
Freeze-TCP: A true end-to-end TCP enhancement
mechanism for mobile environments

Tom Goff

James Moronski

D. S. Phatak

Electrical Engineering Department
State University of New York, Binghamton, NY 13902-6000

phatak@ee.binghamton.edu

Vipul Gupta

Sun Microsystems Inc.
Mountain View, CA 94043-1100

vipul.gupta@eng.sun.com

Abstract— Optimizing TCP (Transport Layer) for mobility has been re-
searched extensively. We present a brief summary of existing results which
indicates that most schemes require intermediaries (such as base stations)
to monitor the TCP traffic and actively participate in flow control in order
to enhance performance. Although these methods simulate end-to-end se-
mantics, they do not comprise true end-to-end signaling. As a result, these
techniques are not applicable when the IP payload is encrypted. For in-
stance IPSEC, which is expected to be standard under IPv6, encrypts the
entire IP payload making it impossible for intermediaries to monitor TCP
traffic unless those entities are part of the security association. In addition,
these schemes require changes (in the TCP/IP code) at intermediate nodes
making it difficult for the mobile clients to inter-operate with the existing
infrastructure.

In this paper we explore the “Freeze-TCP” mechanism which is a true
end-to-end scheme and does not require the involvement of any interme-
diaries (such as base stations) for flow control. Furthermore, this scheme
does not require any changes on the “sender side” or intermediate routers;
changes in TCP code are restricted to the mobile client side, making it pos-
sible to fully inter-operate with the existing infrastructure. We then outline
a method which integrates the best attributes of Freeze-TCP and some ex-
isting solutions. Performance results highlight the importance of pro-active
action/signaling by the mobile-host. The data indicate that in most cases,
simply reacting to disconnections tends to yield lower performance than
pro-active mechanisms such as Freeze-TCP.

Keywords— TCP, Mobile-IP, Wireless networks, Protocol design, imple-
mentation, analysis and performance.

I. I NTRODUCTION

With explosive growths in wireless services and their sub-
scribers, as well as portableand affordablecomputing devices;
it is natural that supporting user mobility in the Internet is a hot
and exciting issue that has attracted extensive efforts (for exam-
ple [1]). As a result of these intense efforts, since its beginnings
in early 90s, Mobile-IP has rapidly matured to a stage where it is
being proposed as a standard by the IETF [2]. Now that the ba-
sic mobile IP protocol is more or less standardized, researchers
are beginning to focus on performance enhancing mechanisms
at all layers of the networking stack in order to deliver high per-
formance at the end-user level.

This work was supported in part by NSF grants CDA-800828 and CDA-
9617355

TCP is a vital component of the Transport layer of the Internet
protocol suite. It is intended to provide connection oriented re-
liable service over an underlying unreliable network. It is there-
fore not surprising that TCP has received a lot of attention and
fairly large number of researchers have tried to optimize and
improve TCP for different environments characterized by het-
erogeneous subnetworks with widely different bandwidths and
latencies (for instance TCP over wireless links, satellite links,
slow serial links, etc.).

In the following, we first outline the problems with TCP in
mobile environments. Next, we summarize the proposed solu-
tions, indicating their strengths and weaknesses, and the current
status of TCP enhancements/modifications being considered for
adoption in future versions of TCP by an IETF working group
overseeing this area. We then explore the “Freeze-TCP” mech-
anism to enhance TCP for mobile environments and identify its
advantages and drawbacks.

II. TCP’S WINDOW MANAGEMENT AND PROBLEMS IN

MOBILE ENVIRONMENTS

TCP uses a sliding window mechanism to accomplish reli-
able, in-order delivery and flow/congestion control. Figure 1
shows this graphically, with the window sliding towards the
right. The window size (W) is determined as the minimum of
receiver’s advertised buffer space, and the perceived network
congestion. The sender allows up toW outstanding or unac-
knowledged packets at a time. This results in a “usable window”
size equal toW minus the number of outstanding packets.

Under normal conditions, the right edge of the window stays
fixed (when the packets in the current window remain unac-
knowledged), or advances to the right along with the left edge of
the window, as packets are acknowledged. If the consuming pro-
cess at the receiver end is slower than the sender, the receiver’s
buffers will begin to fill causing it to advertises progressively
smaller and smaller window sizes. Eventually the receiver may
run out of buffer space in which case it advertises a window

�����
�����
�����
�����

�����
�����
�����
�����

Window

Usable Window

Outstanding

Acknowledged

DATA DATA

Fig. 1. TCP Window Management

size of zero.

Upon seeing an advertised window size of zero, the sender
should freeze all re-transmit timers and enter a persist mode.
This involves sending probes (called the Zero Window Probes
or ZWPs) until the receiver’s window opens up. In a strict sense,
each ZWP should contain exactly one byte of data [12] but many
TCP implementations including those in Linux and FreeBSD
do not include any data in their ZWPs. The interval between
successive probes grows exponentially (exponential back-off)
until it reaches 1 minute, where it remains constant. Because
these probes are not delivered reliably, the senderdoes notdrop
its congestion window if a Zero Window Probe itself gets lost.
Eventually the receiver responds to a ZWP with a non-zero win-
dow size, and the sender will continue transmission using a win-
dow size consistent with the advertised value.

An exception to this normal window management operation
can occur if the receiver “shrinks” its advertised window, that is
moves the right edge towards the left. This can suddenly create
a negative usable window size which might confuse the sender.
While this behavior is discouraged, the sender must recover if
it occurs. As stated in [3] and [4], the sender is allowed to
retransmit any outstanding packets (up toW), but should not
send new data. Also, any lost packets from within the old win-
dow (and now to the right of the new window because the right
edge moved leftward) should not cause the congestion window
to drop. This means that if the receiver shrinks its window to
zero, all outstanding packets can be lost without affecting the
sender’s congestion window and the sender should enter the per-
sist mode described above.

