
Third Program Visualization Workshop 141

Survey of Effortlessness in Algorithm Visualization Systems

Ville Karavirta, Ari Korhonen, and Petri Tenhunen
Helsinki University of Technology

Department of Computer Science and Engineering
Finland

{vkaravir, archie, ptenhune}@cs.hut.fi

Abstract

This paper reports the results of an on-line survey conducted among computer science
educators to examine effortless creation of algorithm visualizations. Based on the results,
we give a proposal for measuring effortlessness in this sense. The aim is to enhance the
understanding of the visualization tools adequate in computer science education.

1 Introduction

The idea of using visualization to promote the understanding of abstract concepts, like data
structures and algorithms, has become widely accepted. Despite its benefits, algorithm visu-
alization (AV) has failed to become popular in mainstream computer science (Stasko, 1997;
Baecker, 1998). One of the main obstacles for fully taking advantage of AV systems seems
to be the time and effort required to design, integrate and maintain the visualizations (Naps
et al., 2003b). According to Hundhausen et al. (2002) the process of creating AVs is thought
to be too laborious to be worthwhile. Thus, “a future challenge is to create tools and method-
ologies which will result in the use of SVs by the majority of computer science educators”
(Domingue, 2002).

Several attempts have been made to introduce a system that levels out the burden of
creating new visualizations (e.g. Haajanen et al., 1997; Korhonen and Malmi, 2002; LaFollette
et al., 2000; Naharro-Berrocal et al., 2002). However, none of these systems has gained wide
recognition. In our previous study (Karavirta et al., 2002), we examined four systems, in order
to identify why the creation of software visualization is such a laborious process. We wanted
to emphasize the instructor perspective because “the visualization research has focused on the
developer and designer while research in CS education has focused on [...] student learning.
In contrast, virtually no research has focused on the needs of the instructor” (Naps et al.,
2003b). However, it is the instructor that plays the key role in taking the AV system in use.

Unfortunately, effortlessness is a highly subjective measure including many factors. For
example, the different systems can be put on the same line only by first determining the
context where the systems are utilized. With one system, it might be easy to create static
visualization from an already existing code whereas another system might be effortless in
the sense that the animations can be created on-the-fly in a lecture situation. Creating
visualizations with an inadequate system for a certain task might require a lot of extra effort
compared with more feasible system. Thus, algorithm visualization systems are often seen
laborious because people are drilling with a hammer. More research is needed to identify the
essence of effortless creation of algorithm visualizations.

In this study, we have created a questionnaire for computer science educators to sort out
the elements of effortless creation of algorithm visualization. In our survey, we concentrate on
the instructor’s point of view to identify the typical use cases when visualizations are created,
and typical expectations when starting to use an algorithm visualization system. In the rest
of the paper, we describe the survey, results, give a proposal for how to measure effortlessness
in AV systems, and finally make some conclusions.

2 Survey

The starting point for this research was the work done by the working group on “Exploring the
Role of Visualization and Engagement in CS Education” at the ITiCSE 2002 conference (Naps



142 Third Program Visualization Workshop

et al., 2003a). The results from the three surveys evaluated in that paper (Grissom’s survey
from ITiCSE’00, ITiCSE’02 WG pre-conference on-line survey, and ITiCSE’02 WG Index
Card survey) motivated us to develop a new, more detailed on-line survey from the effort-
lessness point of view. Using some items from the three surveys, we refined a survey of our
own that was first tested with the attendees of the Third Program Visualization Workshop
(PVW’04). The preliminary results were also presented there. However, our survey con-
tinued after the conference and we advertised the research in various mailing lists (e.g., for
PPIG (Psychology of Programming Interest Group), SIGCSE (ACM Special Interest Group
on Computer Science Education), and PVW members) to get a more versatile sample. The
final results are reported in this paper. Respondents were from USA (7), UK (5), Finland (2),
Germany (2), Israel (2), New Zealand (2), Island (1), and Spain (1), which makes total of 22
responses. This is less than in the previous syrveys. Moreover, as the terminology in the field
varies it causes some problems to collect reliable data. For example, some of the respondents
did not answer the survey as they felt that the survey covered only very narrow set of courses.

