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1. ABOUT THIS MANIFESTO

This text wishes to point our research community to a set of open problems and chal-
lenges in Music Information Research (MIR) [Serra et al. 2013],! and to initiate new
research that will hopefully lead to a qualitative leap in musically intelligent systems.
As a manifesto, it presents the author’s personal views? on the strengths and limi-
tations of current MIR research, on what is missing, and on what some of the next
research steps could be. The discussion is based on the conviction that musically grat-
ifying interaction with computers at a high level of musical quality — which I take to
be the ultimate goal of our research community — will only be possible if computers
(and, in the process, we) achieve a much deeper understanding of the very essence of
music, namely, how music is perceived by, and affects, human listeners. This is also
the personal manifesto of a music lover who is somewhat dissatisfied with the level of
musical sophistication exhibited by current MIR systems.

The specific motivation for publishing the manifesto at this point in time is the
start of a large research project called Con Espressione (www.cp.jku.at/research/
ConEspressione), generously supported by the European Research Council (ERC),

IThe audience addressed here is all researchers whose goal is to develop computer systems that deal and
interact with musical contents, or musicians, in ways that are musically meaningful and useful. That in-
cludes fields like Music Information Research (MIR), Sound and Music Computing (SMC), but also parts of
neighbouring fields like musical informatics, computational music theory, performance research, and even
music cognition and psychology. For notational convenience, I will keep referring to my target field as MIR,
with the implicit understanding that it really encompasses a broader set of research communities.

2To emphasise the highly subjective character of this discussion, I have chosen to write the article in the
first person, rather than using the generic “we” or the passive voice.
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1:2 G. Widmer

which hopes to address some of the challenges, with a particular focus on the expres-
sive aspects of music. But the problems discussed here go way beyond what a single
research project can tackle. Thus, this is a call to the entire MIR community to consider
some of the issues in designing their research agendas.

2. THE NEED FOR A DEEPER UNDERSTANDING OF MUSIC IN COMPUTERS

The field of MIR (and related fields) has made a lot of progress, has achieved some
spectacular results, and has produced — and keeps producing — highly useful applica-
tions in the commercial world of digital music. The contributions in this volume are
evidence of this. Computers can detect music in complex audio, can identify, track,
classify, and tag songs; they can extract many structural elements from music signals,
such as onsets, beats, rhythm patterns, metrical structure, melodic lines, harmonies;
they can segment musical pieces based on sound similarity, local changes, or repeti-
tion, and use this for music summarisation and many other useful services. A good
overview of the technical state of the art can be found in [Miiller 2015].
Here are a few things our computers can not (yet) do:

(1) Distinguish between songs that I might find boring or interesting.?

(2) Return (among other pieces) Beethoven’s piano sonata op.81a (Les Adieux) when
asked for a piece of classical music with a surprise at the beginning.

(3) Classify Tom Jobim’s or Jodo Gilberto’s rendition of Garota de Ipanema as more
relaxed and ‘flowing’ than Frank Sinatra’s.*

(4) Play along with human musicians (e.g., accompany a soloist in a piano concerto) in
a musically sympathetic way, recognising, anticipating, and adapting to the musi-
cians’ expressive way of playing (dramatic, lyrical, sober, ...).

For item (1), the computer would have to have an idea of redundancy vs. unpre-
dictability, structure vs. randomness, and the role of expectation in human listening;
for (2), it would have to have (learned) a model of classical music style (in this par-
ticular case, harmony); for (3), it would have to analyse subtle aspects of performance
(timing, intonation, articulation, etc.), and understand how they contribute to the mu-
sical and expressive character of a performance; and for (4), it would have to have all
of the above capabilities (plus the ability to recognise and decide in real time). None
of these aspects, I claim, has yet received sufficient attention in the MIR community,
and all of these (and more) would be needed to bring musical computers closer to un-
derstanding the essence of music: how it affects human listeners.