A. Problems with TCP in mobile environments

TCP was conceived for wired, fixed topologies which are
fairly reliable. Hence it operates on the assumption that any
losses are due to congestion, which is reasonable for a reli-
able infrastructure. In mobile environments, however, losses are
more often caused by
(i) The inherently higher bit error rates of the wireless links,
and

(ii) Temporary disconnections (due to signal fading or other
link errors; or because a mobile node moves, etc).

To better illustrate the second item above, it should be noted
that mobility is distinct from wireless connectivity. For instance,
a user working in the office on a notebook wants to move (with
the notebook) to a laboratory or a meeting room at the other end
of a building or in the next building, where the IP addresses can
be on different subnets; possibly across one or more firewalls.

FTP, Telnet sessions and other connections can certainly remain
alive for a few minutes it might take to go from one end of a
building to another. The idea behind mobility is that such open
connections should be retrieved seamlessly despite the move and
a change of the underlying IP address.

Even if a single packet is dropped for any reason, the current
standard implementation of TCP assumes that the loss was due
to congestion and throttles the transmission by bringing the con-
gestion window down to the minimum size. This, coupled with
the TCP’s slow-start mechanism means that the sender unnec-
essarily holds back, slowly growing the transmission rate, even
though the receiver often recovers quickly form the temporary,
short disconnection. This is illustrated in Figure 2 where it is
seen that the network capacity can remain unutilized for a while
even after a reconnection.

Sender

Receiver

D
is

co
nn

ec
tio

n

Fig. 2. TCP Slow-Start

III. E XISTING SOLUTIONS

Several approaches have been proposed to overcome these
shortcomings of standard TCP. The Berkeley Snoop module [5],
[6] resides on an intermediate host (preferably the base station),
near the mobile user. It caches packets from the sender and in-
spects their TCP headers. Using the snooped information, if
the module determines that a packet has been lost, it retransmits
a buffered copy to the mobile node (which is intended to be a
local retransmission over one or a few links). It maintains it’s
own timers for retransmission of buffered packets, implements
selective retransmissions, etc.

Indirect TCP (I-TCP) [7] proposes to split the connection be-
tween a fixed sender host (FS) and mobile host (MH) at a mo-
bility support station (which should ideally be the base station,
BS). The data sent to MH is received, buffered and ACKed by
BS. It is then the responsibility of BS to deliver the data to MH.
On the link between BS and MH, it is not necessary to use TCP.
One can use any other protocol optimized for wireless links.
MTCP proposed in [8] is similar to I-TCP and also splits a TCP
connection into two: one from MH to BS and the other from BS
to FH. The MH to BS connection passes through a session layer
protocol which can employ a selective repeat protocol (SRP)
over the wireless link.

In [9], a method is proposed to alleviate the performance
degradation as a result of disconnections due to handoffs. If
packets are lost during handoff, the standard TCP at the sender
end drops its congestion window and starts a timeout. If this
timeout period is longer than the handoff disconnection, the mo-
bile client does not receive any data until the timeout period is
over. To reduce this waiting period, [9] makes the mobile host
re-transmit 3 copies of the ACK for the last data segment it re-
ceived prior to the disconnection, immediately after completing
the handoff. This causes the sender to immediately re-transmit
one segment, which eliminates the waiting period.

In [10] it is proposed to delay the duplicate ACKs for a miss-
ing packet (which could trigger a fast retransmission from the
sender) in order to allow any special local retransmissions on
the wireless links to work, before forcing the sender to fast-
retransmit the missing packet(s). In [11] an explicit bad-state
notification (EBSN) scheme is presented, wherein, for each
failed attempt to send a packet to a MH, the base station (BS)
sends an explicit bad-state notification to the sender. Upon the
receipt of each EBSN, the sender resets retransmit timer(s) to
original value(s). The idea is that these explicit notifications pre-
vent the sender from dropping congestion window (only when
the TCP code on the sender side is modified accordingly).

It is possible to exploit TCP’s response to a receiver shrinking
its window to zero in order to enhance performance in presence
of frequent disconnections. The main advantage is that when
the sender enters persist mode, it freezes all packet retransmit
timers and does not drop the congestion window so that the idle
time during the slow-start phase can be avoided. M-TCP pro-
posed in [13] uses this idea. It also splits up the connection
between a sender (FH) and mobile receiver (MH) in two parts:
one between FH and BS (base station/mobility support station)
and one between BS and MH, which uses a customized wireless
protocol.

Whenever the base station (BS) detects a disconnection or
packet loss, it sends back an ACK to the sender (FH) with a
zero window size to force the sender into persist mode, and not
drop it’s congestion window. To maintain end-to-end semantics,
the BS relays ACKs back to the sender only when the receiver
(MH) has ACKed data. This can lead to problems: for instance,
assume that the sender has transmitted one widow full of pack-
ets and is waiting for ACKs. Suppose the receiver receives them
all and ACKs the last transmission (TCP ACKs are cumulative)
and then immediately gets disconnected. If the BS relays back
the ACK to sender, it will keep transmitting eventually lead-
ing to packet loss and congestion window throttling. One could
send a duplicate ACK for the last segment, advertising a win-
dow size of zero, but such duplicate ACKs may be ignored by
the sender. Hence, the M-TCP scheme proposes that the base
station hold back the ACK to the last byte. For instance, if the
MH has ACKed bytes up to and including sequence numberX,
the BS ACKs bytes only up to (X� 1) to the sender. It holds
back the ACK for the last byte (X) so that if a disconnection
is detected, that ACK can be relayed back to the sender, with a
zero window size. Mechanisms to “release” the last-byte-ACK
(and the motivations behind them), as well as other details can
be found in [13].

