works have addressed varia-
tions of this scenario. For example, in [8, 9], it is assumed
that nodes are interested in estimating some parameters of
global and others of local interest. In [10], a global regular-
ized optimization problem is formulated where `2-norm co-
regularizers are added to the mean-square error criterion in
order to promote smoothness of the graph signal (which refers
to anN×1 block vector whose k-th block is the optimum pa-
rameter vector at node k).

In some applications, such as in cognitive radio [8, 9] and
remote sensing [10], it may happen that the optimum param-
eter vectors of neighboring clusters may have a large number
of similar or identical entries, and a small number of different
entries. It is therefore advantageous to develop a distributed
strategy that involves cooperation among adjacent clusters in
order to promote similarity between their tasks. This objec-
tive is the theme of this work.

Notation. We use normal font letters to denote scalars,
boldface lowercase letters to denote column vectors, and
boldface uppercase letters for matrices. The operator (·)>
denotes matrix transposition, the operator ⊗ refers to the
Kronecker product and col{·} stacks the column vectors en-
tries on top of each other. The set Nk denotes the neighbors
of node k, C(k) denotes the cluster to which node k belongs,
and Ci is the i-th cluster.

2. MULTITASK DIFFUSION ADAPTATION

2.1. Network model and problem formulation
We consider a connected network consisting of N nodes
grouped into Q clusters. At each time instant i, node k
observes a zero-mean scalar measurement dk(i) and a zero-
mean L× 1 regression vector xk(i) with positive covariance
matrixRx,k. The data are assumed to be related by the linear
model:

dk(i) = x
>
k (i)w

?
k + zk(i), (1)



wherew?
k is the L×1 unknown parameter vector (also called

task) sought by node k, and zk(i) is a zero-mean measure-
ment noise of variance σ2

z,k. The noise process is assumed
to be temporally white and spatially independent. Nodes in
the same cluster are interested in the same estimation task,
namely, w?

k = w?
Cq whenever node k belongs to cluster Cq .

A link between two nodes belonging to two different clusters
means that their tasks have a large number of similar compo-
nents and only a relatively small number of different com-
ponents. To promote such relationships between optimum
parameter vectors, appropriate sparsity-based co-regularizers
can be used. Several works exist in the literature for solving
sparse single-task estimation problems using diffusion strate-
gies [11–13]. We shall use the notation f(wC(k) −wC(`)) to
refer to the real-valued convex function used to promote the
sparsity of wC(k) −wC(`). Combining local mean-square er-
ror functions and the regularization functions, the multitask
estimation problem is formulated as the problem of seeking a
fully distributed solution for solving the following regularized
problem (P):

min
wC1

,...,wCQ

Jglob(wC1 , . . . ,wCQ)

=

N∑
k=1

E{
∣∣dk(i)− x>k (i)wC(k)|2}+

η

N∑
k=1

∑
`∈Nk\C(k)

ρk`f(wC(k) −wC(`)),

(2)

where η > 0 is the regularization strength used to enforce
sparsity, and ρk` ≥ 0 are weights for locally adjusting the
regularization strength. The notationNk\C(k) denotes the set
of neighboring nodes of k that are not in the same cluster as k.
Let us now describe the regularization functions considered in
this work. Since the `0-norm is non-convex, two alternative
convex regularization functions are considered. First, we use
the `1-norm, namely, f1(wC(k)−wC(`)) = ‖wC(k)−wC(`)‖1
whose subgradient vector with respect to wC(k) given wC(`)
is taken as:

∂wC(k)
f1 = sign(wC(k) −wC(`)), (3)

where the entries of the vector sign(w) are obtained by ap-
plying the following function to each entry of w:

sign([w]m) =

{
[w]m/|[w]m|, if [w]m 6= 0

0, otherwise.
(4)