In the ITiCSE WG survey they asked much more detailed questions on the background
of the respondent as well as their attitude towards AV. We expected to reach a similar pop-
ulation, thus we concentrated more on how they have applied AV in practice. The only
background questions, in addition to the above, were the ones on subjects taught and in
which course levels. The subjects varied from basic programming courses to computer graph-
ics, and from computer architecture to discrete mathematics. Moreover, all course levels were
almost evenly distributed as many of the respondents were teaching several courses. After the
few background questions, previous usage of AV systems and usage in teaching were asked.

Five respondents denied the use of algorithm visualizations in their teaching, three of
whom have not used any tools to create algorithm visualizations. However, there is a total
of six respondents that have not used AV tools to create algorithm visualization, thus three
respondents must have used them, but not in teaching.

The respondents who have used AV system(s) were asked about the origins of the sys-
tem(s) they have used. We have 25 responses from 18 respondents. Ten have developed a tool
or system by themselves. One of these, however, has never used it to create algorithm visu-
alizations (but possibly used it in teaching, see the previous questions). Six have developed
system(s) in a team within a single institution. Four respondents have developed a new tool
by reusing existing tools or libraries. Again, four of the respondents uses software developed
by researchers in other institutions. Only one respondent used software developed by some
other team within his or her own institution. None of the respondents selected “Commercial
software” even though some examples of these are mentioned later in free text responses.

The rest of the survey was divided to two phases. First, we wanted to collect free text
descriptions on the actual use cases and situations in which the respondents were using AV.
After the first phase, the respondent was directed to another page where we provided ready-
made scenarios and asked the respondents to state how well these apply in their context. The
whole survey, with some additional data not presented in this survey, can be located on the
web at http://www.cs.hut.fi/Research/SVG/survey/.

3 Results

Most respondents described several use cases where they, as teachers, could create and use AV
– 16 respondents and 28 use cases. Even though in most cases the task was clearly identifiable,
the ultimate goal within the use case was often blurred. Some typical tasks, however, can
be identified from the data (i.e., tracing and debugging, problem solving and exercises, data
abstraction and representation issues, and teaching data structures and algorithms in general).

By lowering the abstraction level, we can also identify the context in which AV is used. The
following items were mentioned with more than one use case (number of use cases where the
context occurred is marked in parenthesis): Programming – data structures, data flow, and



Third Program Visualization Workshop 143

control flow (6); Sorting algorithms (4); Graph algorithms (4); Mathematics / theoretical CS
(3); and Geometric algorithms (2). Thus, tracing and debugging of an implemented algorithm
(i.e., real execution) is the most commonly mentioned use case. Albeit important one, the
actual implementation of an algorithm, however, was not an issue in most of the use cases.

The tools that respondents have used could be divided into three groups: commercial
products, visualization and graphics packages, and non-commercial AV systems. Commer-
cial systems mentioned in the responses were PowerPoint, Visual Basic, and QuickTime.
Visualization packages were the Visualization ToolKit (VTK), GraphViz, and OpenGL. Non-
commercial products, however, was the most common category with products like Jeliot,
JAWAA, Animal, JHave, TRAKLA2, MatrixPro, Poplog, SimAgent, JFLAP, and several
Java applets.

According to respondents, the most common pros of the visualization systems were the
features allowing to create animations easily, and sufficient navigation possibilities in the final
animation. The lack of these very same properties were mentioned as cons of some other
systems. Not so commonly mentioned pros were: easy installation, freely available, modular
structure, and the fact that use of these tools might activate thinking. Respective cons were:
limited domains where the system can be used and the observation that the interaction with
such tools may be mechanical and therefore decrease thinking. A benefit mentioned especially
with programming tools was that “since it’s a programming language, I can get it to do just
about anything I want“.

The last question in the first part of the survey asked the respondent to describe an ideal
tool that could be used to complete the use case. The responses were more of a wish-list about
the system features or descriptions of current systems than any new visions about possible
future tools. The most-often mentioned features are represented in Table 1.