A. Strengths and Drawbacks of Existing Solutions

Next we consider major factors (not necessarily in the order
of importance) that should be considered in assessing any TCP
enhancement scheme.

(1) One of the main considerations is inter-operation with the
existing infrastructure. To realize this goal, ideally, there should
not be any change required at intermediate routers or the sender
because these are likely to belong to other organizations, mak-
ing them unavailable for modifications. All approaches that split
the connection into two parts (this includes all the schemes men-

tioned in the subsection above, except [10] and [11]) require
substantial modification and processing at an intermediate node
(BS). Some schemes, such as EBSN [10], also require modifica-
tions at the sender side. This makes it difficult for these schemes
to inter-operate with the existing infrastructure.

(2) The second important issue is encrypted traffic. As network
security is taken more and more seriously, encryption is likely
to be adopted very widely. For instance, IPSEC is becoming
an integral part of IPv6, the next generation IP protocol. In such
cases the whole IP payload is encrypted, so that the intermediate
nodes (be it the base station or another router) may not even
know that the traffic being carried in the payload is TCP. Any
approach (such as SNOOP, I-TCP, MTCP, M-TCP ...) which
depends on the base station doing a lot of mediation will fail
when the traffic is encrypted.

(3) Even more serious, sometimes data and ACKs can take dif-
ferent paths (for instance, in satellite networks). Schemes based
on “intermediary” involvement will have serious problems such
a case.

(4) Yet another consideration is maintaining true end-to-end se-
mantics. I-TCP and MTCP do not maintain true end-to-end se-
mantics. M-TCP in [13] does maintain end-to-end semantics,
but requires a substantial base-station involvement nonetheless.
Thus there is a need for true end-to-end signaling without in-
volving any intermediary.

(5) Even if one assumes that issues (1)–(4) above are not rel-
evant, and that an intermediary (such as a base station) can be
brought in for performance enhancements; there is still a need
to consider whether the intermediary will become the bottle-
neck. It is clear that the base stations (BS) in SNOOP, I-TCP,
MTCP, M-TCP will all have to buffer at least some amount of
data (to perform local retransmission, etc.) and do some ex-
tra processing for each connection going through them. If hun-
dreds or thousands of nodes are mobile in the domain of a base
station, it could get overwhelmed with the processing of traffic
associated with each connection. When a mobile node moves
from the domain of one BS to another, the entire “state” of the
connection (including any data that was buffered for retransmis-
sions) needs to be handed over to the new base station. This
can cause significant amount of overhead and might lead to the
loss of some packets and the sender dropping congestion win-
dow, which would defeat the original purpose behind the whole
endeavor.

On the positive side, if the above issues can be ignored, then
most of the proposed solutions (especially M-TCP) do yield per-
formance improvements (although holding back a byte in the
M-TCP scheme might force re-packetization at the sender end,
thereby degrading the performance). In [13] it was observed
that SNOOP, I-TCP, MTCP handle bit-errors well but do not ef-
fectively deal with frequent disconnections of sizable duration
or frequent handoffs. The delayed duplicate ACKs scheme [10]
was found to improve performance in presence of occasional
transmission losses, but it can degrade performance in case of
actual congestion losses [11]. Likewise, the explicit bad-state
notification (EBSN) scheme works well if the “bad state” lasts
for significant duration or when large error bursts occur. How-
ever, it may not be as effective as the SNOOP method for ran-

SNOOP ITCP [7] & M–TCP Delayed [10] EBSN [11] Our
[5], [6] MTCP [8] [13] Dupacks Freeze-TCP

Requires intermediate
node TCP mods? yes yes yes no yes no

Handle encrypted traffic? no no no yes no yes
End-to-end TCP semantics yes no no yes no yes

Handle long may run out
disconnections no of buffers yes no yes yes

Frequent no handoff handoff may be no yes yes
disconnections costly costly

Handle high BER yes yes yes no no no

TABLE I

Characteristics of various mobile TCP solutions (BER refers to bit-error-rate).

dom occasional errors [11]. We have summarized the character-
istics of some of the proposed solutions in Table I.

A very good summary of current state-of-the-art approaches
to optimizing the transport layer for mobile environments can be
found in the Internet Draft [14]. In that draft only SNOOP plus
SACK is being recommended for adoption, after issues related
to IP encrypted payloads (such as those in IPSEC) have been
resolved. Some recommendations from the draft to resolve these
issues are:

(i) Make the SNOOPing base station a party to the security as-
sociation between the client and the server, or

(ii) Terminate the IPSEC tunneling mode at the SNOOPing
base station.

The draft also recommends adopting delayed dupacks when
that technique eventually stabilizes through further research and
experimentation. Likewise, the draft recommends only those
schemes that require changes at base stations and mobile ends
be further researched.

IV. OUR FREEZE-TCP APPROACH

The main idea behind Freeze-TCP is to move the onus of sig-
naling an impending disconnection to the client. A mobile node
can certainly monitor signal strengths in the wireless antennas
and detect an impending handoff; and in certain cases, might
even be able to predict a temporary disconnection (if the signal
strength is fading, for instance). In such a case, it can advertise
a zero window size, to force the sender into the ZWP mode and
prevent it from dropping its congestion window. As mentioned
earlier, even if one of the zero window probes is lost, the sender
does not drop the congestion window [12]. To implement this
scheme, only the client’s TCP code needs to change and there
is no need for an intermediary (no code changes are required at
the base station or the sender).

