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Abstract 

In an attempt to implement an ECG model that does 
not require active participation from the individual 
himself, contactless sensors are playing a relevant role in 
recent research. However, extremely high noise limited 
contactless applications. In this work we propose a 
method to make possible the morphological analysis 
based on single lead raw contactless capacitive ECG 
records. With respect to signal processing required, 
segmentation based on statistical parameters to discard 
invalid sections was applied, including artifacts removal 
filter, R-peak detection based on discrete derivative 
method, correlation analysis to discard ectopic beats, and 
smoothing statistical filter, to finally depict a sound 
noise-less beat template. The best configuration was 
proven to be placing the electrodes on the back (84% 
beats detected). Conversely, the best correlations among 
QRS complexes were obtained with wrist signals (71%, 
compared to 63% and 62% in forearm and wrist, 
respectively). A significant high number of beats are 
required for beat-template development, as well as for 
morphological analysis. 

1. Introduction

Heart signal is probably the most deeply and 
frequently analyzed biological recording. Two devices are 
normally used to record heart activity: the 
Electrocardiogram (ECG), which is the most frequently 
used for standard clinical practice, and the 24h-Holter 
monitor o recorder, which is used in a further step of 
clinical study for long term monitoring (24 hours, 7 or 21 
days). In both cases, the interface between the body and 

the registry device is a relevant element, limiting the 
quality of the final signal for clinical evaluation. 
Important efforts have been devoted in the last decades to 
improve the electrodes and the conductive capabilities by 
incorporating gels, and using even disposable electrodes 
that combine high technology conductive materials 
perfectly bundled to the electrode, with the economics of 
scale to allow single use. The inconvenience of using 
uncomfortable gels (the first case) or extremely adherent 
elements (disposable electrodes), prevent from using this 
kind of sensors daily control system for standard clinical 
follow up. Aiming to overcome this last limitation, new 
electrodes are being developed and tested, and recent 
articles suggest that currently the technology is ready for 
new paradigm, and even contactless. However, few of 
these previous works focus on morphological analysis 
due to the important noise component [1–5]. In this paper 
we present our work on how to denoise contactless 
capacitive sensors acquired signals, and how 
morphological analysis is then possible. 

For this purpose, we used off-the-shelf commercial 
PlesseyTM electrodes (capacitive sensors), where no 
special attention was paid with regard to the 
electromagnetic environment in order to simulate the 
usual domestic space (such as electricity noise, TV and 
other devices’ electromagnetic interference). Different 
recordings in alternative conditions were analyzed based 
in two factors: position of the sensor in the body and 
measurement through clothes or directly to the skin. 
Special remark should be stated here with regard of the 
good quality of the signal when direct contact with the 
skin was applied (no conductive gel), where a clear signal 
was obtained when direct clinical interpretation was 
possible, with the only downfall of the level of the signal 
that required a significant amplification. In particular, a 
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measurement performed with direct contact on the front 
wrist, provided a good signal, although it was not the case 
for the same position but over the back side of the body, 
where significant noise was present. In contactless 
recordings, signals were even weakened from previous, 
and noise contribution fully hidden direct visual 
inspection of the QRS shape and hence, only under 
certain circumstances R peaks were clearly recognized. 
Therefore, the main goal of this work was to determine 
the appropriate signal processing for the obtained signals, 
even in those cases where seem to be not visible at all, to 
allow clinical visual morphological inspection. 

The next Section explains in detail the applied method 
to extract the QRS shape. This process starts with 
standard preprocessing, then a signal continuity detector 
is applied to identify segments with valid information, 
and finally R-peak and statistical denoising is applied. 

 
2.  Material and methods 

This section comprises the information related to the 
physical elements used (device, sensors, and database). 

Signals were registered using the digital output of a 
control interface box and capacitive electrodes from 
PlesseyTM. These sensors are non-contact electrometers, 
meaning that there is no direct DC path from the outside 
world to the sensor input, a condition that is somewhat 
analogous to the gate electrode of an MOS transistor. The 
sensor is protected by a capping layer of dielectric 
material to ensure that the electrode is isolated from the 
body being measured. 