Table 1: The ideal tools.
Category name Examples Count

Ease-of-use Easy generation, own input data, customization of visualiza-
tions, example generators

7

Programming Java, JavaScript, drag&drop coding 5

Special features For beginners and experts, flexible notation and timing, inter-
action, visual effects

5

Abstraction level General tools, small tools combined, many representations 4

Professionalism Help functionality, internationalization, better user interfaces 3

Formats e.g., Flash, common file formats between systems 2

The respondents were also asked how much time they can afford to use and how much
time they have used for the whole course and for different teaching related tasks. The tasks
were developing the course contents (lectures, exercises, demos, text, ...), and several AV
related tasks (i.e. searching, installing, and learning to use for good AV examples and tools,
developing visualizations, adapting visualizations to the teaching approach and/or course
content, solving problems in using the tool, and setting up visualizations in the classroom).
The number of responses for this question was 19.

In most cases there was no difference between the time used and time available. However,
when looking at the responses on the item “searching for AV tools”, a clear difference was
found. People have more time to search AV systems, than they are actually using for that.

The respondents were asked how much time they have available for predefined use cases
and how much it would actually take to complete those use cases. The tasks were divided into
four categories based on the situation: lecture, practice session, producing teaching material
and examination/summative evaluation. The categories and the corresponding use cases are
shown in Table 2. The number of respondents who answered this question was 20.

For each use case the respondents were asked how relevant it is according to the course
he or she is teaching. The scale was from 1 (not relevant at all) to 5 (very relevant). The
number of respondents that thought a use case is relevant (answers 3-5) is shown in Table 2



144 Third Program Visualization Workshop

(column Rel). In addition, there is the column (Most Rel) that represents the number of
respondents that consider the use case to be within the three most relevant tasks in their
teaching. Moreover, the respondent was asked to state whether or not AV could be used to
reduce the required work to complete the use case (column AV). The results show that AV is
considered most useful to produce lecture examples and on-line illustrations. These two tasks
are also considered to be the most relevant ones.

Table 2: Predefined use cases related to teaching. The columns Rel, Most rel, and AV show
the numbers of responses in which the use case is considered to be relevant to the respondent,
within one of the three most relevant use cases, and considered to reduce the work load of the
use case, respectively.

Use case Rel Most Rel AV

Lectures

single lecture example 14 6 9
answering students’ questions during a lecture 14 2 5
preparing questions/problems for a lecture 14 1 4

Producing teaching material

on-line illustrations (static or dynamic) 12 5 8
text book/lecturer’s notes illustrations (static) 12 1 3

Examination/summative evaluation

creating exercises for examination (that students solve) 12 1 3

Practice session

creating exercises for practice session (that students solve) 12 2 4
preparing a demo for a closed lab such that a tutor shows 9 3 6
preparing a demo students interact with in closed labs 7 3 5
preparing a demo students interact with in open labs 6 4 3

The section included also a question about the best tool the respondent has used for the
use case, and the three most important features of the system. The features mentioned more
than once were “saves time”, “must be reliable”, “one has control over the final visualization”
(for example, possibility to move backwards and forwards, pause, play the animation), “al-
lows student input data”, “helps explaining/understanding”, and “easy/automatic creation”.
There was also one response that stated that “all [systems] have increased my workload”.

Most of the use cases are estimated to be completable just within the time available.
Creation of text book illustrations and demos for closed labs was estimated to take a litle
more time than what is available. A clear difference was observed in on-line illustrations. The
average time to complete such a use case was 0.69 hours, whereas the time available was 1.23
hours.

The next question was about the content generation approaches. Table 3 lists the different
approaches and illustrates that the approaches were almost equally preferred.

Table 3: Preferred content generation approaches.
Content generation approach Count

Interactive simulation (user can experiment with methods; easy for implemented concepts, new
concepts require understanding of underlying API)

11

Fully prepared examples (easy to use, no work; not adaptable) 9

”Generators” for some AV system (need only specify parameters, easy to use; restricted to
certain topics, limited adaptability)

9

Automatic generation based on source code (easy to use, no work; requires source in appropriate
language, display usually not adaptable)

7

Generation using a script (adaptable and designable; extra work) 7

Visual generation by drag and drop (highly adaptable, extremely flexible; takes much time,
changing a value may not adapt the algorithm)

7



Third Program Visualization Workshop 145

The last question of the survey was what are the tasks where a Graphical User Interface
(GUI) is essential and when it is not needed at all. Tasks in which a GUI is needed according
to the respondents are code/algorithm simulation, and customizing the visualization. Tasks
that GUI is not essential in are automatic production from code, and textual tracing (for
example, visualizing procedure calls).