If the receiver can sense an impending disconnection, it
should try to send out a few (at least one) acknowledgements,
wherein it’s window size is advertised as zero (let an ACK with
a zero receiver window size be abbreviated “ZWA”, i.e., Zero
Window Advertisement). The question is: how much in ad-
vance of the disconnection should the receiver start advertising

a window size of zero? This period is in a sense the “warning pe-
riod” prior to disconnection. Ideally, the warning period should
be long enough to ensure that exactly one ZWA gets across to
the sender. If the warning period is any longer, the sender will
be forced into Zero Window Probe mode prematurely, thereby
leading to idle time prior to the disconnection. If the warning
period is too small, there might not be enough time for the re-
ceiver to send out a ZWA which will cause the sender’s conges-
tion window to drop due to packets lost during the disconnection
(which, in turn leads to some idle-time/underutilization after the
reconnection).

Given this, a reasonable warning period is the round-trip-time
(RTT). During periods of continuous data transfer, this allows
the sender to transmit a packet and then receive its acknowl-
edgment. Experimental data corroborates this: warning periods
longer or shorter than RTT led to worse average performance
in most cases we tested. Note that Freeze-TCP is only useful
if a disconnection occurs while data is being transfered (as op-
posed to when the receiver is idle for some time and then gets
disconnected), which is the most interesting case anyway.

Since the ZWPs are exponentially backed off, there is the pos-
sibility of substantial idle time after a reconnection. This could
happen, for instance, if the disconnection period was long and
the the reconnection happened immediately after losing a ZWP
from the sender. In that case, the sender will go into a long back-
off before sending the next probe. Meantime the receiver has
already reconnected, but the connection remains idle until the
sender transmits its next probe. To avoid this idle time, we also
implement the scheme suggested in [9]. As soon as a connec-
tion is re-established, the receiver sends 3 copies of the ACK for
the last data segment it received prior to the disconnection. This
scheme is henceforth abbreviated as “TR-ACKs” (Triplicate Re-
connection ACKs). Note that even in standard TCP, packet re-
transmissions are exponentially backed off. Therefore the post
reconnection idle time can occur there as well. For a fair com-
parison, the Standard TCP on the receiver side was also modi-
fied to optionally send TR-ACKs. This way, the effect of only
the Freeze-TCP mechanism (i.e., forcing the sender into ZWP
modeprior to a disconnection) can be isolated.

Unlike M-TCP, there is no advantage to holding back the

ACK to the last byte. For M-TCP it was useful because even
when the mobile client was disconnected, the base station could
still signal the sender on behalf of the client. In the case of
Freeze-TCP, since changes are restricted to the client end, hold-
ing back the ACK for the last byte does not help. Note that
Freeze-TCP will avoid any re-packetization penalty at the sender
end (which M-TCP might incur because it holds back the ACK
to the last byte).

Figures 3 and 4 help estimate the performance gain possible
due to the Freeze-TCP technique.

RTT

ts

W unACKed packets
can be sent

Sender

Receiver

Fig. 3. Relation betweents, RTT andW

In Figure 3,ts is the time required to “put or write the packet
on the wire”, RTT is the total round trip delay including thets
delays at sending, receiving as well as any intermediate nodes;
andW is the sender’s window. From the figure, it is seen that if
any idle periods are to be avoided:

W � ts� RTT or W�
RTT

ts
(1)

Sincets�
packet-size
bandwidth (ignoring processing/queuing delays inter-

nal to the host, collisions in case of shared medium, etc.) it is
seen that the [delay� bandwidth] product is important in deter-
mining how big the congestion windowW needs to be if under-
utilization of network capacity is to be avoided.

Assuming
RTT

ts
� 1; W� 1 is required for (2)

full network capacity utilization. Figure 4 pictorially illustrates
the increased throughput under this condition, when Freeze-
TCP prevents sender side window,W, from dropping and re-
growing (due to packet losses).

From the figure it can be seen that the (approximate) number
of extrapackets transferred by the Freeze-TCP scheme is given
by

Extra Segments=
W2

8
+W lgW�

5W
4
+1 (3)

In addition to (2), the above expression (3) also assumes that
upon a disconnection (and the loss of packets), regular TCP
drops the congestion window all the way down to 1, and first
grows it by a factor of 2 each time an ACK is received, until it
reachesW=2. From there on, it is incremented by 1 each time
an ACK is received until it reaches the same sizeW prior to
disconnection. This congestion window growth mechanism is

[lg(W/2) + W/2] Round Trips

Sender

Receiver

Sender

Receiver

D
is

co
nn

ec
tio

n

D
is

co
nn

ec
tio

n

Freeze-TCP

Regular TCP

Fig. 4. Illustration of increased throughput due to Freeze-TCP

dubbed “slow-start congestion avoidance” and is adopted in 4.3
BSD Reno release and onwards [12].

It should be noted that (3) is an approximate expression, ig-
noring collisions, and other factors that might affect the traffic.

A. Experimental Setup

We carried out experiments by modifying the Linux 2.1.101
TCP source code. The receiver side Freeze-TCP mechanism
was implemented on a PC designated to emulate the mobile
host. All performance measurements used client-server pro-
grams specifically written to emulate frequent disconnections
during data transfer and measure the resulting data transfer rates
and delays.

The server is on the “sender side” without any changes to its
underlying TCP code. It runs as a normal user process with-
out any special privileges. The server could be operated in two
modes:

(i) Continually send data until the client disconnects, or

(ii) Only send a stream of specified length to the client

In either mode the segment size can be specified by the client.
In addition, Each segment has its own serial number included as
data, along with a check-sum. This way, the client can easily
monitor corrupt or missing packets.