One of the big, overarching goals for the next decade would thus be to equip comput-
ers with a deeper ‘understanding’ of music, its qualities, and how they are perceived by
humans, in order to support a new generation of music systems and services at a new
level of quality.® That is the central tenet of this manifesto. An important consequence

30f course — as for all the other examples I am presenting here — there is no ‘true’ answer. There will be differ-
ences in judgment between listeners, depending on musical preferences, experience, mood, historical period,
even social context. However, there are fundamental information-theoretic principles at work in (aesthetic)
perception [Meyer 1956; Moles 1966]. A song consisting of one single chord repeated for three minutes, or
a melody stepping up and down the major scale ten times in a row, will be perceived as monotonous, if
not boring, by almost anyone. (Note that this is not an aesthetic judgment: monotony may be intended and
understood as an element of style, even as an artistic or political statement; think of genres like Minimal
Music, Punk Rock, or ‘Krautrock’).

4... or am I the only one to think so?

50f course, producing human-level performance on some task in a machine does not necessarily require
mimicking humans — think of chess programs, for instance. (Thanks to Francois Pachet for reminding me of
this.) Then again, “deeper understanding of music” does not necessarily mean “human-like”. What I mean is
computational models that can identify or predict some of the same kinds of patterns in music that educated
human listeners would perceive. Developing such models will require us, as researchers, to understand more
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The Con Espressione Manifesto 1:3

of adopting this is to put the listener into the center of our focus, but in the role of
an active listener rather than the general user-as-consumer with ‘listening habits’ and
‘entertainment needs’ as discussed in [Schedl et al. 2013].

Before proceeding, a qualification is in order. This text focuses exclusively on Western
(tonal) music. Likewise, when speaking about listeners, listeners’ expectations, etc., I
will mean persons who have grown up with Western music and thus have a shared (if
implicit) understanding of music and stylistic norms. Of course, there are many other
important musical traditions in the world, and the MIR community is increasingly
addressing these as well (e.g., in the CompMusic project [Serra 2011]). But looking at
different musical cultures is beyond the scope of the present paper.

3. SIX THESES ABOUT MUSIC

I would like to structure my critique of the current state of the art by proposing — as
is expected of a manifesto — six theses about music and its effect on listeners. None
of these is probably controversial in itself — in fact, the theses are rather trivial tru-
isms —, but each of them points to a particular aspect that has, I believe, not received
enough attention in the MIR community. Each of the theses, if taken seriously, has
implications for future research, which I will try to work out in the following.

I. Music is a temporal construct / process

Music as played and heard is a process that unfolds in time. Even when viewed as a
static object (represented, e.g., by the printed score), a musical composition is organ-
ised along an abstract time line, where the ordering of musical events, and their place-
ment on the abstract time grid, is essential. Clearly, then — and that has been noted by
many authors — the (still) predominant bag-of-frames (BOF) approach to many music
classification tasks is inadequate. It is inadequate even as a summarising model of the
perceived sound of a piece [Aucouturier and Pachet 2004], and definitely as a model
of a piece as heard by listeners, or intended by the composers and performers. For in-
stance, its limitations for emotion recognition have been convincingly demonstrated in
[Hugq et al. 2010].

The obvious alternative — temporal models, or at the very least, features that in-
corporate some contextual information — has been examined by several authors, with
mixed success. For instance, [Flexer et al. 2005] showed that using Hidden Markov
Models (HMMs) for timbre modelling increases the likelihood of the models (i.e., the
fit on the data), but does not improve similarity-based genre classification. Other au-
thors [Madsen et al. 2014; Vaizman et al. 2011] demonstrate some improvement in
emotion detection from audio, using temporal models. In all these cases, however, very
simple, low-level audio features (MFCCs) were used as a basis. But as [Aucouturier
and Pachet 2004] already concluded in 2004: summarising statistics over low-level
sound features will not permit our systems to surpass a certain level of performance
(the much-cited ‘glass ceiling’), and this statement still seems valid.

