
Multimedia Systems 6: 113–124 (1998) Multimedia Systems
c© Springer-Verlag 1998

Block-based manipulations on transform-compressed images
and videos
Bo Shen, Ishwar K. Sethi

Vision and Neural Networks Laboratory, Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
e-mail: {bos, sethi}@cs.wayne.edu

Abstract. This paper addresses the problem of direct image
and video manipulation in compressed domain. The capa-
bility to perform such manipulations has become attractive
in recent years, as more and more visual information is be-
ing captured, stored, and moved in compressed form. Our
solution to direct manipulation of compressed images and
video is based on a set of block-level transforms, called the
inner block transforms(IBTs). Each IBT requires a minimal
computation effort in compressed domain to yield a regu-
lar geometric transformation on an image block. The paper
shows how the IBTs can be used to perform many image
and video manipulations. This is done by describing the ap-
plication of IBTs to image subtitling, shearing, and arbitrary
angle rotation. The paper also discusses the application of
IBT to M-JPEG and MPEG video. The benefits of the pro-
posed direct compressed domain manipulation approach in-
clude faster speed, preservation of image quality, and less
computing resources.

Key words: Geometric transform – JPEG – M-JPEG –
MPEG – Compressed domain – Image/video manipulation
– Multimedia – Visual information system

1 Introduction

The last few years have seen a remarkable growth of in-
formation in digital form due to a combination of several
technological factors that include the availability of high-
speed electronic networks and affordable, yet powerful desk-
top computing. This, coupled with advances in scientific and
consumer imaging technology (digital radiography, digital
still cameras, desktop scanners, video capture boards) has
created an environment where a large fraction of digital in-
formation is being created and disseminated in visual form
(graphics, images, and video). This trend towards informa-
tion in visual form is not surprising, considering that we use
vision more than any other sense to acquire and communi-
cate information.

Correspondence to: B. Shen

One of the salient characteristics of visual information is
its sheer volume. For example, a color image of size 640×
480 pixels is made up of almost one 1,000,000 bytes. Such
a sheer volume of data imposes severe requirements with
respect to storage, manipulation, and delivery of visual in-
formation. As a consequence, it is becoming common to
capture, move, and store visual information in compressed
form. Since compressed images offer lower data rate, there
is a growing interest in developing image-processing meth-
ods that operate directly on compressed data for common
image manipulation and composition tasks such as transla-
tion, scaling, overlaying (opaque or semi-transparent) rota-
tion, and image filtering. The motivation behind such meth-
ods is that the lower data rate of compressed images coupled
with the elimination of decompression- compression cycle
can be used to perform many image manipulation tasks in
“real” time, thus providing a user with enhanced capabilities
without expensive real-time image-processing hardware.

The methods for processing compressed images must be
based on the underlying compression scheme. Since the Dis-
crete Cosine Transform (DCT) is the basis of spatial redun-
dancy removal in current commercial image compression
standards such as JPEG, MPEG, and H.261, methods for
processing of transformed-compressed images have been the
focus of attention. Currently, there exist methods for some
basic image manipulation operations in the DCT domain
that show greater efficiency than their spatial domain coun-
terparts. However, for compressed-image processing to be
really useful, there is a need for methods that can perform
much more sophisticated image manipulation, as well as im-
age feature extraction. The present paper is an attempt to fill
this need, where we describe a new set of methods, called
inner block transformation (IBT) methods, and show how
to perform geometric manipulations, for example, an im-
age rotation by an arbitrary angle, directly on images in the
transform-compressed domain. We also show the applica-
tions of IBT for manipulation of M-JPEG and MPEG videos
directly in compressed domain.

The organization of the paper is as follows. In Sect. 2,
the JPEG compression model is briefly introduced. Section 3
presents a brief review of existing compressed domain ma-
nipulation methods, and casts them into two categories: the

114

inner block algebra (IBA) approach and the inner block rear-
rangement/resampling (IBR) approach. Our solution to direct
manipulation of compressed images and videos (the IBTs)
is presented in Sect. 4. Section 5 discusses the application of
IBTs to image subtitling, shearing, and arbitrary angle rota-
tion. This is followed by the use of IBTs for M-JPEG and
MPEG manipulation in Sect. 6. Finally, a summary of the
work is provided in Sect. 7.

2 JPEG model of compression

In this section, we provide a brief review of the JPEG com-
pression model, which is the most commonly used image
compression model in multimedia systems research and ap-
plications. JPEG uses a lossy compression scheme based
on an orthogonal transform, the DCT, to remove spatial re-
dundancy in still images. Most of the current compressed-
domain manipulation methods are based on the JPEG com-
pression model and take advantages of the DCT properties.

The JPEG compression process is shown in Fig. 1. It
consists of five steps. In the first step, the input image is
subdivided into 8× 8 blocks and the 2D forward DCT of
each block is computed. The following equations are the
mathematical definition of the DCT transform pair [8× 8
forward DCT (FDCT) and 8× 8 inverse DCT (IDCT)]:

F (u, v) =
CuCv

4

7∑
i=0

7∑
j=0

cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16

f (i, j) , (1)

f (i, j) =
7∑

u=0

7∑
v=0

CuCv

4
cos

(2i + 1)uπ

16
cos

(2j + 1)vπ

16

F (u, v) , (2)

where

Cu, Cv =

{
1√
2

for u, v = 0,
1 otherwise.