The client runs on the “receiver side” which emulates a mo-
bile node implementing the Freeze-TCP scheme. The client
maintains a time ordered list of events to be executed in course
of the experiment; such as FreezeOn (start advertising a zero
window size), InterfaceOff (simulate a disconnection), Freeze-
Off, InterfaceOn, Count (which prints the amount of data re-
ceived since last Count event as well as cumulative time and
data bytes since the start of the experiment); etc.

A disconnection is simulated by deliberately corrupting the IP
checksum (in the IP header) if a kernel variable is set, in reality
this could be easily linked to signal strengths measured by the
antenna(s). This way, incoming packets never reach the mobile
node’s TCP layer; and any TCP packets that are sent out by the
mobile node are also dropped by peer IP layers; very closely
simulating a disconnection (from the TCP layer’s perspective).
The InterfaceOff and On events simply set and unset this flag.
This mechanism is general and independent of the specific con-
nection type (Ethernet, SLIP or whatever) as well as the network
interface card.

Disconnect Transfer time (Sec), averaged over 10 runs (100 disconnection events) Overall Gain
time Triplicate Reconnection (TR)-Acks No TR-Acks (Freeze-TCP + TR-Acks

Standard TCP Freeze-TCP Standard TCP Freeze-TCP over Normal TCP)
2.6 ms 18.7 13.0 (+ 30.4%) 18.6 17.1 (+ 8.1%) [+ 30.1%]
30 ms 17.9 13.2 (+ 26.2%) 17.8 16.9 (+ 5.4%) [+ 25.8%]
0.1 s 18.4 13.8 (+ 25.2%) 18.7 17.5 (+ 6.3%) [+ 26.2%]
0.5 s 19.4 17.3 (+ 10.9%) 21.2 21.8 (– 3.2%) [+ 18.4%]
1 s 25.7 22.4 (+ 12.7%) 28.2 28.6 (– 1.5%) [+ 20.6%]
2 s 40.0 32.5 (+ 16.6%) 66.1 66.6 (– 0.8%) [+ 50.8%]
5 s 71.0 63.6 (+ 10.4%) 116.3 95.0 (+ 18.4%) [+ 45.3%]
10 s 143.8 116.6 (+ 18.9%) 190.6 184.3 (+ 3.3%) [+ 38.8%]

TABLE II
Local host (3 hops). Number of disconnections per run = 10. Interval between events = 1 s.
Data stream size = 10 MBytes. Effective throughput of 10 Mbps Ethernet� 1 MBytes/sec.

Warning Period = 2.6 ms� RTT for 1000 byte packets.

Between FreezeOn and InterfaceOff events (i.e., in the warn-
ing interval prior to disconnection) data segments from the
sender are accepted as usual, but the receiver “window size” is
advertised as zero in all acknowledgements sent out during this
period. This accommodates some of the overflow that happens
even after the sender has seen a ZWA. Such overflow was found
to occur in all TCP implementations except in FreeBSD and is
caused by

(i) Packets already in flight which the receiver getsafter trans-
mitting the ZWA, and

(ii) The sender getting confused (in most implementations) be-
cause of the sudden window shrinkage which in turn causes it’s
usable window to become negative. In this situation, as per
RFC’s [3] and [4], the sender is allowed to empty out the packets
in the previous non-negative sized window.

The client can be operated in two modes:

(i) Send a triplicate ACK (TR-ACK) after a reconnection, i.e.,
immediately after every InterfaceOn event, and

(ii) “No TR-ACK” or standard mode, where the receiver does
not send extra ACKs after a reconnection, it just waits for the
next segment from the sender.

The functions required to implement the FreezeOn/Off, Inter-
faceOn/Off and TR-ACK events were added to the TCP code
in the kernel and made available to the client program as sys-
tem calls. At the start, the client program reads all the events
along with their execution times as well as the desired opera-
tional modes (TR-ACK vs. No TR-ACK, fixed data length or
fixed time duration, etc.) from an input file. This gives a lot
of flexibility to explore different warning periods, operational
modes, etc., by simply changing the input file. Note that the
warning periods (equal to RTT) were evaluated for each connec-
tion and operational mode before running the client program.

B. Experimental Data

As mentioned above, the performance of the Freeze-TCP
scheme depends on the RTT=ts ratio which is proportional to
[delay� bandwidth]. The higher this ratio, the more effective

this mechanism can be. To illustrate these trends we consider the
following environments which span a large range and variety of
bandwidths: 10 Mbps Ethernet, 100 Mbps Ethernet, and 38.4
Kbps PPP. To vary the round-trip delay, the 10 Mbps Ethernet
and 38.4 Kbps PPP experiments were run against local (same
room) as well as distant (across the county) servers. The RTT=ts
ratios for each case are listed below.

Local Media Server RTT=ts
10 Mbps Ethernet local 2
10 Mbps Ethernet distant 63
100 Mbps Ethernet local 4
38.4 Kbps PPP local 0.25
38.4 Kbps PPP distant 0.3

The 10 Mbps Ethernet experiments were performed to emu-
late a mobile host in a wireless Ethernet cell, where, under light
load conditions, the bandwidth available can be comparable to
wired Ethernet. In addition, 10 Mbps Ethernet is the most com-
monly used local network technology. Since a local network
segment is highly “controllable”, it possible to guarantee any
desirable set of traffic patterns. Hence, experiments on the local
networks serve to quickly bring out the intrinsic trends without
interference from true congestion and other unpredictable events
found in the Internet at large. Moreover, it is likely that mobile
nodes do most of their data communication with a server that is
likely to be the base station and servers attached to it (most likely
supplied by the ISP). Hence it is useful to look at the perfor-
mance across a small number of 10 Mbps Ethernet hops, which
is the first set of experiments conducted.