The conclusion then must be that — temporal models or not — frame-based audio
features are fundamentally the wrong representation level. Simple intuition tells us
that much of what we consciously perceive or expect in a piece is at the level of events
— notes, chords, etc. — not short windows of sound textures. Consider the Beethoven
Les Adieux example from above. The three opening chords of the first movement are
clearly heard, by any listener, as three distinct events, and the listener is suprised at
the onset of the third chord, not “somewhere between audio frames 710 and 725, where
the distribution of chroma vectors changes”. This is even more important because most

about human music perception. Or to put it in [Herrera et al. 2009]’s words, “[wle will only develop music
understanding systems by means of understanding music understanding”.

ACM Transactions on Intelligent Systems and Technology, Vol. 00, No. 00, Article 1, Publication date: March 2016.



14 G. Widmer

pianists tend to slightly delay the third chord, thus heightening the level of expectation
in the listener and, concomitantly, the level of surprise as the third chord is not the
expected harmony.® It is only by perceiving the passage as made up of discrete events
that the delay of the third event can be registered at all, and have the effect that
it does. Likewise, a prediction of whether a song would be perceived as ‘boring’ or
‘interesting’ (which, among other things, will have to rely on some estimate of the
musical complexity of the song [Russell 1982]), will probably not be possible on the
basis of variance measures at the short-term feature level.

My hope, then, is to see more research in the future on temporal modelling of music
at the level of musically meaningful (partly discrete) events and patterns.” The fact that
our current technologies for tasks like audio source separation, onset detection, note
transcription, chord identification, or melodic/motivic pattern discovery from audio are
still notoriously unreliable and brittle (though even the latter has recently been shown
to be at least partly feasible [Collins et al. 2014]), makes this particularly challenging.

Il. Music is fundamentally non-Markovian

To my knowledge, almost all temporal models used in MIR are either of a Markovian
kind, assuming a strictly limited range of dependency of the musical present on the
musical past (as in HMMs, but also, for instance, in auto-regressive features or ‘dy-
namic textures’ [Barrington et al. 2010]), or have a kind of decaying memory (as in
simple Recurrent Neural Networks (RNNs)). On the other hand, it seems clear that
music is of a fundamentally non-Markovian nature. Music is full of long-term depen-
dencies: most pieces start and end in the same key, even if they modulate to other
tonalities in between; themes return at regular or irregular intervals, after some in-
termittent material; harmonic rhythm (the rate of change of harmonies) is similar in
similar passages; and so on. Moreover, musical units (segments, phrases, etc.) tend to
have certain lengths in terms of number of bars (often a power of two), and listeners
are used to expecting the return of a refrain after a certain number of bars. This means
that we need the ability to count, which low-order Markov models are incapable of.®
What is needed, first of all, is to broadly acknowledge the non-Markovian nature
of music and be critically aware of the fundamental limitations of HMMs and similar
models in describing music. I do not always see that in the MIR literature. Second,
we need more research on complex temporal models with variable degrees of memory.
An example of recent work attempting to create a model that accounts for temporal
dependencies in polyphonic music is [Boulanger-Lewandowski et al. 2012], which em-
ployed a complex, hybrid network made up of Restricted Boltzmann Machines (RBMs)
and RNNs. However, evidence that the network does capture temporal dependencies
is only indirect (via likelihoods and prediction accuracies), and in the end the authors
had to conclude that long-term structure seems still out of the model’s reach. Per-
haps more promising are recent advances in RNNs with Long-Short-Term Memory
(LSTM) units [Hochreiter and Schmidhuber 1997]. Actually, [Eck and Schmidhuber
2002] showed already in 2002 that LSTMs are capable of learning longer-term depen-

SFor the uninitiated reader: the third chord is a surprising C minor instead of the Eb major that listeners will
(consciously or unconsciously) expect. The resulting chord progression, notated as I-V-vi, is appropriately
called a deceptive cadence in music theory. It is not too abundant in classical music, and extremely rare at
the very beginning of pieces — and thus all the more unexpected and surprising here.

"This may also help avoid the Clever Hans effect recently identified in various MIR systems [Sturm 2014],
which is clearly related to these systems focusing on features at musically irrelevant levels.