In the next step, each of the 64 DCT coefficients,F (u, v), is
uniformly quantized in conjunction with a 64-element quan-
tization table,QF (u, v), to discard information which is not
visually significant. The output of the quantization,F ′(u, v),
is thus computed as:

F ′(u, v) = roundoff

(
F (u, v)
Qf (u, v)

)
. (3)

After quantization, all of the coefficients are ordered into
the “zig-zag” sequence. This ordering helps to facilitate en-
tropy coding by placing low-frequency coefficients (which
are more likely to be nonzero) before the high-frequency co-
efficients. In entropy coding, run length coding (RLC), and
Huffman coding [8] (or arithmetic coding) are performed to
further compact the information, and finally generate com-
pressed data stream. To uncompress or reconstruct an image
from its compressed data stream, similar steps are applied
in a reverse order, as shown in Fig. 1.

The encoded block after run length coding or the de-
coded block after Huffman decoding is called RLC block.
The compressed-domain manipulation methods operate on

RLC blocks. This is for two reasons. First, operating at RLC
block level makes it easy to keep track of the structure of the
original image. Second, operating at RLC block level needs
only minimal decoding of the compressed data stream.

3 Existing compressed-domain manipulation methods

In this section, we provide a brief review of the exist-
ing compressed-domain manipulation methods. Although, as
stated earlier, the RLC block level is the preferred place for
manipulating compressed image data, we assume, for sake of
a clear presentation, all the manipulation is done at the quan-
tized block level. This allows us to view each block as an
8× 8 matrix and treat different manipulations as matrix op-
erations. Since the processes after quantization (zig-zagging
and run length coding), are well-defined processes [16], one
can always use additional control flow to implement them
at the RLC block level. The following table shows the no-
tations used in this paper.

[F], [G] (upper case) compressed blocks,
F (u, v), G(u, v) in compressed domain
[f], [g] (lower case) uncompressed blocks,
f (i, j), g(i, j) in spatial domain
QF quantization table for image F
[]+# add every element in [] by #
#[] multiply every element in [] by #
[] + [] add corresponding elements of two blocks
[] • [] multiply corresponding elements of two blocks
[] ⊗ [] convolve two blocks
[] [] matrix multiplication
A ⇔ B (spatial-domain) operation A is corresponding

to (compressed-domain) operation B

3.1 Inner-block algebra (IBA)

The earliest work on direct manipulation of compressed im-
age and video data expectedly dealt with point processing,
consisting of operations such as contrast manipulation and
image subtraction, where a pixel value in the output im-
age at positionp depends solely on the pixel value at the
same positionp in the input image. Examples of such works
can be found in Chang and Messerschmitt [4], who devel-
oped some special functions for video compositing, and in
Smith and Rowe [13], who developed a set of algorithms
for basic point operations. When viewing the compressed-
domain manipulation as a matrix operation, we can charac-
terize the point-processing operations on compressed images
and videos as IBA operations, since the information in the
output block, i.e., the manipulated block, comes solely from
information in the corresponding input block. We list these
operations in Table 1.

Because of the large number of zeros in the quantized
block, the data manipulation rate is heavily reduced. The
speedup for operations IBA1 to IBA3 is quite obvious. Con-
volution in compressed domain was derived in [13] by math-
ematically combining decompression, manipulation, and re-
compression processes to obtain a single equivalent local
linear operation, where we can easily take the advantage of
the energy compaction property in quantized DCT blocks.
A similar approach was taken by Smith [14] to extend point

115

Fig. 1. JPEG compression model

Table 1. Inner-block algebra operations

Spatial operation Math. expression DCT coefficients manipulation

IBA1 Scalar addition [f] + β ⇔ [F] +
[8β

Q(0,0) 0
0 0

]
only (0, 0) coefficient is affected

IBA2 Scalar multiplication α[f] ⇔ α[F] multiplies only on nonzero coefficients
IBA3 Pixel addition [f] + [g] ⇔ [F] + [G] additions only on nonzero coefficients
IBA4 Pixel multiplication [f] • [g] ⇔ [F] ⊗ [G] convolution in compressed domain is much more efficient,

taking the advantage of the packing of data
in quantized DCT blocks

processing to global processing of operations, where the
value of a pixel in the output image is an arbitrary linear
combination of pixels in the input image.

As an example of IBA application, consider the com-
positing operation where foregroundF is combined with
backgroundB with a factor ofα to generate an outputR.
In spatial domain, this operation can be expressed [18] as
R = α×F +(1−α)×B. The operation in block DCT domain
can be conveniently performed as [R] = α[F] + (1 − α)[B].
The operation is just a combination of some of the above-
defined image algebra operations; it can be done in DCT
domain efficiently with tremendous speedup [13]. Similar
compressed-domain algorithms for subtitling and dissolving
applications can also be developed based on the above IBA
operations with computational speedups of 50 or more over
the corresponding processing of the uncompressed data [3,
13].

This set of methods can also be used for color transfor-
mation in compressed domain. As long as the transforma-
tion is linear, it can be derived in compressed domain using
a combination of the IBA operations. As RGB images are
transformed to the YUV domain first, then compressed us-
ing DCT, one can obtain RGB directly from DCT blocks in
the YUV domain using IBAs.