4 Proposal for Measuring Effortlessness

In our previous study (Karavirta et al., 2002), we defined the effortless creation of algorithm
visualization based on the following two criteria: the possibility to use the system on-the-fly
basis, and available WYSIWYG user-interface. In addition, some of the categories presented
in Taxonomy of Price et al. (1993) were applied. Moreover, we compared several systems
with each other in order to discuss the relevance of such criteria. However, as we have already
stated in our previous paper, our original criteria set are quite subjective in their nature. One
of the main obstacles here is that the systems evaluated are usually targeted to different use
cases, and the comparison among them is unreasonable. Thus, the idea of this proposal is
to come up with a more objective set of requirements that measure effortless use of AV, and
gather further evidence to support our vision of effortlessness.

We sum the proposal up with the following three main categories that are the scope,
integrability, and interaction techniques. The idea is to apply all the categories to one single
system to come up with an estimate of system effortlessness.

Before applying the proposed categories, our proposition is that the task should be defined
problem based, thus leaving enough space for interpretation how to solve the problem with
the current system. Different systems might provide different perspectives on how to tackle
a problem. This is our starting point, and examples of such problem based tasks are, for
example, anything between “demonstrating quicksort algorithm” and “teaching sorting algo-
rithms”, but not “how to animate quicksort partition algorithm” (as the target system might
have some other alternative than animation to visualize the partition algorithm). Only after
we have agreed the context, it should be possible to evaluate and compare different systems
that are targeted to such activity.

Category Scope is basically defined in how wide context one can apply the system. The
results show clearly that the lack of time is the most common reason for not using AV as
widely as expected. Thus, a system providing a more broader context to apply is definitely
more attractive choice than many single purpose systems because it saves the time to install
and learn various tools that all can be applied only for a very limited scope. This can also
be seen from the responses for the question about ideal tool. The respondents had a vision of
“general tool” that combines several small tools together or comes true in several tools that
have similar usage (see, e.g., Table 1). Moreover, in Section ??, we can see that in the free
responses the scope of the creative use is not just a single specific topic, but a broader context.

The scope can have the following subcategories defined, for example, in terms of the
subdivisions of a course: lesson-specific, class-specific, domain-specific, and generic (not any
domain specific). A generic tool, however, can still be, for example, lesson-specific: the tool
provides tutorials and ready-made examples for some specific lesson (e.g., sorting algorithms).
The deeper the system covers the subcategories the better. The respondents of the survey
seem to be keen on downloading not only tools but also something they can use for their
class (e.g., data structures and algorithms), thus there is also need for good tutorials as well
as ready-made examples. Even if the examples of a generic tool do not contain the desired
learning objects, they should help one to figure out how to apply the tool to produce more
content. Similarly, a generic tool can have very small scope if there is no evidence that it will
be used for other domains (e.g., computer science) as well. A good indication that a system
has large scope is that a third party can produce content with it.



146 Third Program Visualization Workshop

Category Integrability covers topics such as easy installation, but it is a much more
broader category than that. We also include features such as customization of visualizations,
platform independence, internationalization, good tutorials, etc. Thus, this category lists the
features that makes the system attractive to use because there is a way to integrate the system
into a course. No single feature makes the system effortless in this sense, but together they
have to provide a meaningful way to make the system applicable. It is even better if there
are several ways to reach the goal as there are many content generation approaches that meet
with support (See Table 3).

Subcategories for integrability can be defined in terms of desired features such as described,
for example, in Rößling and Naps (2002). They rank the systems (among others) according to
the following requirements: interactive prediction support (e.g., stop-and-think questions or
algorithm simulation exercises), database support (for course management), and integration
of hypertext. The list is not exhaustive, but gives a hint what kinds of features are expected. If
there are many feasible features available, it means more ways to complete a task. Moreover,
the more ways there are to achieve the goal, the more effortless the use of the system is.
Ultimately, integrability is measured in terms of how well a third party can adopt the system
to their course.