The `1-regularizer is known to uniformly shrink all the com-
ponents of a vector and does not distinguish between zero and
non-zero elements [14, 15]. To address this imbalance, we
also consider a weighted formulation of the `1-norm regular-
ization designed to enhance the penalization of the non-zero
components of a vector [15]:

f2(wC(k) −wC(`)) =
L∑

m=1

αm|[wC(k) −wC(`)]m| (5)

where the αm are positive weights to be dynamically ad-
justed. To reduce the bias induced by the `1-norm and better
approximate the `0-norm, the weights αm are usually chosen
as αm(i) = 1/[ε+ |wC(k)(i− 1)−wC(`)(i− 1)]m|] at each
iteration i, with ε a small positive number to avoid division
by zero. In this case, we write:

∂wC(k)
f2 = diag

{
1

ε+ |[δwk,`]m|

}L
m=1

sign(δwk,`) (6)

where δwk,` refers to the difference wC(k) −wC(`).
We are interested in a distributed strategy for solving (2)

that relies only on in-network processing. For this reason, we
associate with the j-th cluster the regularized problem (Pj):

min
wCj

JCj (wCj ) =
∑
k∈Cj

E
{
|dk(i)− x>k (i)wCj |2

}
+

η
∑
k∈Cj

∑
`∈Nk\Cj

(ρk` + ρ`k)f(wCj −wC(`)).
(7)

Note that the cost functions in (P) and (Pj) have the same
subgradient vector with respect to wCj . In order that each
node can solve the problem autonomously and adaptively us-
ing only local interactions, we shall derive a distributed itera-
tive algorithm for solving (P) by considering (Pj) since both
cost functions have the same subgradient information.

2.2. Multitask diffusion with sparsity regularization
Proceeding as in [3, 16], it is possible to derive several diffu-
sion strategies for solving (Pj) and (P) in a fully distributed
and adaptive manner. In this work, we focus on the Adapt-
then-Combine (ATC) strategy. Based on the subgradient
method for non-differential convex functions, we arrive at the
following multitask diffusion algorithm for solving (P):

ψk(i+ 1)

= wk(i) + µk
∑

`∈Nk∩C(k)

c`k x`(i)[d`(i)− x>` (i)wk(i)]

− µkη
∑

`∈Nk\C(k)

1

2
(ρk` + ρ`k) ∂wk

f(wk(i)−w`(i))

wk(i+ 1) =
∑

`∈Nk∩C(k)

a`kψ`(i+ 1),

(8)
for k = 1, . . . , N , where wk(i) denotes the local estimate of
w?
k at node k and iteration i, µk is a positive step-size pa-

rameter and ∂wk
f is the subgradient of f with respect towk,

given w`. In the first step, which corresponds to the adap-
tation stage, the coefficients c`k are the weights that node k
assigns to information coming from each node ` of its cluster.
In the second step, that is, in the combination stage, node k
combines through the coefficients a`k the intermediate esti-
mates ψ`(i + 1) from its neighbors that belong to its cluster.



The non-negative coefficients a`k and c`k in (8) are required
to satisfy the following constraints:∑

k∈N`∩C(`)

c`k = 1, and c`k = 0 if k /∈ N` ∩ C(`), (9)

∑
`∈Nk∩C(k)

a`k = 1, and a`k = 0 if ` /∈ Nk ∩ C(k). (10)

Coefficients a`k and c`k are grouped into a left-stochastic ma-
trixA and a right-stochastic matrix C.

3. PERFORMANCE ANALYSIS

3.1. Error vector recursion
Letw(i),w? and w̃(i) denote the block weight estimate vec-
tor, the block optimum vector, and the block weight error vec-
tor, namely,

w(i) , col{w1(i), . . . ,wN (i)} (11)
w? , col{w?