3.2 Inner-block rearrangement/resampling (IBR)

Many image manipulation operations are local or neighbor-
hood operations where the pixel value at positionp in the
output image depends on neighboring pixels ofp in the input
image. We characterize methods to perform such operations
in the compressed domain as IBR methods. These meth-
ods are based on the fact that DCT is a unitary orthogonal
transform and is distributive to matrix multiplication [10].
It is also distributive to matrix addition, which is actually

Fig. 2. Rearrangement of sub-block

the case of pixel addition (IBA3). We group these two dis-
tributive properties of JPEG/DCT in Table 2 and name these
properties by the roles they play in image manipulation. We
refer to the process of subblock extraction and shifting as
rearrangement, and the process of filtering and sampling as
resampling.

One purpose of matrix multiplication is to extract or re-
arrange subblock structure. This is shown in Fig. 2, where
[Ih] and [Iw] are identity matrices of sizeh andw, respec-
tively. As shown in the figure, we can extract the upper left
subblock and move it to the bottom right corner by multi-
plying matrix A (source block) with certain pre- and post-
matrices, calledmanipulation matrices. Using the distribu-
tive property, we can perform such operations directly in the
DCT domain. This allows us to break the block structure,
which is a must for any sophisticated manipulation.

We can use IBR1 to break the block structure and use
IBR2 to construct a new block from several blocks. In this
sense, it is an inter-block operation, but for each operation
alone, either to extract/rearrange a subblock from the original
block or to add subblock onto the result block, it is still an
inner block operation. A combination of these inner block
operations gives us the possibility for global manipulation
of images in compressed domain.

116

Table 2. Inner-block resampling operations

Spatial operation Math. expression DCT coefficients manipulation
IBR1 sub-block extraction, [f][g] ⇔ [F][G] DCT domain matrix

rearrangement or resampling multiplication
IBR2 Reconstruction [f] + [g] ⇔ [F] + [G] additions only on nonzero

coefficients

Fig. 3. Resampling in DCT domain

As an example of IBR operations, consider the shrink-
by-2 operation. It is easy to see that this operation can be
done in DCT domain using IBR1 operation, i.e., matrix mul-
tiplication with the help of the following two 8×8 matrices:




0.5 0.5 0
0.5 0.5

0.5 0.5
0.5 0.5

0







0.5 0
0.5

0.5
0.5

0.5
0.5

0.5
0 0.5




.

Figure 3 shows some special effect manipulations of an
image in compressed domain, which require resampling.
Generally, a manipulation requiring uniform and integer
scaling, i.e., space-invariant filtering, is easy to implement in
DCT domain using the resampling matrix. Since each block
can use the same resampling matrix in space-invariant fil-
tering, these kinds of manipulations require little overhead

in DCT domain. On the other hand, sophisticated manipu-
lations such as projective mapping based on space-variant
filtering are difficult to perform in DCT domain due to a
large overhead needed for rearrangement and resampling of
blocks.

Based on the above, Chang and Messerschmitt [3, 4]
have developed a set of algorithms to manipulate images
directly in the compressed domain. Some of the interest-
ing algorithms developed by them include the translation
of images by arbitrary amounts, linear filtering and scal-
ing. Merhav and Bhaskaran [11] also found that this matrix-
multiplication type of manipulation can be incorporated with
many fast DCT (or IDCT) methods developed based on ma-
trix decomposition [1, 5]. Tremendous speedup can be thus
obtained, even without considering the sparseness of DCT
block. Rotation and shearing can also be done in form of
matrix multiplication. To perform arbitrary angle rotation,
however, the extraction and rearrangement of subblocks re-
quires many different manipulation matrices, which in DCT
form are difficult to manage without the help of the follow-
ing set of properties of JPEG/DCT discussed in the following
section.

4 A new set of algorithms for geometric transformation

The IBA operations do not allow those manipulations where
pixels are moved around. While IBR operations allow such
manipulations, the cost is usually prohibitive due to expen-
sive matrix multiplications. In this section, we present a set
of block operations that allow moving of pixels directly in
DCT domain in an efficient manner, involving only col-
umn/row exchanges or sign reversals of DCT coefficients.
However, the movement of pixels is limited to a set of reg-
ular moves. Later on, we show how the proposed block op-
erations can be used to perform a variety of sophisticated
manipulations. In the following discussion, we assume the
quantization table of the output image G (in DCT domain)
is the same as that of the input image F (in DCT domain),
that is:

QG(u, v) = QF (u, v) . (4)

4.1 Regular geometric transformation

We define aregular geometric transformationas one of
the following seven operations: column flip (U-Flip), row
flip (V-Flip), rotate 180 (R-180), rotate 270 (R-270), rotate
90 (R-90), diagonal flip (D-Flip) and opposite diagonal flip
(OD-Flip). We assume image size is always a multiple of
the block size 8, so we can concentrate on operations within
a block. The U-Flip refers to flipping an image in the center
around its vertical axis. In spatial domain it can be mathe-
matically expressed as

117

g(i, j) = f (7 − i, j) i, j = 0, 1, . . . 7 , (5)

wheref (i, j) and g(i, j), respectively, are input and output
blocks. The D-Flip means flipping an image around its prin-
ciple diagonal. In spatial domain it is given as

g(i, j) = f (j, i) i, j = 0, 1, . . . 7 . (6)

Other regular geometric transforms can be defined in a sim-
ilar way. The important point of note is that pixels in the
output block come from the same input block; only their
positions are changed.