Category interaction techniques. Even though a system has a very large scope, and
it is easy to integrate it to a course, it may lack this very important aspect. The trend is
towards activity where more interaction is required. Table 2 shows that there are many tasks
that all seem to be relevant at least to some extent. However, in order to cover as many
of these as possible, a tool must support more interaction than what comes with a simple
VCR type of animator panel that has backward, forward, and play buttons. This is true
with production of material for teaching (towards dynamic on-line illustrations instead of
static lecture illustrations) as well as production of material for practice sessions (towards
student interaction instead of tutor-centered demonstrations). It is not only important that
the interaction between the system and visualizer (content creator) be adequate, but the
system has to support interaction between the visualization and the end user as well. Here
the end user might be, for example, a learner that solves exercises.

Interaction techniques have two subcategories, which are the two point of views described
above: producer and consumer. Both point of views share some common interests, and
we could measure the systems in terms of usability. We do, however, not discuss this or
other human computer interaction (HCI) issues here any further. The taxonomy of Price
et al. (1993), for example, suggest categories to measure interaction methods, but as we have
argued in our previous study (Karavirta et al., 2002) they usually do not cover the various later
interaction methods very well. For example, it is very hard to categorize Matrix (Korhonen
and Malmi, 2002) that promotes visual algorithm simulation, a technique that allows the
user to interact with the underlying data structures in terms of direct manipulation, in the
taxonomy. Thus, instead of trying to rule out all the possible interaction techniques at
the moment and in the future, we look at the subcategories by determining how well they
correspond to the required uses cases (see, e.g., Table 2).

Table 3 implies that there is a number of content generation approaches a single system
can support, all of which were preferred by many of the respondents. Interestingly, the
most cited technique interactive simulation is the one that requires the most interaction.
Moreover, each approach requires possibly different interaction techniques. Thus, in general,
the more approaches a system supports the better. Or other way around, the more interaction
techniques (what ever they are) the system supports, the more content generation approaches
can be achieved with it. The question is, can we cover the task with the tool or not, i.e., does
the system support the required interaction techniques involved? However, the question how
well does systems support an approach is left to be measured in the other categories.

Even though the point of view in our survey was the producer’s perspective, we cannot
neglect the consumer who eventually uses the produced visualizations. Thus, we have to look



Third Program Visualization Workshop 147

into the interaction methods also from this point of view. We are not, however, interested
in the “can we cover” question anymore, but instead in how well does the interaction tech-
niques involved support the various learning strategies. There exist several indicators (see,
e.g., Kolb (1984); Felder (1996); Bloom (1956); Naps et al. (2003a)) that can be used to mea-
sure such things depending on the purpose of the evaluation. For example, one can apply
the engagement taxonomy introduced in Naps et al. (2003a) to evaluate the level of activity
in the learner–system communication. The levels introduced are viewing, responding, chang-
ing, constructing, and representing. A single system can support any combination of these,
and the more levels it supports the better. The effortlessness comes from the fact that as
our knowledge on how to support learning increases, we might want to change the level of
activity, but not the tool. If the tool supports many levels, there is a better chance that we
can continue to use it even though the requirements change. Moreover, several activity levels
might be attractive in a single course in order to be able to apply the same tool for several
levels (e.g., viewing in lectures, and changing in practice session).

5 Conclusions

In this paper, we have presented the results of the on-line survey conducted prior to the
PVW’04 conference. In addition, based on the results, we have proposed a taxonomical
approach to measure the effortlessness of algorithm visualization systems. The taxonomy
contains three main categories that are the scope, integrability, and interaction techniques.
The categories try to characterize the evaluated system by determining the extent of its scope
by answering whether a third party can produce content with it; integrability by measuring
how well a third party can adopt the system to their course; and interaction techniques by
looking at the system from producer’s and consumer’s perspective, and by determining how
well the system corresponds to several common use cases.

The survey had a smaller sample set compared to other similar surveys carried out in
the past five years. In addition, too few non-developers answered the survey and that might
have biased the results. However, we still believe that we have managed to gather data that
reliably supports our view of effortless AV creation.

One concern that raises up from the survey data was the observation that respondents
are keen to use AV quite passively, i.e., the instructor is active with the tool and the learner
is only passively viewing the visualization. In our opinion, however, the use of AV has much
more potential than that. In this sense, we must pay attention to the interaction techniques
supported by the AV tools since as long as there are no suitable systems available, the use of
AV retains its passive form.