1, . . . ,w
?
N} (12)

w̃(i) , w? −w(i). (13)

Using the linear data model (1), the error recursion for the
diffusion strategy (8) can be written in the following form:

w̃(i+ 1) = B(i)w̃(i)− g(i) + b(i), (14)

where

B(i) , A>(ILN −MRx(i)), (15)
g(i) , A>MC>col{xk(i)zk(i)}Nk=1, (16)
b(i) , ηA>M r(i), (17)

with A , A ⊗ IL, C , C ⊗ IL. Matrices M and Rx(i)
are N × N block diagonal with k-th block given by µkIL
and

∑
`∈Nk∩C(k) c`kx`(i)x

>
` (i), respectively. Let us denote

by pk` the quantity (ρk` + ρ`k)/2, and introduce the LN × 1
vector:

r(i) = col
{ ∑
`∈Nk\C(k)

pk` ∂wk
f(wk(i)−w`(i))

}N
k=1

. (18)

Recursion (14) can be used to examine the performance of the
algorithm in the mean and mean-square-error sense. Due to
space limitations, we only list the main results without show-
ing the proofs. The arguments are along the lines developed
in [3, 16] for single-task diffusion with proper adjustments to
handle the multitask scenario.

Assumption 1. The regression vectors xk(i) arise from a
zero-mean random process that is temporally white and spa-
tially independent.

Assumption 2. The step-sizes µk are sufficiently small
so that terms that depend on higher order powers of the step-
sizes can be ignored.

3.2. Mean behavior analysis

For any initial conditions, the multitask diffusion strategy (8)
asymptotically converges in the mean if the step-sizes satisfy:

0 < µk <
2

λmax(Rk)
, k = 1, . . . , N, (19)

where Rk ,
∑
`∈Nk∩C(k) c`kRx,` and λmax(·) denotes the

maximum eigenvalue of its matrix argument. The asymptotic
mean bias is given by

lim
i→∞

E{w̃(i)} = η(ILN−B)−1A>M lim
i→∞

E{r(i)}, (20)

where
B = E{B(i)} = A>(ILN −MR), (21)

with R denoting the N ×N block diagonal matrix whose k-
th block is Rk. Recall that the block maximum norm of an
N × 1 block vector x is defined as [3]:

‖x‖b,∞ = max
1≤k≤N

‖xk‖2 (22)

where xk is the k-th block entry. The block maximum norm
of the mean bias (20) can be bounded as follows:

lim
i→∞

‖E{w̃(i)}‖b,∞ ≤
ηµmaxrmax

1− ‖B‖b,∞
, (23)

where µmax is the largest step-size and rmax , maxi ‖r(i)‖b,∞.
Note that rmax is finite since ‖r(i)‖b,∞ is upper bounded by
max1≤k≤N

∑N
`=1 pk`‖∂wk

f(wk(i) − w`(i))‖2 and the Eu-
cledian norm of (3) and (6) is bounded by

√
L and

√
L
ε ,

respectively. Under condition (19), the induced block maxi-
mum norm of B is strictly less than 1.

3.3. Mean-square-error stability
To examine mean-square-error stability, we study the weighted
mean-square deviation E{‖w̃(i)‖2Σ}, where Σ is a positive
semi-definite matrix that we are free to choose. Let us denote
by σ the vectorized version of Σ. We obtain from (14) the
following recursion:

E{‖w̃(i+ 1)‖2σ} = E{‖w̃(i)‖2Fσ}+ [vec(G)]>σ + h(i),
(24)

where we use the notation ‖x‖2Σ and ‖x‖2σ interchangeably
to denote the same quantity x>Σx. The other terms in (24)
are given by:

G , A>MC>SCMA (25)
F , E{B>(i)⊗B>(i)} ≈ B> ⊗B> (26)

h(i) , η2 E{‖r(i)‖2MAΣA>M}+
2η E{r>(i)MAΣB w̃(i)}, (27)

where S is anN×N block diagonal matrix whose k-th block
is σ2

z,kRx,k. The approximation in (26) follows from As-
sumption 2 and requires sufficiently small step-sizes. For any
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Fig. 1. Experimental setup.