Now, we derive their compressed-domain counterparts
of regular geometric transformations. For U-Flip, the input
block isF (u, v) and the output block isG(u, v). From Eqs. 1,
3, 5, 4, and 2 the output block in compressed domain can
be computed as follows:

G(u, v) =
CuCv

4QG(u, v)

∑
i

∑
j

cos

(
2i + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
g(i, j)

=
CuCv

4QG(u, v)

∑
i

∑
j

cos

(
2i + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
f (7 − i, j)

let i = 7 − i′
because i = 0 ∼ 7, so i′ = 7 ∼ 0

G(u, v) =
CuCv

4QG(u, v)

∑
i′

∑
j

cos

(
2(7− i′ + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
f (i′, j)

=
CuCv

4QG(u, v)

∑
i′

∑
j

cos

(
uπ − 2i′ + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
f (i′, j)

= cos(uπ)
CuCv

4QG(u, v)

∑
i′

∑
j

cos

(
2i′ + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
f (i′, j)

= cos(uπ)F (u, v)

So, in compressed domain, the output block can be directly
computed from the input block as

G(u, v) = cos(uπ)F (u, v) . (7)

Now, let us consider the case of D-Flip. In this case, using
Eqs. 1, 3, 6, 4, and 2, the output block in compressed domain
can be computed as follows:

G(u, v) =
CuCv

4QG(u, v)

∑
i

∑
j

cos

(
2i + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
g(i, j)

=
CuCv

4QG(u, v)

∑
i

∑
j

cos

(
2i + 1

16
uπ

)

cos

(
2j + 1

16
vπ

)
f (j, i)

let i′ = j, j′ = i

G(u, v) =
CuCv

4QG(u, v)

∑
j′

∑
i′

cos

(
2j′ + 1

16
uπ

)

cos

(
2i′ + 1

16
vπ

)
f (i′, j′)

=
QF (v, u)
QG(u, v)

CuCv

4QF (v, u)

∑
j′

∑
i′

cos

(
2j′ + 1

16
uπ

)

cos

(
2i′ + 1

16
vπ

)
f (i′, j′)

=
QF (v, u)
QG(u, v)

F (v, u)

So, in compressed domain, the output block can be directly
computed from the input block as

G(u, v) =
QF (v, u)
QG(u, v)

F (v, u) . (8)

The above expression says that, if we want to perform D-
flip in compressed domain, we should exchange the coeffi-
cients on each row with those in the corresponding column,
and multiply each coefficient withQF (v, u)/QG(u, v). QF

and QG can be selected from one of the following tables,
which were provided as examples in [12] for luminance and
chrominance quantization tables:

16, 11, 10, 16, 24, 40, 51, 61 17, 18, 24, 47, 99, 99, 99, 99
12, 12, 14, 19, 26, 58, 60, 55 18, 21, 26, 66, 99, 99, 99, 99
14, 13, 16, 24, 40, 57, 69, 56 24, 26, 56, 99, 99, 99, 99, 99
14, 17, 22, 29, 81, 87, 80, 62 47, 66, 99, 99, 99, 99, 99, 99
18, 22, 37, 56, 68, 109, 103, 77 99, 99, 99, 99, 99, 99, 99, 99
24, 35, 55, 64, 81, 104, 113, 92 99, 99, 99, 99, 99, 99, 99, 99
49, 64, 78, 87, 103, 121, 120, 101 99, 99, 99, 99, 99, 99, 99, 99
72, 92, 95, 98, 112, 100, 103, 99 99, 99, 99, 99, 99, 99, 99, 99
Luminance quantization table Chrominance quantization table

The chrominance quantization table is diagonally symmetric,
i.e., Q(u, v) = Q(v, u). Thus, using Eq. 4, we can simplify
Eq. 8 to:

G(u, v) = F (v, u) . (9)

In the luminance quantization table, although there are dif-
ferences between elements in columns and those in corre-
sponding rows, experiments show that the transform effects
are almost the same by using Eq. 8 or Eq. 9.

4.2 Inner-block transform (IBT)

All regular geometric transformations can be derived in the
way we presented above. In Table 3, we summarize the
seven regular geometric transformations as IBTs. In Table 3,
cos(nπ) only has two values: 1 or -1. All operations re-
quired in compressed domain are, therefore, nothing but

118

Fig. 4. IBT operations

coefficient exchanges and sign reversals. It is very easy
to implement them with almost no overhead. When input
and output quantization tables are not identical, we need
one additional multiplication ofQG(u, v)/QF (u, v) on sign-
reversed coefficients. For operations IBT4 to IBT7, if the
user-specified quantization table is not diagonal-symmetric,
the right side of the expressions should be scaled by the fac-
tor of QG(u, v)/QF (u, v). Even so, only one multiplication
is required for each nonzero coefficient. Assuming seven
nonzero coefficients in a typical DCT block, this implies
that only seven multiplications are required instead of 108
multiplications required by the brute force method using the
fastest DCT algorithm [5].

Figure 4 summarizes the different IBTs in pictorial form.
The blocks marked with operation names represent the
spatial-domain operations; underneath them, corresponding-
ly, are the DCT domain counterparts. A cell with “- 1” means
that the DCT coefficient at that position undergoes a sign re-
versal. An empty cell means no operation on that coefficient.
Note that, irrespective of the operation, the DC coefficient
is never changed, as an IBT involves only moving pixels
within the same block.

