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ABSTRACT 
Designing time-frequency detectors from training data is 

potentially of great benefit when few a priori information on the 
non stationary signal to be detected is available. However, 
achieving good performance with data-driven detectors requires 
matching their complexity to the available amount of training 
samples: receivers with a too large number of adjustable 
parameters often exhibit poor generalization performance 
whereas those with an insufficient complexity cannot learn all 
the information available in the set of training data. In this 
paper, we present two methods which provide powerful tools for 
tuning the complexity of time-frequency detectors and 
improving their performance. These procedures may offer an 
helpful support for designing efficient detectors from small 
training sets, in applications of current interest such as 
biomedical engineering and complex systems monitoring. 

1. INTRODUCTION 
Cohen's class time-frequency (TF) representations 

are potentially useful for detection in applications of 
current interest such as microemboli diagnosis [ 13, or 
sleep EEG analysis [2], due to the need for dealing 
with non-stationary signals. Most of the TF based 
receivers which were proposed are linear structures 
operating in the TF domain, and are merely 
equivalent to quadratic detectors usually defined in 
the time domain. In [3], Sayeed and Jones also 
proposed a promising TF-based quadratic theory: 
they identify several scenarios in which detectors are 
optimum and exploit the structure of the 
representations. Recently, these authors have 
extended the scope of their theory to generalized 
joint signal representations [4]. 

All these approaches require prior knowledge of 
the event to be detected whereas phenomena are 
complex and poorly understood in many 
applications. In this context, several authors 
proposed to design TF detectors directly from 
labeled training data [2, 5-81. Nevertheless, it is well 
known in Pattern Recognition that data-driven 

receivers often have a large bias, particularly when 
the number of training samples is small against the 
dimension of data. This experimental evidence has 
been theoretically studied by Vapnik and 
Chervonenkis, who exhibited links between the 
generalization performances of receivers, their 
complexity, and the size of the training set [9]. 

In this paper, we present two methods based on 
the Structural Risk Minimization (SRM) principle 
proposed by Vapnik [lo]. In both cases, the strategy 
consists in a reduction of the effective dimension of 
the detector, which can yield a substantial 
improvement in its performance. The paper is 
organized as follows. First, we briefly describe an 
efficient method of designing TF-based detectors 
from training data. Next, we discuss the issue of 
obtaining reduced-bias TF-based receivers. Then, 
two methods which are reminiscent of procedures 
applied after neural networks training are considered: 
Finally, an example illustrates the efficiency of these 
approaches. 

2. DATA-DRIVEN TIME-FREQUENCY 
DETECTORS 

It is shown in [3] that linear TF-based detectors 
are optimal for a variety of composite hypothesis 
testing scenarios. However, we will focus on the 
hypothesis testing problem (1) because the scope of 
our approach can easily be extended, using the 
procedure proposed in [7]: 

if A(&; v) =yT& L q { else H,, 
where 

(1) then HI 
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W, denotes the Wigner-Ville distribution of the 
discrete-time observation x over the interval [tl, b]. 
The bi-dimensional function v is a TF reference to be 
determined using the a priori knowledge of some 
observations, conditionally to Ho and HI. 

The design of a detector from training data 
consists in finding the optimum (v ; q) in the sense 
of a pre-selected criterion and for a given data set. In 
[2, 51, it is shown that the maximization of any 
scatter criterion f, depending only on the lst and 2nd 
order moments of h (Fisher, SNR, ...) conditionally 
to €b and HI, leads us to the solution l7, which 
satisfies: 

[ a 0  +( l - a )Z , ]Va  =(%-%I)), (3) 

where and Ci respectively denote the lst and 2nd 
order moments of X, conditionally to Hi. It can be 
shown that the parameter a is a member of [0, 13 and 
only depends on the criterion f. 

In Eq. (3), the effect of the criterion f appears 
only in a. As a consequence, one can optimize this 
parameter in order to minimize an estimation of the 
probability of error E. The resulting receiver 
obviously offers a better performance than detectors 
determined via the maximization of the S N R  and of 
the Fisher criterion, which correspond to a= 1 and 
a = P{Ho}, respectively [2, 111. As a conclusion, this 
method allows to determine the optimum receiver in 
the sense of the best criterion f depending only on 
the 1'' and 2nd order moments of the statistic h. This 
criterion is never set up. 

3. OPTIMIZATION OF TIME- 
FREQUENCY BASED DETECTION 

STRUCTURES 

3.1. Complexity regularization 
Achieving good performances with detectors 

designed from training samples requires matching 
their complexity to the amount of available data: 
receivers with a too large number of adjustable 
parameters may exhibit poor generalization 
performances, whereas those with an insufficient 
complexity may not be able to learn the training 
examples. In between, there is an optimal complexity 
which yields the lowest probability of error E for a 
given size of the training set. In this paper, the 
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approach that we present consists in jointly 
optimizing a and reaching this compromise with the 
complexity of the detector, in order to minimize an 
estimation of E. Given a, we propose to control the 
complexity of Ya as follows. 