In this set we performed experiments with several servers and
present the results for a local host running Solaris 2.6 and a dis-
tant host running AIX 4.2. Each experiment was repeated 10
times with base and Freeze-TCP cases running alternately, so
that for every bases case run, the corresponding Freeze-TCP
case happened under almost identical conditions (time of day,
network traffic, etc.). The results are shown in Tables II and III.

Table II shows that the Freeze-TCP scheme enhances perfor-
mance substantially. Besides showing the overall gain [i.e., the
performance of Freeze-TCP along with TR-ACKs as compared

Disconnect Disconnections Data Stream Transfer time (Sec), averaged over 10 runs
time per run/event Length (Bytes) Triplicate Reconnection (TR)-Acks

repetition interval Standard TCP Freeze-TCP
2.6 ms 8 10 M 103.4 88.9 (+ 14.1%)
30 ms 8 10 M 114.2 90.8 (+ 20.6%)
0.1 s 8 10 M 109.3 90.1 (+ 17.6%)
0.5 s 8 10 M 109.9 92.2 (+ 16.1%)
1 s 8 10 M 113.0 96.6 (+ 14.5%)
2 s 8 10 M 116.1 106.8 (+ 8.10%)
5 s 8 10 M 140.4 134.8 (+ 3.99%)

TABLE III
Remote host (17 hops, across the country). Effective throughput of 10 Mbps Ethernet� 10 KBytes/sec.

Warning Period = 85 ms� RTT for 1000 byte packets.

Disconnect Number of Interval Data Stream Transfer time (Sec), averaged over 10 runs
time Disconnections Length (Bytes) Triplicate Reconnection (TR)-Acks

Per run Standard TCP Freeze-TCP
0.4 ms 11 75 ms 15 M 2.35 1.45 (+ 38.4%)
1 ms 8 75 ms 15 M 23.5 14.5 (+ 38.1%)
10 ms 10 50 ms 10 M 1.98 1.13 (+ 43.3%)
0.1 s 8 160 ms 15 M 3.40 2.30 (+ 32.4%)
0.4 s 10 160 ms 20 M 8.81 6.12 (+ 30.6%)
1 s 8 160 ms 20 M 13.1 9.96 (+ 23.9%)
2 s 8 160 ms 20 M 26.3 17.9 (+ 31.8%)

TABLE IV
Local host (2 hops). Effective throughput of 100 Mbps Ethernet� 10 MBytes/sec.

Warning Period = 0.3 ms� RTT for 1000 byte packets.

with the plain/standard TCP implementations found on all Unix
flavors today], we have also evaluated the performance enhance-
ments (� percentage improvements) for the TR-ACK and No
TR-ACK case separately. In other words, standard TCP with
TR-ACK is compared with Freeze-TCP with TR-ACK (in col-
umn 3), and Standard TCP without TR-ACK (which is what is
found in all current implementations) is compared with Freeze-
TCP without the TR-ACK (in column 5). This helps isolate the
performance enhancements due to the Freeze-TCP mechanism
(i.e., putting the sender into the Zero Window Probe mode prior
to a disconnection) from that due to the TR-ACKs. The data
demonstrates that the Freeze-TCP mechanism by itself can yield
a sizable performance enhancement. In addition, it can be used
along with other techniques (such as TR-ACKs), to further en-
hance the gain.

Table III shows the results obtained in experiments with a
very remote host: 17 hops, and geographically across the coun-
try. Once again, it is seen that Freeze-TCP leads to better perfor-
mance in almost all cases. Here, there is more variability in the
data which is attributable to the unpredictable traffic conditions
in the Internet at large. However, the main trends are same as
those seen in Table II. Notice that in most cases using Freeze-
TCP leads to substantially higher performance. Here too, the
data from the No TR-ACKs cases showed that Freeze-TCP with

TR-ACKs leads to a substantial improvement over standard TCP
(which does not have TR-ACKs), as in Table II. However, that
data does not lead to new insights and hence, it has been ex-
cluded from the table for the sake of clarity and brevity. In fact
the remaining data (which is presented in the table) is the most
pessimistic because it compares Freeze-TCP using TR-ACKs
with standard TCP using TR-ACKs, thereby isolating the en-
hancements due to the Freeze-TCP mechanism alone.

The experiments with remote hosts clearly demonstrate the
inter-operability of Freeze-TCP with the existing infrastructure:
the server can be anywhere; all the changes to TCP code are
confined to the client which was under our control (none of the
remote servers were under our control, we only had access to
normal user accounts there, to run the TCP server application as
an ordinary user process).

As both tables show, in the cases where Freeze-TCP does not
give better results, the loss is very small: (no more than 3.2%).
This is the main advantage of Freeze-TCP: most of the time it
leads to better performance and the enhancement can be sub-
stantial, while the few times it leads to worse results, the loss is
marginal.

To illustrate how the results vary with bandwidth, the next
set of experiments were done on a local 100 Mbps Ethernet
segment. Because of the bandwidth (10 times that of normal

Disconnect Transfer time (Sec), averaged over 10 runs (120 disconnection events) Overall Gain
time Triplicate Reconnection (TR)-Acks No TR-Acks (Freeze-TCP + TR-Acks

Standard TCP Freeze-TCP Standard TCP Freeze-TCP over Normal TCP)
2.6 ms 185.7 178.8 (+ 3.7%) 183.1 179.7 (+ 1.9%) [+ 2.35%]
30 ms 185.2 181.5 (+ 2.0%) 181.8 177.4 (+ 2.4%) [+ 0.17%]
0.1 s 190.2 176.7 (+ 7.1%) 178.2 183.0 (– 2.6%) [+ 0.84%]
0.5 s 178.3 179.3 (– 0.6%) 188.4 189.2 (– 0.4%) [+ 4.83%]
1 s 196.0 193.7 (+ 1.1%) 198.2 193.7 (+ 2.2%) [+ 2.27%]
2 s 206.9 208.3 (– 0.7%) 234.4 217.5 (+ 7.2%) [+ 11.1%]
5 s 243.5 240.1 (+ 1.4%)

TABLE V
Low Bandwidth data: Local host (3 hops). Number of Disconnections per run = 12.