Finally, it seems that the instructors have more time available to search AV tools than
they actually use. Thus, developers should pay attention to ease the system integration as
well as to promote the system use for different contexts.

In the future, our aim is to define a full taxonomy for effortlessness in algorithm visualiza-
tion by applying it to different use cases (producer’s perspective) based on this work. Some
of the existing algorithm visualization systems will be classified based on the use cases they
are suited for. We strongly believe that this kind of classification would help us design better
algorithm visualizations systems for different needs and increase users ability to select correct
tool for a specific problem. Also, when compared to e.g. Price’s Taxonomy (Price et al.,
1993) and applied on several systems this would give us knowledge about the consequences of
different design selections.

Acknowledgments

We thank Guido Rößling and other participants of PVW 2004 who commented the question-
naire and earlier versions of this paper.



148 Third Program Visualization Workshop

References

Ronald M. Baecker. Sorting Out Sorting: A Case Study of Software Visualization for Teaching Com-
puter Science, chapter 24, pages 369–381. The MIT Press, Cambridge, MA, 1998.

Benjamin S. Bloom. Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain. Addison
Wesley, 1956.

John Domingue. Software visualization and education. In Stephan Diehl, editor, Software Visualiza-
tion: International Seminar, pages 205–212, Dagstuhl, Germany, 2002. Springer.

Richard M. Felder. Matters of style. ASEE Prism, 6(4):18–23, 1996.

Jyrki Haajanen, Mikael Pesonius, Erkki Sutinen, Jorma Tarhio, Tommi Teräsvirta, and Pekka Vanni-
nen. Animation of user algorithms on the Web. In Proceedings of Symposium on Visual Languages,
pages 360–367, Isle of Capri, Italy, 1997. IEEE.

Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages & Computing, 13(3):259–290, June 2002.

Ville Karavirta, Ari Korhonen, Jussi Nikander, and Petri Tenhunen. Effortless creation of algorithm
visualization. In Proceedings of the Second Annual Finnish / Baltic Sea Conference on Computer
Science Education, pages 52–56, October 2002.

David A. Kolb, editor. Experiential Learning: Experience as the Source of Learning and Development.
Prentice-Hall Inc, New Jersey, USA, 1984.

Ari Korhonen and Lauri Malmi. Matrix — Concept animation and algorithm simulation system. In
Proceedings of the Working Conference on Advanced Visual Interfaces, pages 109–114, Trento, Italy,
May 2002. ACM.

Paul LaFollette, James Korsh, and Raghvinder Sangwan. A visual interface for effortless animation of
C/C++ programs. Journal of Visual Languages and Computing, 11(1):27–48, 2000.

Fernando Naharro-Berrocal, Cristobal Pareja-Flores, Jaime Urquiza-Fuentes, J. Ángel Velázquez-
Iturbide, and Francisco Gortázar-Bellas. Redesigning the animation capabilities of a functional
programming environment under an educational framework. In Second Program Visualization Work-
shop, pages 59–68, HornstrupCentret, Denmark, 2002.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris Hundhausen,
Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodgers, and J. Ángel Velázquez-Iturbide.
Exploring the role of visualization and engagement in computer science education. SIGCSE Bulletin,
35(2):131–152, June 2003a.

Thomas L. Naps, Guido Rößling, Jay Anderson, Stephen Cooper, Wanda Dann, Rudolf Fleischer,
Boris Koldehofe, Ari Korhonen, Marja Kuittinen, Charles Leska, Lauri Malmi, Myles McNally,
Jarmo Rantakokko, and Rockford J. Ross. Evaluating the educational impact of visualization.
SIGCSE Bulletin, 35(4):124–136, December 2003b.

Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of software visualization.
Journal of Visual Languages and Computing, 4(3):211–266, 1993.

Guido Rößling and Thomas L. Naps. A testbed for pedagogical requirements in algorithm visualiza-
tions. In Proceedings of the 7th Annual SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education, ITiCSE’02, pages 96–100, Aarhus, Denmark, 2002. ACM.

John T. Stasko. Using student-built algorithm animations as learning aids. In The Proceedings of the
28th SIGCSE Technical Symposium on Computer Science Education, pages 25–29, San Jose, CA,
USA, 1997. ACM.