3.2. Principle of Optimal Brain Damage (OBD) 
One common way of reducing the complexity of 

the receiver y, is to set some of its components to 
zero and thereby reduce the number of free 
parameters. From Eq. (3), we define the best 
candidates for pruning as those which minimize the 
increase of the Mean Square Error (MSE) defined as 
follows: 

(4) 
where 
X,=aE, ,+( l -a )X,  and M=M,-M,. 

Since the decrease in complexity should be 
achieved at the smallest possible expense in MSE 
increase, it can be shown that the pruning process 
must be performed in a basis of normalized 
eigenvectors <f, of E, [ l l ] .  Note that C, can be 
diagonalized because this matrix is symmetric. In 
this basis, the increase AMSEi,, due to setting the i" 
component of ya to zero is of the form: 

AMSEi,, = [pi Vi,, ]z (5 )  
where 

In Eq. (5), pi (res. Qi)  denotes the i" eigenvalue 
(res. eigenvector) of E,, and y a  satisfies Eq. (3). 

Consequently, the components of x, which 
correspond to the smallest increases AMSE, are 
good candidates for elimination. This approach is 
reminiscent of Optimal Brain Damage, a weight 
pruning procedure commonly applied after neural 
networks training [ 121. 

Vi,, = (gi )* 1, * 

3.3. Principle of Weight Decay (WD) 
The complexity of the receiver can also be 

controlled through an additional penalty term to be 
simultaneously minimized with MSE,. In [lo], 
Vapnik suggest the minimization of the new cost 
function MSE, + y iWaIl2. In the case of linear 
detectors, this operation is equivalent to pull the 



Fig.1: W of the signal s Fig.2: Biased detector (1 62 parameters) 
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components K,, to zero predominantly along the 
principal directions of E, associated with small 
eigenvalues since we have, in the basis of 
eigenvectors CD: 

-I v., a = P;/[P~ + Y] V i , a  9 (6) 

where pi ,  <Di and ya are defined as in Eq. (5). 

As a conclusion, the effect of the penalty term 
lWa1I2 can be compared to that of a pruning 
procedure, such as the one introduced in Section 3.2. 

4. EXPERIMENTAL RESULTS 
Several experiments of blind detector design 

from training data were conducted in order to 
illustrate the efficiency of our approach. In the case 
of detecting the presence or absence of 
s(k) = sin(0.44nk + @x(l - cos(2nW15)), k E [0, 151, 
in zero mean white Gaussian noise (RSB = -6 dB), 
with phase 8 a uniform random variable, the optimal 
receiver is known to be to the inner product of the 
Wigner-Ville distribution of the signal s (Fig. 1) with 
that of the observation x. The design of TF-based 
detectors was conducted with 260 realizations of the 
hypotheses HO and HI, in such way that the training 
set was sparse compared with the problem dimension 
(162+ 1). The TF reference resulting from the direct 
resolution of Eq. (3) is shown in Fig.2: the presence 
of the signal component is not very apparent because 

few training examples were available. The methods 
proposed in Sections 3.2 and 3.3 were used to design 
reduced-bias TF-based detectors. The obtained 
references closely resembles the Wigner-Ville 
representation of s, as shown in Figs. 3 and 4. 

The generalization performance of these 
detectors were estimated by applying them to 2000 
realizations each of signal present and signal absent. 
Using the quadrature matched filter, which is the 
optimal detector, the generalization error was 
20.90%. The performance of the receiver resulting 
from the resolution of Eq.(3) was 24.10%. This 
result must be compared to 21.87% (res. 20.95%) 
obtained with the reduced-bias detector, when using 
the Optimal Brain Damage (res. Weight Decay) 
procedure. 

As a conclusion, these experiments clearly 
demonstrate the ability of the proposed methods to 
closely approach the performances of the optimal 
quadratic detector, even if the size of the training set 
is relatively small compared to the problem 
dimension. 

5. CONCLUSION 
In this paper, we have presented a method of 

designing time-frequency detectors which requires 
no prior knowledge of the event to be detected. The 
receivers are directly derived from training data and 
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theoretically perform better than those obtained via 
the maximization of the Fisher criterion or the signal 
to noise ratio. However, it is well known in Pattern 
Recognition that the performance of classifiers 
strongly depends on their complexity and on the 
number of available training data. Then, we have 
also introduced two procedures which provide 
powerful tools for tuning the complexity of data- 
driven time-frequency detectors and improving their 
performance. Moreover, they are computationally 
more efficient than the approach proposed in [13]. 
Finally, we have successfully experimented these 
methods on simulated data. 
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