Interval between successive events = 10 s. Data stream size = 500 KBytes.

Effective throughput of 38.4 Kbps PPP� 4800 Bytes/sec. Warning period = 650 ms� RTT for 1000 byte packets.

Disconnect Transfer time (Sec), averaged over 10 runs (100 disconnection events) Overall Gain
time Triplicate Reconnection (TR)-Acks No TR-Acks (Freeze-TCP + TR-Acks

Standard TCP Freeze-TCP Standard TCP Freeze-TCP over Normal TCP)
2.6 ms 76.9 75.0 (+ 2.5%) 73.4 78.7 (– 7.3%) [– 2.18%]
30 ms 81.1 76.8 (+ 5.2%) 74.7 75.6 (– 1.2%) [– 2.81%]
0.1 s 78.6 76.1 (+ 3.1%) 77.2 80.2 (– 3.8%) [+ 1.42%]
0.5 s 87.3 86.2 (+ 1.2%) 92.8 93.5 (– 0.7%) [+ 7.11%]
1 s 95.5 97.9 (– 2.5%) 106.6 103.7 (+ 2.7%) [+ 8.16%]
2 s 111.4 110.5 (+ 0.8%) 124.0 114.1 (+ 8.0%) [+ 10.9%]
5 s 153.9 135.8 (+ 11.7 %) 182.9 178.3 (+ 2.5%) [+ 25.8%]

TABLE VI
Remote host (24 hops, across the country). Number of Disconnections per run = 10.

Interval between successive events = 5 s. Data stream size = 200 KBytes.

Effective throughput of 38.4 Kbps PPP� 3200 Bytes/sec. Warning period = 780 ms� RTT for 1000 byte packets.

Ethernet), the interval between successive events was lowered
by a factor of about 10 (otherwise the whole data stream would
quickly get transferred in one of the continuous periods between
disconnections, prematurely ending the experiments). As ex-
pected, Table IV shows that the benefits of using Freeze-TCP are
significant in high bandwidth environments. Also, the 100 Mbps
TR-ACKs results illustrate better improvements on average than
the 10 Mbps TR-ACKs data. The substantial performance gains
are facilitated by the high bandwidth, which leads to a higher
[delay� bandwidth] product (and higher RTT=ts ratio). Since
the [delay� bandwidth] product required to “fill the pipe” is
greater than that of 10 Mbps Ethernet, higher window sizes are
required to saturate the network. Consequently, the gain that can
be realized when such a large congestion window is prevented
from dropping is also higher. This is consistent with equation
(3) which shows that the gain grows (essentially) quadratically
with the window sizeW.

The final set of experiments emulate a mobile client connect-
ing via a wireless modem; resulting in data rates that are much
lower than wireless Ethernet LANs. To simulate such low link
speeds, we connected the receiver (emulating the mobile client)
to a router with a serial link using the PPP protocol. The se-
rial link makes it possible to operate at any desired speed. The

results are shown in Tables V and VI.

As the tables show, the current implementation of Freeze-
TCP can lead to performance enhancement in several cases. It
rarely performs significantly worse than normal TCP, although it
does appear to yield almost similar performance in many cases.
This happens due to the following reasons:

(1) The RTT=ts ratio is low to begin with (an order of magnitude
lower than 10 Mbps Ethernet as seen in the list at the beginning
of this section). In other words, the network can be saturated
fairly quickly, with small sized windows. Consequently, the gain
that can accrue from preventing the congestion window from
falling is not as high as Ethernet environments where the ratio is
much higher.

(2) Due to the large bandwidth mismatch between Ethernet and
PPP, the intermediate router at the other end of the PPP link
drops packets as its buffers become full. This was observed by
running thetcpdump utility on a third neutral observer machine
on the Ethernet side of the router while the experiments were
in progress. These periodic packet drops cause the sender to
drop it’s congestion window, irrespective of what the receiver
does. Hence, using the Freeze-TCP mechanism to prevent the
window from falling during disconnections is not very effec-

tive since it periodically falls anyway (because the intermediate
router drops packets).

We optimized the kernel on the router to enhance it’s rout-
ing performance, but that did not lead to a noticeable change in
the overall performance. Then we kept reducing the maximum
window size which the receiver advertises. The idea is that with
small window sizes, the number of outstanding packets allowed
is small, thereby reducing the likelihood of buffer-overflow at
the intermediate router. It turns out that the window size (W)
required to bring down the router packet drops to a couple of
segments once in a while is so small that preventing the window
from falling (by using Freeze-TCP) is not effective.

The important point of all the data is that even when Freeze-
TCP is not effective, it does not worsen performance by a no-
ticeable amount. The few cases in which it loses, the losses are
marginal. This indicates that the overhead due to the Freeze-
TCP mechanism is very small: even if it fails to enhance per-
formance, it will at least render baseline (standard TCP like)
performance.This is a win, no-loss situation!

Finally we would like to point out that for all the data pre-
sented, the number of disconnections was kept equal in both
base and Freeze-TCP cases, even though the base case typically
takes a longer time to execute than the corresponding Freeze-
TCP case. In reality, connections with longer transfer times
are likely to suffer more disconnections. This means the data
is highly pessimistic and illustrates a worst-case scenario.