Fig. 5. Block rearrangement, each cell is a block

The actual application of an IBT operation on an entire
encoded image should take into account the block rearrange-
ment also. Figure 5 shows examples of block rearrangements
for different IBT operations. This block rearrangement in

119

Table 3. Inner-block transform operations

Spatial operation Mathematical expression DCT coefficients manipulation
IBT0 No change G(u, v) = F (u, v) no operation
IBT1 Column Flip (U-Flip) G(u, v) = cos(uπ)F (u, v) sign reversal on coefficients

of every other row
IBT2 Row Flip (V-Flip) G(u, v) = cos(vπ)F (u, v) sign reversal on coefficients

of every other column
IBT3 Rotate 180o (R-180) G(u, v) = cos(uπ) cos(vπ)F (u, v) sign reversal on coefficients

of every other element
IBT4 Diagonal Flip (D-Flip) G(u, v) = F (v, u) exchange coefficients of rows

with corresponding columns
IBT5 Rotate 270o (R-270) G(u, v) = cos(uπ)F (v, u) exchange row and column, then sign reversal of

coefficients on every other row
IBT6 Rotate 90o (R-90) G(u, v) = cos(vπ)F (v, u) exchange row and column, then sign reversal of

coefficients on every other column
IBT7 Opposite Diagonal Flip (OD-Flip) G(u, v) = cos(uπ) cos(vπ)F (v, u) exchange row and column, then sign reversal of

coefficients on every other element

compressed domain requires memory bookkeeping; similar
bookkeeping is also needed in spatial domain. Since DCT
blocks are kept in compressed form, specifically in run-
length-encoded form, the memory overhead, however, is less
than that of spatial-domain bookkeeping. On the other hand,
some IBT operations, specifically IBT1 to IBT3, only require
sign reversals on some nonzero coefficients. This means no
loss of precision, which is almost certain to take place if the
same operation is to be performed in spatial domain along
with a decompress/recompress cycle. This loss of precision
can lead to the accumulation of quantization error when the
manipulations are to be performed several times, as shown
in Fig. 6, where the results of applying three IBT operations
repeatedly (ten times) on a JPEG image are shown. The
top row of Fig. 6 shows the results as obtained by applying
three IBT operations in compressed domain. The bottom
row shows the results of same operations applied in spa-
tial domain along with decompression and recompression
during each application. The loss in quality of the output
is apparent when the IBT operations are not performed in
compressed domain. In addition to preserving image qual-
ity, the compressed-domain IBT method provides a faster
processing speed and requires less memory overhead. These
are important advantages in favor of direct processing of
compressed images.

5 IBT application examples

In this section, we present three examples of IBT applica-
tions for image manipulations directly in compressed do-
main.

5.1 Subtitling

While previous work in direct compressed-domain manip-
ulation has shown how subtitling can be done, the present
application example of IBT to subtitling is different in the
respect that it allows a subtitle or logo to be affixed in differ-
ent orientations. This is a straightforward application of the
IBT operations discussed previously. Figure 7a shows a logo
whose copy in compressed form is used in the IBT6 oper-
ation to generate the result of Fig. 7b. The original flower

image (color) and logo image (gray) are both compressed
with 75% of quality factor, which gives compression ra-
tions of 17.6 and 3.4, respectively. The composited image is
generated in compressed domain, also using the same quan-
tization factor. The horizontal line in the logo image shown
in Fig. 7a is only of height one pixel, it can be seen that the
compressed-domain composition gives reasonably good re-
sults even for fine details. It should be noted that, using IBA
operations only, we would require a separate logo image for
each orientation.

5.2 Shearing

Shearing is an important component of many special-effects
manipulations. Here, we show how horizontal shearing can
be performed using IBT operations. Shearing involves shift-
ing pixels. Because of the block structure in DCT domain,
the compressed domain shearing has to perform shifting on
a block-by-block basis. To see how to perform the subblock
rearrangement and why we need IBT for management of
manipulation matrices, let us consider the example shown
in Fig. 8, which illustrates a 45-degree horizontal skew of a
3x3 block.

In this case, the structure of the block has to be rear-
ranged in the way shown in the first row of Fig. 8 (each
cell is one pixel). The source block A is shifted horizontally
45 degrees to generate two result blocks: B1 and B2. This
operation can be decomposed into the following operations:
(1) The extraction of the first row of A, since the first row
of result block B1 is identical to that of A. This can be done
by pre-matrix multiplication of A; (2) The second row of B1
is the result of extracting the second row of A, then moving
it one position to the right. This operation can be done by
pre- and post-matrix multiplication of A; (3) The third row
of B1 is the result of extracting the third row of A, then
moving two positions to the right. Again, this operation can
be done by multiplying a pre-matrix and a post-matrix with
A. B1 is then constructed by combining the results from step
(1)–(3). Similarly, B2 is composed of the results from the
rearrangements of the second and third row of A in step (4)
and (5), respectively. The steps are depicted in Fig. 8, along
with corresponding matrix multiplications.

120

Fig. 6. Effects of U-Flip, V-Flip, and D-Flip
(Original image is shown in Fig. 3)

Fig. 7a,b. Special effect subtitling

Fig. 8. 45◦ horizontal skew of a 3× 3
block

121

Fig. 9. Three-pass rotation
in DCT domain

In the above process, we need a total of seven distinct
pre/post-matrices. The whole process can be performed in
DCT domain in the same fashion, except that all matrices
involved are in DCT form. This means we have to keep
in memory all the manipulation matrices in DCT form. But
one may notice that the pre-matrix in step (1) is actually
the 180◦-rotated version of the pre-matrix in (3), U-Flipped
version of the post-matrix in (4) and V-Flipped version of
the post-matrix in step (3). The post-matrix in step (2) is the
180◦-rotated version of the post-matrix in step (5), and so
on. We know that flips and 180-degree rotation can be done
very easily by reversing signs of certain coefficients in DCT
domain. In this example, only three distinct manipulation
matrices are needed. All the others can be generated using
IBT with almost no overhead.

