
Towards a Distributed TCP Improvement through
Individual Contention Control in Wireless Networks

Hengheng Xie1, Azzedine Boukerche1, Robson De Grande1, Fei Richard Yu2
1PARADISE Research Lab,

School of Electrical Engineering and Computer Science, University of Ottawa, Canada
2School of Information Technology, Carleton University

Abstract—TCP suffers degradation in wireless networks, which
is caused by the improper, static definitions on the lower layers.
In order to improve the TCP performance in wireless networks,
the strategy of the lower layer should be reconsidered. In this
paper, the TCP transmission is flattened in order to combine the
TCP segment transmission and TCP Acknowledgement (ACK)
transmission into one transmission. The performance of TCP is
also analyzed, in order to find out the corresponding parameters
affecting the TCP throughput. Based on the analysis, contention
window size shows as one of the parameters that greatly affects
the TCP performance. A discrete-time Markov decision process
is adopted in order to solve the TCP throughput maximization.
Based on the analysis, a TCP-distributed algorithm is proposed.
Several simulations are conducted to verify the improvements of
TCP-distributed by comparing both TCP Reno and TCP Vegas.
Simulation results show that TCP-distributed can perform better
than the two TCP variants, and it also limits the delay in an
acceptable range.

I. INTRODUCTION

Due to its increasing popularity, wireless networks have
been extensively used as the principal mean for most of the
current applications. However, wireless networks present some
differences when compared with wired networks, causing
communication issues to applications and protocols. Trans-
missionControl Protocol (TCP) [1] is one of the protocols
which is popular in wired networks, but it suffers considerable
performance degradation in wireless networks. Congestion
avoidance is an important feature of TCP. Each packet loss
leads to the decrement of the congestion window size in
TCP congestion mechanism, no matter the cause: time out
or duplicate acknowledgements.This assumption is correct
only in the stable network environment where packet loss on
the lower layer is rare, such as wired networks. However,
the packet loss over the wireless networks is mainly due to
contention, fading and interference and not on congestion, as
identified in recent works [2].

Because of the degradation of TCP in wireless networks,
most researchers recently focus on the optimization of the
congestion control mechanism [3], [2], [4], [5], [6], [7]. The
main focus of TCP improvement may lay on the queuing
management, delay acknowledgement, congestion window ad-
justment, or packet loss cause identification. These approaches
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successfully improve the TCP performance in some cases.
Many observations also indicate that bursty traffic caused by
congestion control mechanisms degrades TCP performance
[8]. Some other researches on TCP pacing are mainly centred
on the transport layer [9], [10], [11]. However, the improve-
ment in TCP is limited, because the congestion avoidance
mechanism of TCP is easily interrupted by the unstable con-
dition of wireless networks. TCP is still unable to confirm the
actual cause of segment loss because the lower layer is hidden
from TCP. Besides modifying the TCP, other approaches
should be adopted to improve the performance of TCP. Besides
the improvement on TCP, other researchers attempt to optimize
the TCP performance through a cross-layer technique [12],
[13], [14], [15], [16], [17]. Since observations support the
notion that contention is the main reason for TCP segment
loss on wireless network [2], contention avoidance eventually
increases TCP performance.

In this paper, a TCP-distributed solution is proposed, which
sets the corresponding contention window size for each node
along the TCP transmission path. The corresponding con-
tention window size is calculated based on the analysis on the
TCP throughput. By combining the TCP segment transmission
and TCP ACK transmission in to one single analysis path, the
analysis of the TCP throughput can be evaluated in a simple
way. A discrete-time Markov decision process is adopted
to solve the TCP throughput maximization. Based on the
analysis, each node calculates it own contention window size
based on the information from one-hop neighbours. Verifi-
cation simulations are conducted to verify the performance
improvement of TCP-distributed.

The remainder of the paper is organized as follows. Section
II demonstrates TCP performance estimation, RTT estimation,
and the packet loss probability estimation. Section III discusses
discrete-time Markov Decision Process to solve the maximiza-
tion problem. Section IV describes selected simulations in
order to emphasize the performance of our proposed system.
Finally, Section V summarizes the contribution of this paper
and present the future work of our research.