V. DISCUSSION ANDCONCLUSION

We illustrated the Freeze-TCP mechanism to enhance TCP
throughput in the presence of frequent disconnections (and re-
connections) which characterize mobile environments. It is a
true end-to-end signaling scheme and does not require any inter-
mediaries (such as base stations) to participate in the flow con-
trol. Furthermore, it does not require any changes to TCP code
on the sending side. Changes to TCP code are confined entirely
to the receiver side and are easy to implement. It exploits exist-
ing mechanisms already provided in the TCP/IP protocols (such
as receiver’s window size, SACK, etc.) to enhance TCP’s per-
formance. Hence there is little or no overhead of any kind. Thus
any performance gains are almost “free” (almost no overheads
or tradeoffs). Even more important, complete inter-operability
with the existing infrastructure is guaranteed.

In order to exploit this mechanism, the network stack needs to
be aware of mobility (at least to some extent). For instance, the
NIC vendors need to provide some details of their roaming and
handoff algorithms to TCP code developers. In essence, some
cross-layer (layers of the networking stack) efforts and informa-
tion exchanges are needed, which may be a drawback.

At a more fundamental level, the question is whether it is
appropriate to restart transmission at the full rate with the old
window size upon entering a new, unknown environment? TCP
itself implements “slow-start” at the beginning of a connection
precisely because it wants to sample the congestion state before
it decides to increase the transmission rate. While this is true in
general, there are many situations in mobile environments where
the disconnections are not caused by any fundamental or sub-

stantial changes in the traffic or congestion state of the network.
This can happen for instance, due to temporary obstructions or
fades that the mobile client may experience. When the tempo-
rary obstruction disappears, the mobile client is reconnected in
the same cell where the traffic pattern is very likely to be the
same as before. In such cases, it should be safe to resume trans-
mission with the same window size as prior to the disconnec-
tion. Another possible drawback of Freeze-TCP is that it needs
the receiver to predict impending disconnections. However, if
a disconnection cannot be predicted the behavior and perfor-
mance will be exactly that of standard TCP. Simulation results
highlight the importance ofpro-activeaction/signaling by the
mobile-host. The data indicates that in many cases, apro-active
mechanisms such as Freeze-TCP can yield better performance
than those that simplyreact aftera disconnection occurs.

In closing, we would like to point out that true end-to-end
techniques will become indispensable when IPSEC or other se-
curity mechanisms are employed to encrypt the IP payloads.
Drastic changes to protocols could be required in the future since
the Internet was not conceived to support mobility, security,
Quality of Service (QoS), etc. Trying to incorporate these at-
tributes is therefore a continual “retrofit” job which will perhaps
not fix everything. However, as with any retrofit, backward-
compatibility and inter-operability with existing infrastructures
are of utmost importance and the proposed technique satisfies
these criteria.

REFERENCES

[1] Gupta, Vipul, Linux-Mobile-IP developed at SUNY, Binghamton.
This was the first implementation available for Linux and has
been publicly released on the Web since Aug. 1995 onwards,
http://anchor.cs.binghamton.edu/˜mobileip .

[2] Perkins, C., RFC 2002: IP Mobility Support, October 1996.
[3] Postel, J. eds, RFC 793: Transmission Control Protocol, September 1981.
[4] Braden, R. eds, RFC 1122: Requirements for Internet Hosts – Communi-

cation Layers, October 1989.
[5] H. Balakrishnan, V. N. Padmanabhan, and R. Katz, “Improving Reliable

Transport and Handoff Performance in Cellular Wireless Networks,”Wire-
less Networks, vol. 1, no. 4, Dec. 1995.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. Katz, “A Compar-
ison of Mechanisms for Improving TCP performance over wireless links,”
in Proceedings of ACM SIGCOMM’96, Palo Alto, CA, Aug 1996, pp. 256–
269.

[7] Ajay Bakre and B.R. Badrinath, “I-TCP: Indirect TCP for
mobile hosts,” Tech. Rep., Rutgers University, May 1995,
http://www.cs.rutgers.edu/˜badri/journal/contents11.html .

[8] Raj Yavatkar and Namrata Bhagawat, “Improving end-to-end perfor-
mance of tcp over mobile internetworks,” inIEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA, US, Dec. 1994,
http://snapple.cs.washington.edu/mobile/mcsa94.html .

[9] Ramòn Càceres and Liviu Iftode, “Improving the performance
of reliable transport protocols in mobile computing environments,”
IEEE JSAC Special Issue on Mobile Computing Network, 1994,
http://www.cs.rutgers.edu/˜badri/journal/contents11.html .

[10] M. Mehta and N. H. Vaidya, “Delayed duplicate acknowl-
edgments: A proposal to improve performance of tcp on wire-
less links,” Tech. Rep., Texas A&M University, Dec. 1997,
http://www.cs.tamu.edu/faculty/vaidya/Vaidya-mobile.html .

[11] N. Vaidya, Overview of work in mobile-computing (transparencies),
http://http://www.cs.tamu.edu/faculty/vaidya/slides.ps .

[12] W. Richard Stevens,TCP/IP Illustrated, Volume 1, Addison Wesley, 1994.
[13] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular Networks,”

ACM Computer Communications Review (CCR), vol. 27, no. 5, 1997.
[14] G. Montenegro and S. Dawkins, “Wireless Networking for

the MNCRS, Internet Draft, work in progress,” Aug. 1998,
http://www.ietf.org/internet-drafts/

draft-montenegro-mncrs-00.txt .