8Some of these problems are addressed in recent work on Markov Constraint models, such as [Roy and
Pachet 2013], which proposes a solution for the counting problem in musical meter and, more recently,
[Papadopoulos et al. 2015], which presents a method for sampling Markov sequences that satisfy some
regular constraints (represented by an automaton).
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The Con Espressione Manifesto 1:5

dencies and structure in music. More recent work in MIR using LSTM networks has
mostly focused on low- to mid-level tasks such as onset detection [Eyben et al. 20101,
note transcription [Bock and Schedl 2012], or chord identification [Sigtia et al. 2015],
where rather local context is sufficient. A lot more work is needed on models that can
predict musical events and patterns over longer timespans.

Complementing this, it will be important to invest more research efforts into learn-
ing structural abstractions, over which temporal dependencies can then be modelled.
Much of tonal music has a multi-level, often hierarchical organisation, with higher-
level building blocks made up of smaller patterns (e.g., the ubiquitous ii-V-I chord
progressions in Jazz). At a high level, one could then get by with low-order Markov
dependencies. Hybrid architectures that can learn multi-level abstractions and tem-
poral relations simultaneously (as, allegedly, Hierarchical Temporal Memory (HTM)
[Hawkins and George 2006] can), would be particularly attractive.

lll. Music is perceived by human listeners

In much of current MIR research, a recording is taken directly as a representation of
a piece of music, from which computers then extract patterns such as beat, segment
structure, etc. This pragmatic approach may be sufficient for practical applications
such as music synchronisation or indexing, but when our goal is to predict more refined
human categorisations (such as, e.g., emotions or interestingness), we need to remem-
ber that the ultimate place of music is in the Auman mind [Wiggins et al. 2010]: what
we hear and how we respond to music is a product of an active process of perception,
and only by understanding that process will we ultimately be able to predict some of
music’s effects.’

Human musical memory, and our conceptualisation of a piece of music, critically rely
on abstraction and grouping. Humans are exceptionally good at segmenting the stream
of musical events into meaningful units, on-line, while listening [Deutsch 2013]. In
trying to explain this, music psychologists often appeal to the ‘laws’ of Gestalt psychol-
ogy [Wertheimer 1938]. Lerdahl & Jackendoff’s [1983] highly influential Generative
Theory of Tonal Music derives various grouping rules from such Gestalt principles, in
different structural dimensions (grouping, meter, hierarchical pitch abstraction, ten-
sion/release) with intuitively convincing structural predictions on selected classical
music examples (though the Gestalt approach to music segmentation has also been
challenged [Bod 2002]). Implicitly, some of these Gestalt concepts also play a role in
current music segmentation algorithms [Paulus et al. 2010] (e.g., similarity of recur-
ring segments as a grouping criterion, or local changes in some feature dimensions
as indicators of boundaries), but the hierarchical abstraction (‘time-span reduction’)
and tension-release (‘prolongational reduction’) models, which are particularly inter-
esting from a music perception point of view, have not found their way into the world
of practical MIR. One reason is that the rules as given are not free of ambiguities, con-
tradictions, and cyclic dependencies, which so far has prevented researchers from fully
implementing the theory even at the level of symbolic scores [Hamanaka et al. 2006].
I do believe it would be worthwhile to dig further into this (perhaps via probabilistic
modeling, to address various inconsistencies). The ultimate challenge will be to apply
similar principles to musical grouping at the audio level, and combine this with the
best of current MIR audio segmentation algorithms.

9 Actually, a full account of music perception would even go beyond the ‘mind’, acknowledging that the body
of the listener and social interactions also play an important role. Current theories on embodied and social
cognition (e.g., [Leman 2008]) are highly relevant, but to keep the presentation focused (and, admittedly,
for a lack of conrete ideas on how to adequately address this aspect), I will leave these out of the present
discussion.
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1.6 G. Widmer