Since the standard JPEG/DCT block size is 8× 8, we
need eight distinct manipulation matrices for extracting each
row, and 14 distinct manipulation matrices for shifting (7 for
left, 7 for right). If we use IBT, only four extracting matrices
and six shifting matrices are needed; the remaining matrices
can be generated on the fly using IBTs. These matrices will
satisfy the requirements of all shearing processes in DCT do-
main, either horizontal or vertical and for arbitrary amount.
Of course, in the general case, when the displacement of
each row or column is not an integer, we would also need
proper interpolation to avoid an aliasing effect.

5.3 Arbitrary rotation

The capability to perform arbitrary rotation of an image di-
rectly in compressed domain is important, as rotation is an
often used image manipulation step. Generally, rotation can
be implemented by direct mapping. For each output pixel,
the mapping function can decide which input pixels con-

tribute to it and by how much. The problem is that the output
pixel can take intensities from as many as six input pixels.
Furthermore, the output pixel coverage of adjacent input pix-
els is nonperiodic. This calls for intensive computation for
intersection test and creates difficulties in developing a clean
algorithm structure. It is now a common understanding that
rotation and many other sophisticated geometric transforma-
tions can be decomposed to separable passes, with each pass
requiring only shifting and resampling in one direction. In
other words, a combination of shearing processes can yield
the rotated image.

Many multi-pass rotation algorithms have been devel-
oped in spatial domain [2, 6, 15, 17]. We describe here
an implementation for performing arbitrary angle rotation
in compressed domain based on a three-pass rotation algo-
rithm [15]. In the three-pass rotation algorithm, the rotation
is decomposed into three passes:

R =
[cosθ sinθ
− sinθ cosθ

]
=

[1 0
− tan θ

2 1

]
[1 sinθ

0 1

] [1 0
− tan θ

2 1

]
. (10)

The algorithm first skews the image along the horizontal di-
rection by displacing each row. The result is then skewed
along the vertical direction. Finally, an additional skew in
the horizontal direction yields the rotated image. Again, the
displacement is generally not integral and proper interpola-
tion has to be performed in each pass.

Figure 9 shows the effects after each pass, and also com-
pares the final effects of the compressed-domain rotation
versus that of spatial-domain approach. There is no percep-
tual difference between the two results, although both ver-
sions suffer minor blurring compared to the original image.
This degradation is introduced by a roundoff integer opera-
tion. If we have fast floating-point hardware, we can perform

122

Fig. 10. U-Flip on one slice generated two slices

the operation in real numbers to obtain better results. This
algorithm shows a way to adopt the concept of separable
pass processing into compressed domain, so that simplified,
systematic algorithms can be designed for special- effects
manipulation directly in compressed domain.

6 Manipulation of compressed video

While the previous examples dealt with encoded images, we
now present an application example of IBT to compressed
video. There are currently two dominant types of DCT-based
video compression models: M-JPEG (Motion-JPEG) and
MPEG (Moving Picture Expert Group). A M-JPEG video is
composed of a sequence of JPEG-compressed images, and
thus has no temporal redundancy feature. MPEG considers
both spatial redundancy and temporal redundancy reduction
by using DCT and motion-compensated prediction/ interpo-
lation [7]. Since each frame of a M-JPEG video is a standard
JPEG image, it is obvious that all inner block operations
(IBOs) described earlier can be applied immediately on M-
JPEG-compressed video to generate, for example, flipped
or special-angle-rotated video in compressed form. How-
ever, for MPEG-compressed video, we need to consider two
unique factors: the manipulation of motion vectors (MVs)
and motion-compensated prediction error (MCPE).

An MPEG sequence consists of three different types of
encoded frames: intraframes (I frames), predicted frames (P
frames), and interpolated bi-directional frames (B frames).
The I frames are coded independently of other frames in
a video to provide random access to the MPEG bitstream.
Each I frame is encoded in a JPEG-like scheme, and there-
fore all IBOs are immediately applicable.

The P frames are encoded by motion prediction using
past frames, either an I frame or a P frame. The encoding of
P frames as well as B frames is done at macroblock level.
Each macroblock is of size 16× 16 and consists of four
blocks of size 8× 8. If the motion-compensated prediction
error e is larger than certain threshold for a macroblock in
a P or B frame, then the macroblock is actually intracoded,
i.e., just like blocks in an I frame. Otherwise,e itself is
intracoded and transmitted along with MV information. In
order to see how IBOs can be applied to such macroblocks,
let us consider the following reconstruction relationship:

bc = IDCT (Br) + mv + IDCT (E) ,

where bc is the reconstructed block,Br is the reference
block, mv is the motion vector andE is the MCPE in DCT
form. Let us use the IBT1 (Column Flip) operation as an ex-
ample. Applying this operation on the reconstructed block
bc in spatial domain, we have

ibt1 (bc) = ibt1 (IDCT (Br) + mv + IDCT (E))

= ibt1 (IDCT (Br)) + ibt1 (mv)

+ ibt1(IDCT (E)) . (11)

SinceBr andE are all DCT blocks, we already know that

ibt1(IDCT (Br)) = IBT1(Br) ,

ibt1(IDCT (E)) = IBT1(E) .