II. TCP PERFORMANCE ESTIMATION

TCP suffers degradation in wireless networks, mainly
caused by TCP ignoring the mechanisms from the lower layer.
In order to improve the performance of TCP, such mechanisms



from the lower layer should select the most appropriate
parameter values. Consequently, the TCP performance should
be analyzed carefully to determine the parameter set affecting
it. There are several implementations of TCP, and the imple-
mentation selected in this research is the TCP Reno, which is
one of the most popular TCP variants. A throughput model
of TCP Reno has been proposed [18] as shown in Equation
1 and Equation 2. In these equations, E[RTT ] denotes the
mean number of the Round Trip Time (RTT). b denotes the
number of segments each ACK has acknowledged, which is
assumed to be 1 in this work. T0 denotes the initial timeout, p
denotes the TCP segment loss probability, and Wmax denotes
the maximum congestion window size. In the mathematical
model of TCP Reno, it can be determined that the parameters
that represent the effect on the TCP throughput are the RTT
and p. Both RTT and p are parameters still observed in TCP.
To further investigate the effect of the parameters in the lower
layer, both RTT and p should be analyzed.
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TCP Vegas is another recent popular TCP variant. A
throughput model for TCP Vegas has been defined [19], and
its throughput estimate is presented in Equation 3, in which n
denotes the expected number of consecutive Loss Free Periods
(LFP) that occur between one slow start (SS) and another slow
start period. Equation 4 presents the calculation of NSS2TO, in
which W0 denotes the average congestion window size during
a stable backlog state, and TTO0 denotes the average duration
of the rst TO in a TO series. DTO is defined in Equation
5. Based on the model, the factors of the throughput of TCP
Vegas are segment loss probability and RTT, which are the
same as that of TCP Reno.
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A normal TCP transmission is presented in the Figure 1.
A TCP segment will be forwarded along the selected path
hop by hop. We assume that the routing protocol for our

research is the Ad hoc On-Demand Distance Vector (AODV).
Therefore, the selected path for the Acknowledgement (ACK)
is the reverse path of the path for the TCP segment. We also
assume that fragmentation of the TCP segment is disabled.
Therefore, there is only one frame for each TCP segment. Until
it reach the destination, an ACK is sent from the destination
node to the source node following the reversed path hop by
hop. Any failure on both TCP segment transmissions or ACK
transmissions causes the retransmission of the TCP segment
from the source node. Therefore, both the path of the TCP
segment transmissions and the path of the ACK transmissions
should be measured.

TCP Segment TCP Segment TCP Segment TCP Segment

ACK ACK ACK ACK

Fig. 1. Normal TCP transmission along a selected path

The TCP transmission is flatted to one transmission path
as it is shown in Figure 2. The transmission path is extended
by the reverse path of ACK transmission. The TCP segment
transmissions and ACK transmissions are considered in one
combined path. In this case, TCP segment transmission and
ACK transmission can be analysed as one transmission. Any
transmission failure will cause the retransmission from the
source node, node 1. Along this combined path, different
requirements are needed at different parts of the path, in order
to improve TCP performance. At the first part of the combined
path, fast retransmission is required when transmission failure
occurs, and the packet loss rate is not a concern. The reason
is that the cost of the retransmission is still low when the
transmission failure is close to the source node. A fast retrans-
mission can overwhelm the effect of the high packet loss rate
in this case. At the last part of the combined path, a low packet
loss rate is required because the cost of the retransmission is
very high.

From the analysis, it can be seen that the transmissions at
the first part of the combined path are mainly TCP segment
transmissions, and the transmission at the last part of the
combined path are mainly ACK transmissions. Therefore, the
value of the parameters for TCP segment transmissions and
the ACK transmissions should be different. This means each
node along the path should have two set of parameters: one
is for the TCP segment transmission, and the other one is for
the ACK transmission in the reverse path. The estimation of
RTT and p are discussed in the following sections, and the
parameters on lower layer, which affects the RTT and p, are
analysed [20].

A. RTT Estimation

In this section, the mean number of RTT is discussed. As
shown in Figure 2, the average RTT of a packet transmission
along the path is the accumulated transmission time along the
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Fig. 2. Flattened TCP transmission along a selected path

combined path. The estimated time of the transmission of each
link, E[Tdata], can be analysed by the following equations.
E[tq] denotes the estimated time to wait in the queue of a
packet. E[tdata] stands for the transmission time of a packet
over the physical layer, which can be simply calculated from
Equation 7. Ldata represents the size of the packet, and r
denotes the transmission rate. It is worthy noting that the size
of the TCP segment is larger than the size of an ACK. E[tLLD]
stands for the link layer delay of a TCP segment in the current
node.

E[Tdata] = E[tq] + E[tdata] + E[tLLD] (6)

E[tdata] =
Ldata

r
(7)

The delay of the link layer is mainly caused by the delay of
the RTS/CTS mechanism, the delay of packet retransmissions
and the transmission time of the packet. Lrts

r and Lcts

r
denote the transmission time of RTS and CTS respectively.
LACKLL

r represents the transmission time of the link layer
ACK. DelayLL stands for the mean number of delay of each
transmission failure in the link layer. E[Nrts] denotes the
average number of transmissions to successfully deliver a RTS.
E[Ndata] designates the average number of transmissions to
successfully deliver a packet. LACKLL

represents the size of
the link layer ACK.
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In each transmission failure in the link layer, E[TOLL]

indicates the time to timeout when an RTS is sent and it is
waiting for a CTS. E[BF ] represents the average backoff of
a failure. slotT ime denotes the length of each time slot.