A second aspect that is vital to our perception and appreciation of music is the dy-
namics of the listening process, the permanent ebb and flow of tension and release; of
anticipation and realisation; of expectations emerging about what is to come next (and
when), and their confirmation or denial. Authors like [Meyer 1956; Narmour 1992;
Huron 2006] argue that this is a major source of the aesthetic and emotional effect
of music, and the reason why we may be enthralled by a piece, or lose interest. That
there is a correlation between the predictability of certain musical features, and the
emotional response reported by listeners, has also been shown in [Dubnov et al. 2006].
In modelling this, it seems natural to take an information-theoretic approach, using
notions like conditional entropy and information content to quantify the listener’s un-
certainty about what is to come next, and her surprise, or lack thereof, at what re-
ally comes next. Such models of musical expectancy have been advocated by several
researchers in recent years [Abdallah and Plumbley 2008; Pearce and Wiggins 2012;
Temperley 2007]. While the principal ideas are extremely elegant and appealing, there
are severe problems in applying them to non-trivial kinds of music — in particular, how
to model joint probability distributions over huge spaces of musical events. Current ex-
perimental models evade this by making strong Markov assumptions and restricting
the experiments to strictly monophonic [Pearce and Wiggins 2012] — even isochronous
[Abdallah and Plumbley 2008] — music. They are thus useful as theoretical models
of musical learning and expectancy, but not yet for practical applications. Again, my
conviction is that the (only) approach to making this tractable for complex music is by
abstraction, i.e., modelling music in terms of higher-level patterns.

An interesting aspect of these information-theoretic models, as indicated by first
experimental results, is that they can also help in predicting perceived grouping and
segment boundaries [Pearce et al. 2010b]. I believe it would be extremely important to
carry this kind of work further, towards more complex and realistic musical scenarios.

IV. Music perception and appreciation are learned

The question of which fundamental mechanisms — if any — of music perception are
innate, and which ones are learned, is interesting but beyond the scope of this paper.
Arguably, all of the higher-level patterns and the ‘meanings’ of music are learned, to
a large extent simply through exposure [Patel 2008]. That gives us hope to also make
substantial progress in machine understanding of music via massive unsupervised
learning. The potential of statistical learning for explaining the emergence of musi-
cal expectation has been demonstrated in [Pearce et al. 2010a; Pearce and Wiggins
2012]. Ongoing advances in the field of deep learning architectures [Bengio 2009] now
promise to provide a general basis for learning features and representations directly
from raw data [Humphrey et al. 2013]. Deep learning models have shown promise in
several MIR tasks, from speech and music detection [Schliiter and Sonnleitner 2012],
to audio segmentation [Ullrich et al. 2014], but also predicting performers’ expressive
dynamics from scores in classical piano music via score features learned in this way
[Grachten and Krebs 2014] (to cite just some of our own work). Particularly attractive
are unsupervised learning scenarios, which promise to make it possible to exploit large
musical datasets without the need for expensive manual annotation.

This is now the time for the MIR community to embark on massive feature / repre-
sentation learning endeavours — much like the current trend in image analysis, which
starts to produce quite spectacular results (e.g. [He et al. 2015]). Given the computa-
tional and data-related demands, the MIR community should join forces and pool its
resources, efforts, and learned models (in cases where the training data itself cannot
be shared) — and indeed, it has already begun to do so (see [Porter et al. 2015; Weyde
et al. 2015] for two recent initiatives). Also inspiring is recent work on networks that
learn to verbally describe the content of images [Vinyals et al. 2015]. Music search en-
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gines that support description-based search without the need for manual annotation
would be extremely useful not only in the general consumer music market, but also
in specialised domains such as ‘production music’, where customers search for music
with very specific properties.

Two aspects of music should again be kept in mind: the multi-level structure of mu-
sic that ranges from timbre and sound through notes, chords, rhythmic patterns, har-
monic patterns (e.g., cadences), melodic motifs, themes, sections, etc.; and the fact that
different music-parametric dimensions (melody, harmony, rhythm) interact in complex
ways. Learning useful and musically effective representations will benefit from a care-
ful design of learning architectures, guided, wherever possible, by thoughtful analysis
of the nature of music.