We then only have to define ibt1(mv) in Eq. 11 to com-
plete the application of an IBT operation in compressed-
video domain. A motion vector,{x, y} contains two com-
ponents, horizontal displacement and vertical displacement.
IBTs can be easily defined for MVs, since all the opera-
tions are done along the two orthogonal directions. Thus,
Column flip ibt1({x, y}) = {-x, y}
Row flip ibt2({x, y}) = {x, -y}
Rotate 180 ibt3({x, y}) = {-x, -y}
Diagonal flip ibt4({x, y}) = {y, x}
Rotate 270 ibt5({x, y}) = {y, -x}
Rotate 90 ibt6({x, y}) = {-y, x}
Opposite-D flip ibt7({x, y}) = {-y, -x}

Note that motion information is coded differentially with
respect to the motion information present in the previous
adjacent macroblock; this means that an MV is represented
as{δx, δy} with

x = X + δx , y = Y + δy ,

where {X, Y} is the MV of the reference macroblock. It
can be easily seen that it is not even necessary to decode the
predictively encoded MV. The same IBT operations applied
on{δx, δy} would give out the same results. However, since
MPEG resets MV predication at the beginning of each slice
or when the previous macroblock is intracoded (or skipped
in P frames), the algorithm has to keep track of the correct
reference macroblock in order to apply the MV adjustment
directly on differentially encoded MVs.

For B frames where macroblocks can be estimated from
macroblocks in both past and future reference frames, the
decoding includes motion prediction using both forward and
backward MVs. In this case, the IBT operations on the mac-
roblock include IBTs on the prediction error block, as well
as adjustments on both forward and backward MVs, as we
discussed above.

In the actual implementation, we have to sometimes ad-
just or even insert new syntax symbols in the MPEG stream,
in order to guarantee that the output stream is syntactically
compliant with the MPEG specification. We now discuss
three out of many situations in which syntax manipulations
are required by direct MPEG video editing.

Similar to the block rearrangement required when per-
forming IBTs on JPEG images, the location of each mac-
roblock, along with its associated side information such as
macroblock type, MV and coded block pattern, have to be
rearranged. And furthermore, individual blocks within each
macroblock also undergo rearrangement as per the selected
IBT. This leads to the necessity of adjustment on some
syntax side information. For instance, MPEG allows cer-
tain blocks, indicated by the coded block pattern, within a
macroblock to be “Not Coded”. After an IBT operation, say
column flip, this not-coded block is relocated to a different

123

Fig. 11.Flipped or special angle-rotated video
play-back decoder

Fig. 12. Video editing from compressed bitstream to
compressed bitstream

place, therefore, the algorithm must adjust the syntax symbol
of the coded block pattern accordingly.

According to the MPEG standard, a macroblock can be
skipped, that is, not coded at all. In B frames, a skipped mac-
roblock M is defined as a macroblock with zero prediction
error and the same MVs as that of the previous adjacent
macroblock, that is, the macroblock to its left. Obviously,
after column flipping, the relative order of the macroblocks
has been changed (the macroblock originally to the right of
M is now toM ’s left). It should be noted that the two ad-
jacent macroblocks ofM might have different MVs. Thus,
if we still codeM as a skipped macroblock, it will be de-
coded incorrectly when the output stream is played back. Our
algorithm will solve this problem by codingM as forward
and/or backward predicated with zero predication error. This
means that we actually insert new syntax symbols which do
not exist forM in the original MPEG stream.

Another problem lies in the slice layer of the MPEG
standard. Once again, consider column flipping where the
macroblocks inside each macroblock slice is flipped, and
thus the last macroblock in the original slice becomes the
first macroblock in the output slice. Since both MPEG-1 and
MPEG-2 allow slices to start at any macroblock, then in the
situation shown in Fig. 10, two separated slices have to be
generated from one slice in the input MPEG bitstream. More
slices certainly impose more overhead because of the coding
of slice headers. For most MPEG sequences, however, we
do not have to worry about the above situation, since slices
start from the left edge of a frame and end at the right edge
(specified in MPEG2 Test Model 3 [9]).

Based on the above discussion, Fig. 11 summarizes a
scheme for flipped or special-angle-rotated video playback.
Without the shaded blocks, it is a typical motion-compen-
sation-based video decoder like MPEG. Figure 12 shows
a scheme for another application – generating flipped or

special-angle-rotated video from MPEG stream to MPEG
stream with minimum processes in between. The opera-
tions in the shaded blocks require very little overhead. For
instance, for U-Flipped playback, the operations required
in MV adjustment only include sign reversal of horizontal
MVs, as we discussed above. Both of these schemes have
been implemented and speedups of at least 1000% over spa-
tial processing coupled with decompression and recompres-
sion have been obtained.

Other video manipulation operations such as fade in/out
or cross-dissolving are local operations which do not require
moving pixels around. IBA and IBR operations can be used
directly on a frame-by-frame basis to achieve the computa-
tion saving for video processing.