initial conditions, the multitask diffusion algorithm with spar-
sity based regularization (8) is mean-square stable if the error
recursion (14) is mean stable and the matrix F is stable. Once
convergence is achieved, then the variance of the weight error
vector w̃(i) satisfies the following relation in steady-state:

lim
i→∞

E{‖w̃(i+ 1)‖2(I−F)σ} = [vec(G)]>σ + h∞, (28)

where it can be argued that h∞ , limi→∞ h(i) exists.
Through a proper selection of the weighting matrix Σ or
vector σ, relation (28) allows us to derive several perfor-
mance metrics such as the mean-square deviation (MSD) for
network or nodes. For example, the network MSD given by
limi→∞

1
NE{‖w̃(i)‖2} is obtained for

σ =
1

N
(I −F)−1vec(INL). (29)

4. SIMULATION RESULTS

We considered a network consisting of 50 agents with the
topology shown in Fig. 1(a). The regression vectors were
zero-mean Gaussian distributed with covariance Rx,k =
σ2
x,kIL. The noises zk(i) were zero-mean i.i.d. Gaussian

random variables, independent of any other signal, with vari-
ance σ2

z,k. The variances σ2
x,k and σ2

z,k are shown in Fig. 2(b).
We ran the proposed algorithm by setting c`k = |N`∩C(`)|−1
for k ∈ N`∩C(`) and a`k = |Nk∩C(k)|−1 for ` ∈ Nk∩C(k).
The regularization weights were set to ρk` = |Nk \ C(k)|−1
for ` ∈ Nk\C(k). We used a constant step-size µk = 0.03 for
all k, a sparsity strength η = 0.03 for the `1-regularization,
η = 0.015 for the reweighted `1-regularization with ε = 0.1.
The results were averaged over 100 Monte-Carlo runs.

The optimum vectors were set tow?
Cj = w0+δCj at each

cluster withw0 = [−2−1−1 03 −2 0 1 03 1 2 1]
>. First, we

set δC1 to 015, δC2 to [2 011 − 1 02]
>, δC3 to [2 05 2 08]

>,
δC4 to [2 1 04 2 05 − 1 02]

> and δC5 to [0 1 04 2 08]
>.

Observe that at most 4 entries over 15 differed between clus-
ters. After 750 iterations, we set δC2 to [2 1 1 2 1 1 2 08],
δC3 to [3 2 2 3 2 2 3 08]

>, δC4 to [4 3 3 4 3 3 4 08]
> and

δC5 to [5 4 4 5 4 4 5 08]
>. In this way, 7 entries over 15

differed between clusters. We compared 6 algorithms: the
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Fig. 2. MSD learning curves.

non-cooperative LMS algorithm, the so-called spatially regu-
larized LMS algorithm [17] (A = C = I) with `1-norm and
reweighted `1-norm, the multitask diffusion LMS algorithm
obtained from (8) by setting η = 0, and the multitask diffu-
sion LMS algorithm with `1 and reweighted `1-norm regular-
ization.

As shown in Fig. 2(a), when the optimums share a suffi-
cient number of common entries, the multitask strategies with
`1-norm and reweighted `1-norm regularization enhance the
network MSD performance. When the number of common
entries decreases, sparsity-promoting regularizers become
less efficient and only the reweighted `1-norm regularizer
allows to improve the performance. In Fig. 2(b), we show
the MSD learning curves for the common parameter vector
entries among clusters. Due to cooperation among clusters,
we observe that the multitask approach makes the estima-
tion of these entries more accurate. In Fig. 2(c), we report
the learning curves over instants [0 750] for entries that dif-
fer among clusters. We note that the reweighted `1-norm
algorithm outperforms the other algorithms.

5. CONCLUSION

In this work, we proposed a diffusion-type algorithm for solv-
ing problems that require a simultaneous estimation of mul-
tiple parameter vectors with a prior information on similar-
ities between neighboring clusters. Two different sparsity-
based regularization terms were used, the `1-norm and the
reweighted `1-norm. We examined conditions for stability in
the mean and mean-square sense. Simulations results were
presented to illustrate the benefit of multitask learning with
similarity measures.
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