Long-term style learning would lead to building blocks like typical cadences, typical
harmonic progressions, melodic clichés, accompaniment patterns, and the like. But in-
teractive real-time systems (such as an automatic music accompanist) will also need
learning at a different time scale: short-term, on-line, intra-piece learning, to induce
some of the characteristics of the currently playing song. This is how we develop, dur-
ing listening, very specific expectations about how a song is going to continue, and
when to expect certain things (like the next chord change, or the return of the refrain).
There has been relatively little research on this in the MIR community that I am aware
of; most relevant is work on machine improvisation (e.g., [Assayag and Dubnov 2004;
Nika and Chemillier 2012; Pachet 2003]), or on learning to anticipate the timing of
events in expressive performance models [Raphael 2010; Arzt and Widmer 2010].

A big open problem is how to integrate long- and short-term learning. It is not at all
obvious according to what principles that should be done. The IDyOM model of [Pearce
and Wiggins 2012], which in its current form is a learning-based model of melodic pre-
diction (at a symbolic level), simply predicts a probability distribution over the next
pitch that is a weighted sum of the predictions of a long-term and a short-term learn-
ing model (weighted by the respective Shannon entropies). For more complex learning
and prediction tasks, this will become more difficult. Unfortunately, there is precious
little that music psychology and cognition research can tell us about this, in concrete
terms. We may also see this as an opportunity: new computational or information-
theoretic models we may come up with might serve as a source of inspiration to the
music psychology world.

V. Music is (usually) performed

In almost all kinds of music, musical compositions are performed (translated into
sound) by human musicians, and the details of the performance contribute much to
the character of the music, and how it affects listeners. Expressive performance serves
several functions [Palmer 1997], most importantly, to clarify the musical structure of a
piece to the listener, and to highlight and communicate expressive and affective quali-
ties of the music (see also item VI below).

Surprisingly, the aspect of performance has not seen too much attention in the MIR
literature so far. That is a pity, as expressive performance can contribute much to the
effect of music, and to qualities that one may like or dislike in a recording. Sophis-
ticated music recommenders and other services should be aware of that. Moreover,
interactive music systems, such as the automatic accompaniment system mentioned
in Section 2 above, will need the ability to recognise and emulate different performance
and expression styles, in real time (in addition to being able to anticipate expressive
timing, as in [Raphael 2010]).

Many of the features we need to extract from a recording in order to account for per-
formance aspects, are rather different from the audio features mainly in use in MIR.
For instance, the ‘flowing’ character of Jodo Gilberto’s renditions of Bossa Nova songs —
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1:8 G. Widmer

in contrast to Frank Sinatra’s singing or Stan Getz’s saxophone playing — is due to the
fact that he sings against or ‘above’ the steady beat of the song, taking incredible and
at the same time extremely natural-sounding liberties (a characteristic of Gilberto’s
art of Bossa Nova singing). Current beat tracking algorithms (e.g., [Krebs et al. 2015])
would readily recognise the steady 4/4 beat; but characterising this floating on top of
the beat requires additional, in a sense ‘orthogonal’ features.

Depending on the instrument, there is a large variety of parameters that performers
can control and shape, from tempo, timing, loudness, articulation to complex contin-
uous aspects such as intonation, vibrato, timbral control of the singing voice!?, etc.
We currently do not even have features that can quantify the degree of ‘staccatoness’
vs. ‘legatoness’, much less methods for exactly measuring micro-timing in chords, the
sound balance between individual voices in a polyphonic piece, or qualities of singing.
It would be desirable, at some point, to have such performance-related features in-
cluded as a standard part of MIR feature extraction toolkits, alongside the current
feature sets describing timbre (e.g., spectral centroid, MFCCs), rhythm (e.g., beat his-
tograms), and the like.