7 Summary and conclusion

In this paper, the problem of manipulation of images in com-
pressed form was considered and a new set of methods,
the IBT methods, were presented. Unlike the previously de-
veloped manipulation methods for compressed images, IBT
methods are suitable for geometric transformations which are
the basis of sophisticated special effects that are often needed
in advertising, entertainment, and education. This capability
of IBT methods in the present paper was demonstrated by
several examples.

The paper also described the use of IBT methods for
direct M-JPEG and MPEG video manipulations, along with
motion field and syntax adjustment imposed by this kind of
manipulation. Since our method completely eliminates the
processes of IDCT and motion compensation, and DCT and
motion estimation by avoiding decompression-recompression
cycles, it provides tremendous speedups for digital video
manipulation in situations where video after manipulation

124

needs to be stored or forwarded in compressed form. Also,
our video manipulation method is completely independent
of the actual method used in DCT/IDCT and motion esti-
mation/compensation.

In addition to gains in speed, the direct manipulation of
compressed images and videos through IBT allows image
and video quality to be maintained. Another advantage of
the IBT methods is the relatively smaller memory require-
ment compared to other direct processing methods. We are
currently investigating methods for further improvements in
the use of IBT to the applications discussed above, as well
as to new manipulation and feature extraction tasks.

References

1. Arai Y, Agui T, Nakajima M (1988) A Fast DCT-SQ Scheme for
Images. Trans. IEICE E71(11):1095

2. Catmull E, Smith AR (1980) 3-D Transformations of Images in Scan-
line Order. Comput Graphics 14(3): 279–285

3. Chang S-F, Messerschmitt DG (1995) Manipulation and Compositing
of MC-DCT Compressed Video. IEEE JSAC Special Issue on Intell
Signal Process 13(1): 1–11

4. Chang S-F, Messerschmitt DG (1992) Video Compositing in the DCT
domain. Proc. IEEE Workshop on Visual Signal Processing and Com-
munications, Raleigh, NC, pp 138–143

5. Feig E, Winograd S (1992) Fast Algorithms for the Discrete Cosine
Transform. IEEE Trans Signal Process 40(9): 2174–2193

6. Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer Graph-
ics: Principles and Practice, 2nd Ed., Addison-Wesley, Reading, Mass.

7. Gall DL (1991) MPEG: A Video Compression Standard for Multimedia
Applications. Commun ACM 34(4):47–58

8. Haffman DA (1962) A method for the construction of minimum re-
dundancy codes. Proc. IRE 40: 1098–1101

9. ISO-IEC/JTS1/SC29/WG11 (1992) Coded Representation of Picture
and Audio Information, Test Model 3

10. Jain AK (1989) Fundamentals of Digital Image Processing. Prentice-
Hall, Englewood Cliffs, NJ

11. Merhav N, Bhaskaran V (1996) A Transform Domain Approach to Spa-
tial Domain Image Scaling. Proc. ICASSP Conf. Atlanta, June 1996,
pp 2307–2310

12. Pennebaker WB (1992) ISO Draft International Standard 10918 Part
1, Requirements and Guidelines. JPEG Still Image Data Compression
Standard, Van Nostrand Reinhold, New York

13. Smith BC, Rowe L (1993) Algorithms for Manipulating Compressed
Images. IEEE Comput Graphics Appl 13(9):34–42

14. Smith BC (1994) Fast Software Processing of Motion JPEG Video.
Proc. of the Second ACM International Conference on Multimedia,
San Francisco, Calif., ACM Press, pp 77–88

15. Tanaka A, et al. (1986) A Rotation Method for Raster Image Using
Skew Transformation. Proc. IEEE Conference on Computer Vision and
Pattern Recognition, Ann Arbor, MI, pp 272–277

16. Wallace GK (1991) The JPEG Still Picture Compression Standard.
Commun ACM 34(4):31–44

17. Weiman CFR (1980) Continuous Anti-Aliased Rotation and Zoom of
Raster Images. Comput Graphics 14(3): 286–293

18. Porter T, Duff T (1984) Compositing Digital Images. Comput Graphics
(Proc. SIGGRAPH 84) 18(3): 253–259

Bo Shen received his B.S. degree in
computer science from Nanjing Aero-
nautical Institute, Nanjing, China in
1988. He then served as a software engi-
neer at local computer/software compa-
nies in the following 4 years. He joined
Wayne State University, Detroit, Michi-
gan in 1993 and is currently a Ph.D. can-
didate in the Department of Computer
Science. He worked at Hewlett-Packard
Laboratories as a research intern dur-
ing summer, 1996. His research inter-
ests include image/video processing and
content-based retrieval, multimedia sys-
tems, computer graphics and computer
vision.

Ishwar K. Sethi received the BTech
(Hons.), MTech, and PhD degrees in
electronics and electrical communication
engineering from the Indian Institute of
Technology, Kharagpur, India, in 1969,
1971, and 1977, respectively. He is cur-
rently a professor of computer science at
Wayne State University, Detroit, Michi-
gan. Prior to joining Wayne State Uni-
versity in 1982, he was on the faculty at
the Indian Institute of Technology. His
current research intersts are in the areas
of artificial neural networks, computer
vision, pattern recognition, and multime-
dia systems. He is co-editor of the book
Artificial Neural Networks and Statisti-

cal Pattern Recognition (North-Holland, 1991). He currently serves on
the editorial boards of Pattern Recognition, Pattern Recognition Letters,
and Machine Vision and Applications. Dr. Sethi is the co-chair of the
IS&T/SPIE Conference on Storage and Retrieval for Image and Video
Databases.