E[delayLL] = E[BF ]slotT ime+ E[TOLL] (9)

The timeout of each RTT transmission is calculated by
accumulating the time to transmit the RTS, the time to transmit
the CTS, and the maximum estimation of network propagation
delay PDelaymax.

E[TOLL] =
Lrts

r
+

Lcts

r
+ 2 ∗ PDelayMax (10)

The average number of transmission to successfully transmit
the RTS and a packet is presented in Equation 11 and Equation
12. Nrtsmax denotes the maximum attempts of the RTS
transmission, and Ndatamax indicates the maximum attempts
of the packet transmission.

E[Nrts] =
1− F

(Nrtsmax+1)
rts

1− Frts
(11)
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(Ndatamax+1)
e

1− Fe
(12)

The following equations estimate the time for transmission
of each link in the corresponding node. To estimate the
total RTT for each TCP segment, Equation 13 presents the
estimated RTT at node i along the path is equal to the
accumulation of the E[Tdata] of link i multiplying to the
Ntran, the average number of transmissions, in all the link
along the combined path. Equation 14 indicates the how to
calculate the E[RTT ]i based on the one-hop information.

E[RTT ]i =
D∑
j=i

E[Tdata]
jNtran(j) (13)

{
E[RTT ]D = 0

E[RTT ]i = E[Tdata]
iNtran(i) + E[RTT ]i+1

(14)

To calculate the average number of transmission of each
link, the average number of packet Npack is needed, which
is shown in Equation 16. D denotes the destination of the
combined path. MAX denotes the maximum packet trans-
mission attempts. pi denotes the transmission rate of link i.
The average number of packet that is needed to transmit in
a link is also determine by the transmission failure of the
following link along the combined path. The reason is that
each failure of transmission in TCP at the following link will
cause the current link to retransmit the packet. Equation 17
presents the method to calculate the Npack(i) based on one-
hop in formation.

Ntran(i) =
1

1− pi
Npack(i) (15)

Npack(i) = 1 +

D∑
j=i

pMAX
j (16)



{
Npack(D) = 0

Npack(i) = 1 + pMAX
i + (Npack(i+ 1)− 1)

(17)

Based on the analysis, it is shown that E[BF ] is the
parameter that affects the transmission time of each link.
Eventually, the RTT of a TCP segment is affected by the
E[BF ], which is actually decided by the contention window
size. Even though the data frame size is another parameter
affecting the RTT, the data frame is bounded to Maximum
Transmission Unit (MTU). Therefore, the data frame size is
not considered in this research.

B. TCP Segment and Link Layer Packet Loss Probability

The packet loss probability, p, is also affected by the
E[BF ]. The equations are indicated as follows. Frts denotes
the loss probability of a RTS transmission. FBER represents
the failure probability caused by the Bit Error Rate (BER). Fc

indicates the packet loss probability caused by the collision.

Frts = FBER + Fc (18)

{
FBER = 1− (1−BER)Lrts

Fc =
1

E[BF ]

(19)

Fe stands for the failure probability of the frame trans-
mission in the MAC layer. If the number of RTS failures is
over the maximum number of transmission attempts, the frame
transmission is counted as fail as well. If the number of frame
transmission failures is over the maximum attempts, the TCP
transmission fails as well.

Fe = 1− (1−BER)Ldata + F
Nrtsmax+1
rts (20)

p = 1− (1− F
Ndatamax
e ) (21)

Based on the analysis, the packet loss probability is also
related to the E[BF ] and the data frame size. As mentioned
in the previous section, the data frame size is not considered in
this research. Only E[BF ] is investigated in this work. Based
on the analysis from this section, the contention window size
is the parameter that is important to the TCP throughput. To
maximize the TCP throughput, the suitable contention window
size needs to be properly determined.

III. DISCRETE MARKOV DECISION PROCESS

In this section, a discrete Markov Decision Process (MDP)
[21] is integrated in this research to determine the suitable
contention window size. The state space of this MDP is
{s(t), b(t)} as shown in Figure 3, in which b(t) is the
stochastic process representing the backoff time counter for
a given stage s(t).

The transitions are presented in Equation 22. The first term
of the equation indicates that the backoff timer is reduced in
each slot time. The second term indicates that if a packet is
successfully delivered, the backoff stage is reset to 0 and a

backoff timer is chosen from (0, CW0 − 1). The third term
of the equation defines that a unsuccessful delivery causes
a backoff stage increase and the backoff timer is set from
(0,Wi − 1). If the backoff stage reaches value m, it stops
increasing.