Recognising and characterising performance-related aspects in music is one prob-
lem. Another is to build predictive models that can produce performances with certain
musical qualities.!! In the context of classical music, there has been quite some re-
search on computational models of expressive music performance, as summarised in
a 2004 survey [Widmer and Goebl 2004] — and the state of the art has not really im-
proved a lot since then (though YQX has successfully performed Chopin in a RENCON
computer piano performance contest [Widmer et al. 2009]). The group of researchers
working on computational performance analysis and modelling has traditionally been
quite small. Bringing the power of the full MIR community (with its interests that ex-
tend way beyond the narrow world of classical music) to bear on this class of problems
would be extremely promising.

VI. Music is expressive and affects us

Approaches to automatic music recommendation have been rather superficial so far,
evading the issue of what listeners actually hear, and why they might like a song.
Typical music recommenders rely on indirect information such as timbral and rhyth-
mic similarity between songs, expert-curated or web-crawled meta-data, user-provided
tags, collaborative filtering, and/or features characterising the geographical and activ-
ity context of users [Song et al. 2012].

But music is more than that. It moves us; it affects us; a song may cause us to
feel elated or sentimental; we may be touched by the mourning, solemn character of a
funeral march.'2,13 I strongly believe that MIR systems should be aware of this dimen-
sion, at least to the extent that they can find music for us that really has the potential
to satisfy our musical and affective needs. The recent increase in emotion recognition
research [Kim et al. 2010; Yang and Chen 2012] shows that the MIR community ac-
knowledges the importance of that dimension.

10To get an impression of the richness of expressive possibilities in vocal art, listen to any recording of, say,
Sarah Vaughan or Abbey Lincoln.

11 Again, the automatic accompanist is a use case for this; quite another one would be systems that adapt the
expressive character of music to dynamically changing situations, e.g., in video games or interactive movies.
12Be aware of the difference between the arousal of emotions, and the ‘mere’ expression or communication
of emotions [Gabrielsson 2002] — a distinction that is not always clearly made in the MIR literature. In
either case, however, the ability of music to express emotions and moods, or to incite [D. Cope, personal
communication] listeners to construct musical and affective meaning, considerably adds to its importance
and power as an art form.

13A lucid (and short) discussion of different philosophical views on this can be found in [London 2000].
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However, I contend that the set of qualities that music can express is much broader
than §ust’ emotions or moods, and thus broader than the dimensions usually targeted
in emotion detection. [Juslin 2013] distinguishes three levels of ‘coding’ of expressive
messages in music, and through that, implicitly, different classes of expressive content:
while basic emotions are communicated via rather direct cues like loudness, tempo, vo-
cal qualities in singing — and are thus perhaps most directly accessible to MIR systems
via audio features —, more complex and abstract qualities arise from the structure of
the music itself, its implications of melodic/harmonic/rhythmic tension, release, reali-
sation or denial (see above). Juslin calls this intrinsic coding and suggests that such
factors, “[bly contributing dynamically shifting levels of tension, arousal and stability,
[...] may help to express more complex, time-dependent emotions, such as relief and
hope” — to which one might add such qualities as uncertainty, determination, humour,
but also power and physical motion and other things that I would not subsume un-
der categories like emotions or moods. Juslin’s third level of meaning assignment —
associative coding — relates to expressive meanings that are purely conventional and
socially learned, such as that a song that is presented to us as a national anthem con-
jures up images of patriotic pride or nationalism (as the case may be). Such meanings
are not necessarily related to any specific properties of the music itself.

From the above follow several research challenges. First of all, there is a need for
broad empirical investigations on what kinds of expressive qualities humans can (rel-
atively) reliably and consistently recognise in music. Second, we need to categorise
these, and define appropriate vocabularies or description frameworks. I believe that
the popular categorisation models for emotions — e.g., valence-arousal space [Thayer
1989], ‘circumplex model’ [Russell 1980], Geneva Emotional Music Scale (GEMS)
[Zentner et al. 2008] — cannot capture all the expressive qualities that music can con-
vey. The set of categorical ‘mood adjectives’ used in the MIREX Mood Classification
Task for popular music'4 contains a number of interesting concepts that actually go
beyond moods proper (for instance, I would claim that ‘rowdy’, ‘wWhimsical’, or ‘literate’
are neither emotions nor moods). But again, I fail to see any systematic evidence that
this set covers all the qualities we can and want to distinguish.