Database. An important set of recording completed the 
database used with more than 100 signals. Multiple 
sensor locations were evaluated to select the best 
configuration, both for user convenience and signal 
quality. The recordings included, not only a single 
contactless configuration with different clothes (nylon, 
cotton, wool and polyester), but also the direct-contact 
with the skin. Signals were registered in the Hospital 
Universitario Virgen de la Arrixaca of Murcia under 
clinical supervision, to enhance accuracy and maximizing 
the number of isopotential body lines being crossed. 

Processing. MatLabTM under windows environment 
was used for processing, measurement, and representation 
of the results. 

 
2.1. Preprocessing 

Initial preprocessing and signal conditioning are 
usually required for any processing method to be applied, 
especially for non-synthetically obtained records. For the 
case where no direct contact with the skin is applied, 
noise level can even be higher than the signal itself. 
Applied preprocessing included baseline wander and DC 
component removal, power supply notch filtering, and 

artifacts and other undesired high frequencies riddance. 
As an example of the signals recorded through this 
contactless procedure, Figure 1, shows an example 
corresponding to a wrist through cotton-clothes. 

DC and baseline wandering. According to standard 
ECG detection papers [6, 7], low frequency signals may 
modulate ECG-recordings. This modulation can be seen 
as a trend in the main signal. For removing this trend, 
spline model was applied over one second window with 
50% overlap. Generated trend signals were subsequently 
removed to the existing recording. This process was 
applied individually to every lead (a single lead for the 
contactless Holter, and 12 leads for the standard ECG). 

High frequencies filtering. Typical ECG signals 
present frequency components mostly below 150Hz. This 
means that in order to preserve valuable signal 
waveforms, this range should be kept for clinical 
morphology analysis. As a consequence, a 256 order, 150 
Hz low pass filter was applied. The order was selected to 
get a good performance for the experiments based on 
visual inspection of results in time and frequency 
domains. 

Power interference notch filtering. Standard Notch 
filtering was applied to remove power interference 
fundamental components and harmonics. For the 
electrode locations under analysis, the notch filter was 
adjusted for 50, 100, and 150 Hz removal. Note that no 
further harmonic needed to be filtered because a previous 
150 Hz low pass filter was applied. 

 
2.2. Beat detection 

The beat detection algorithm was developed in two 
stages. A first step identifies whether ECG signal is 
present, discriminating among segments with and without 
ECG, and a second process to identifies the main peak of 
the QRS. 

Segment discrimination. A simple algorithm for 
detecting the presence/absence of ECG signals was 
developed.  

 
Figure 1. Example of recorded contactless signal. 
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This analysis allowed us to avoid useless processing, 
and reduced false detections in sections without any trace 
of real signal. According to our results, the Standard 
Deviation (SD) has proven to be, a simple but powerful 
discriminator of the presence of the effective ECG signal. 
Several analysis and benchmarks were compared, both 
with real signals and recordings far from the human body, 
as well as for different Segments Lengths (SL), and SD 
thresholds. Free parameters tuning was required based on 
existing registries, and accordingly, an empirical 
threshold for SD and optimal SL was selected. 

Main peak detector. For the RR detection, an specific 
procedure was followed. The Green method discrete 
derivative [8] was used to detect R-peaks. The process 
was developed as follows: (a) discrete derivative was 
calculated for every lead; (b) all leads were multiplied to 
each other, hence amplifying the peak detection effect as 
the number of available lead increased; (c) a dynamic 
threshold was selected depending on the available number 
of leads and level of the signal. Every beat length could 
usually be measured between any of the different peaks, 
corresponding each of them to existing edges of the QRS 
waves. For that reason, all peaks corresponding to one 
single beat should be consolidated into one individual 
main-peak. All peaks inside a certain window were 
shielded behind the main peak. It is important to realize at 
this point that main-peak should not necessary be R-peak, 
and could also be an S-peak instead. A later processing 
can eventually detect any wave of the QRS complex. 