P{i, k|i, k + 1} = 1 k ∈ (0,Wi − 2) i ∈ (0,m)

P{0, k|i, 0} = (1− p)/W0 k ∈ (0,W0 − 1) i ∈ (0,m)

P{i, k|i− 1, 0} = p/Wi k ∈ (0,Wi − 1) i ∈ (1,m)

P{m, k|m, 0} = p/Wm k ∈ (0,Wm − 1)

(22)
The contention window size, ak = {acw(k)}, is considered

as the action of the model defined in this work. The direct
reward of this model is the TCP throughput, which is repre-
sented in Equation 23.

Rk(ak) = max
∑

i∈X∑
j∈X P (i, j)

∑
ak ∗ [B(RTT, p) +Rk+1(ak+1)]

(23)

IV. SIMULATIONS

In this section, verification simulations are conducted in the
Network Simulator-2 (NS2). In order to prove the performance
of the TCP-distributed, the algorithm is compared to both
the normal TCP Reno and TCP Vegas. The simulations are
conducted in the chain topology in different network sizes.
A FTP source is attached in the source end, which generates
infinite traffic. The information of the other node is transmitted
by the control messages from one-hop neighbour when the
path is discovered or maintained. The time interval for the
control message is set to 1 second. Therefore, each node is
able to calculate the corresponding contention window size
for maximizing the TCP throughput. IEEE802.11a is chosen
as the MAC layer protocol.

The first simulation is conducted with TCP Reno. The eval-
uation function of TCP-distributed is represented in Equation
2. Figure 4 presents the simulation results of the throughput by
comparing TCP-distributed and the normal TCP Reno. It can
be clearly observed that TCP-distributed can perform better
than the normal TCP-Reno by providing extra throughput.
This extra throughput is achieve with the TCP-distributed
providing different contention control along the path, which
meets the requirements of each node based on their position
in the path. Based on the analysis in the previous section, the
first part of the combined path requires a fast retransmission,
and the last part of the path requires a lower segment loss
probability when transmitting a TCP segment. The analysis
of the delay is presented in Figure 5. The delay of the TCP-
distributed is slightly larger than the delay of normal TCP
Reno because of the control messages. However, the delay of
the TCP-distributed is still in a acceptable range for most of
the applications.

Our solution is compared with TCP Vegas under the same
simulation scenario in order to verify its performance with
different TCP variants. The evaluation function used in TCP
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Vegas is based on the model of Equation 3. Figures 6 and
7 show the results of the simulations. The throughput of the
TCP-distributed is better than that of the TCP Vegas, which
is caused by correctly setup of the MAC layer parameters of
TCP-distributed. However, the improvement is not as high as
that of TCP-distributed vs TCP Reno. This smaller gain on
throughput is due to the fact that the performance of TCP
Vegas is already improved when compared to to TCP Reno.
Therefore, the space for improvement is also limited. The
delay of TCP Vegas is much lower than that of TCP Reno
because TCP Vegas emphasizes on the packet delay as a sign
of the congestion, which dramatically reduces the delay of
TCP segment delivery. The increment of the delay of TCP-
distributed is also limited in a reasonable range.
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V. CONCLUSION

Besides modifying the TCP mechanism, cross-layer ap-
proaches comprehend another important method to improve
TCP performance. Because the wireless network infrastruc-
ture is different from the wired network infrastructure, some
assumptions adopted in TCP are improper for wireless com-
munications. TCP lacks the information of the lower layer,
which causes the TCP to not choose the best strategy for
transmissions. In order to improve the TCP performance, a
different transmission strategy in the lower layers is needed.
By flattening the TCP transmissions, a combined path is
generated, which includes TCP segment transmissions and
TCP ACK transmissions. Therefore, rather than analysing the
TCP segment and TCP ACK as two transmissions, the analysis
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on the combined path can treat the two transmissions as one.
Based on the analysis, an set of equations are derived to
estimate the RTT and packet loss probability, which is used for
the evaluation of the TCP throughput. A discrete Markov de-
cision process is adopted to find the corresponding contention
window size to the maximize the TCP throughput. TCP-
distributed is proposed based on this analysis. Verification
simulations are conducted on both TCP Reno and TCP Vegas
in order to verify that the TCP-distributed is independent of
the TCP variant. The simulation results represent that the TCP-
distributed can perform better than both TCP Reno and TCP
Vegas in terms of throughput. The delay of TCP-distributed is
also limited in a acceptable range. As future work, the TCP-
distributed will be applied to the vehicular networks, in which
mobility is a major factor to be considered. A more accurate
Markov model for IEEE802.11p will be also designed and
adopted since IEEE802.11p is designed specially for vehicular
networks.
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