In designing algorithms that can recognise and classify expressive dimensions, dif-
ferent sources of expressivity must be considered. Simple ‘surface properties’ like
tempo, dynamics, timbre and chosen instruments, mode (major/minor), seem to most
directly communicate (and partly even induce) basic emotions [Juslin 2013]. Then
there is the structure of the composition itself, with its ups and downs, games of tension
and release, and more or less dramatic twists and turns, which are more challenging
to capture in terms of features (see above). Culturally defined meanings whose source
is outside the music itself will only be accessible or inferrable to MIR systems from
extra-musical sources — particularly, the Web (e.g., [Knees and Schedl 2013]). A final
aspect that has been largely ignored so far in the MIR world is, again, performance.
Especially in classical music, the specific way in which performers play a piece has a
tremendous influence on the perceived character of the resulting music (see the lit-
tle Con Espressione Game in the next section) — but this also goes for Jodo Gilberto’s
or Sarah Vaughan’s singing, or any other performed music (including, yes, Kraftwerk).
The Con Espressione project will place a special focus on performance as a source of ex-
pressivity, but all of the above description levels will be needed, as performance cannot
be seen independently of the piece itself and its structure [Gabrielsson and Lindstrém
2010].

M http://www.music-ir.org/mirex/wiki/2013:Audio_K-POP_Mood_Classification
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4. THE CON ESPRESSIONE PROJECT

Con Espressione is a five year research endeavour (2016-2020) funded by the European
Research Council (ERC) (http:/www.cp.jku.at/research/projects/ConEspressione). Its
goal is to lay the foundations for a new generation of music systems that are aware
of, or can recognise and characterise, expressive aspects of music. The primary focus
(owing to my research team’s extensive experience and prior work) will be on classical
music and expressivity as communicated via expressive performance. In approaching
this, we will have to address some of the challenges discussed above. Specifically, we
will

—investigate description frameworks for characterising and categorising (intended
and perceived) expressive dimensions;

— advance research on extracting performance parameters (beyond timing and dy-
namics) from audio recordings and live performances;

— work on computational models of structure perception in music (at score and au-
dio levels), combining recent MIR advances with information-theoretic approaches,
unsupervised learning, and knowledge from musicology;

— investigate the relation between musical structure, expressive performance, and the
communication of expressive characters;

— learn discriminative models that recognise intended expressive messages in perfor-
mances;

—learn predictive models that generate or modify performances to express certain
intended qualities.

All this will involve large-scale machine learning, using large curated corpora cur-
rently in preparation. One of the demonstrators we hope to deliver by the end of the
project is the Compassionate Music Companion, an interactive system that plays along
with human musicians in a musically sympathetic way, recognising, anticipating, and
adapting to the musicians’ expressive way of playing, and providing musical interac-
tion at a gratifying level.

The Con Espressione Game

I would like to take the opportunity to invite the reader to the Con Espressione Game:
the link bird.cp. jku.at/con_espressione_game will take you to a page that asks you
to listen to excerpts from five Mozart sonata renditions by different pianists, and to
enter words which, to you, best describe the perceived character of the recordings. This
is a first small test to see to what extent (if at all) there is consensus in the perception
of expressive qualities in classical piano performances. The collected responses will be
analysed and the results announced to the MIR community in due course.

5. CONCLUSION

This little manifesto has reminded the reader of a few simple truths about music
(rather pompously called ‘theses’ here), and what they might imply in terms of re-
search challenges for our field:

i. Music is a temporal construct / process

ii. Music is fundamentally non-Markovian

iii. Music is perceived by human listeners

iv. Music perception and appreciation are learned
v. Music is (usually) performed

vi. Music is expressive and affects us
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The ERC project Con Espressione will expressly try to address some of the questions
that follow from these principles, focusing on the expressivity of music and music per-
formance. My hope is that this manifesto will stimulate other research teams to join
in this effort, so that future MIR systems will understand a bit more of the essence of
music, and will be able to provide services at a new level of musical quality.
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