RR interval. Detection of R-peak was calculated as the 
first peak under the QRS window defined previously. 
This step may not be always relevant, because the SS-
interval it is as stable as the RR-interval as far as heart 
rate is concerned. However, in those cases where 
magnitudes of both waves are comparable (R and S), the 
main-peak detector may not be identified from the same 
wave on every beat.  

 

 
Figure 2. Beat template for morphological analysis. 
 

For that reason, fist peak detection inside the QRS 
window was required. RR interval is readily calculated as 
a difference between RR peaks, and heart rate was 
defined as the median of all RR intervals of the selected 
section. 
 
2.3. QRS-wave conditioning 

Once the R-peaks were detected, statistical signal 
filtering was performed. To accomplish this step, and by 
taking as a reference the R-peak, all peaks were 
individually treated and processed. 

All beats were cross correlated to each other to identify 
relevant artifacts/noise still present at this stage, as well 
as other sources of morphological irregularities that may 
interfere to create a template beat, as those signals are not 
supposed to be part of a standard morphological view of 
the signal. Beat template was created averaging only well 
correlated beats (index over 0.5), yielding a statistically 
consistent ECG denoising. All other beats not presenting 
a significant correlations index were not considered for 
this purpose. Note that this threshold was much lower 
than the one used for direct contact ECG. 

This ECG template is suitable for morphological 
analysis to evaluate diagnostic risk indexes, which is the 
main goal of the project supporting this work. 

 
3. Experiments and results 

Over one hundred signals of different lengths were 
processed by following the method described in the 
previous section. Preprocessing of the signal (detrend, 
baseline wander, and power interference denoising) 
effectively removed high noise components, even higher 
that the signal itself. Figure 3 shows an example of the 
resulting signal after notch filtering. Bearing in mind the 
signal weakness on contactless monitoring, a prior signal 
discriminator is required to avoid useless processing 
efforts and alarms. 

 
Figure 3.  After notch filtering: signal and spectrum. 
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Figure 4. Segmentation and valid information detection. 
Top: signal. Bottom: segment discriminator where lower 
values correspond to valid information signal detected 

 
Table 1. Detected beats and Correlations. 

 
Position Detected beats Correlation 
Wrist 70±7 % 71±34 % 
Forearm 80±16 % 63±25 % 
Back 84±14 % 62±11 % 

 
A simple module was developed based on the SD over 

one second interval. It was empirically selected a 
threshold of 0,015. An example of the discriminator 
output is shown in Figure 4. 

Standard beat detector, based on Green Method, and 
beat template conformation, based on statistical 
denoising, allowed final clinical evaluation with visual 
morphological information. Unequal results were 
obtained depending on sensor locations. Best outcome 
was obtained in terms of beats detected from electrodes 
located on the back, while best correlation among beats 
(improved morphological analysis) appeared when 
sensors were located on the wrist. Table 1 summarizes the 
results. 
 
4. Discussion and conclusions 

It is possible to use contactless sensors for clinical 
morphological analysis, and for the creation of diagnostic 
risk indexes, that could eventually trigger further 
evaluations. This result opens new frontiers in terms of 
new applications for monitoring cardiac activity, 
especially outside clinical environments. 

It should be discussed here that the developed beat 
template lacks from representation of individual beat 
abnormalities, as it is built using only beats with 
significant correlation to avoid the undesirable artifacts. 
This limited the functionalities of this technique for 
clinical evaluation, and so it could not fully replace 
standard Holter functionalities. Further work and analysis 

on the free parameters tuning, based on a larger and more 
complete database of registries, will improve the 
generalization capability of the system developed. This 
additional effort should include a wider outlook in terms 
of diagnostic patterns, and formally learning techniques 
could be applied for enhance statistical significance and 
value of the proposed model. 
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