
Wireless Networks 8, 301–316, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

WTCP: A Reliable Transport Protocol
for Wireless Wide-Area Networks

PRASUN SINHA
Bell Laboratories, Lucent Technologies, New Jersey, USA

THYAGARAJAN NANDAGOPAL
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

NARAYANAN VENKITARAMAN
Motorola Labs, Schaumburg, IL, USA

RAGHUPATHY SIVAKUMAR
Electrical and Computer Engineering, Georgia Institute of Technology, USA

VADUVUR BHARGHAVAN
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

Abstract. Wireless wide-area networks (WWANs) are characterized by very low and variable bandwidths, very high and variable delays,
significant non-congestion related losses, asymmetric uplink and downlink channels, and occasional blackouts. Additionally, the majority
of the latency in a WWAN connection is incurred over the wireless link. Under such operating conditions, most contemporary wire-
less TCP algorithms do not perform very well. In this paper, we present WTCP, a reliable transport protocol that addresses rate control
and reliability over commercial WWAN networks such as CDPD. WTCP is rate-based, uses only end-to-end mechanisms, performs rate
control at the receiver, and uses inter-packet delays as the primary metric for rate control. We have implemented and evaluated WTCP
over the CDPD network, and also simulated it in the ns-2 simulator. Our results indicate that WTCP can improve on the performance
of comparable algorithms such as TCP-NewReno, TCP-Vegas, and Snoop-TCP by between 20% to 200% for typical operating condi-
tions.

Keywords: Wireless transport, WTCP, reliable wireless transmission

1. Introduction

Recent years have witnessed an explosive growth in the use of
wireless wide-area networks (WWANs) such as CDPD [23],
RAM [23], Ardis [23] and HDR [22], with industry projec-
tions topping $2.5 billion by the year 2002. Many large cor-
porations are equipping their mobile work-force with laptops
that have WWAN connectivity, thus enabling users to be con-
nected anytime, anywhere. In the typical WWAN deployment
scenario, a mobile user connects over the WWAN network
to a dedicated proxy in the corporate backbone, which then
acts as the service point for all the requests from the mobile
user1. Providing efficient and reliable connectivity between
the proxy and the mobile host over commercial wide-area
wireless networks is, thus, becoming a critical issue.

1 Most of the current deployment uses the proxy model for three reasons:
(a) the connection quality of the WWAN network is too poor to sustain
typical client-server applications, (b) the amount of data transferred to the
mobile host must be filtered because of the orders of magnitude difference
in bandwidth between the wired and WWAN connections, and (c) many
portable computing devices have display and processing limitations that
must be addressed by the proxy before sending the processed/filtered re-
sponse to the mobile user.

Despite the enormous commercial interest, a typical
WWAN network exhibits some or all of the following char-
acteristics: very low and highly variable throughput (be-
tween O(100 bps)–O(10 Kbps)), very high and highly vari-
able latency (between O(400 ms)–O(4 s)), bursty and random
packet losses unrelated to congestion (1–10%), and occa-
sional blackouts, some of which can exceed 10 s. Under such
operating conditions, applications require a generic transport
protocol that is amenable to different types of wireless net-
works which exhibit similar characteristics. However, stan-
dard transport protocols such as TCP perform very poorly in
such conditions because of two main reasons: first, TCP as-
signs all packet losses to congestion and throttles down the
transmission rate upon detecting a packet loss; and second,
TCP sets its retransmission timeout (RTO) based on observed
round trip times (RTO = (rtt)+ 4×�(rtt)). For the WWAN
networks under consideration, neither mechanism is appropri-
ate. Packet losses may happen either due to adverse channel
conditions or congestion, and throttling down the transmis-
sion rate in the former case is the wrong thing to do. Fur-
thermore, due to the very low bandwidth, transmission delays
contribute significantly to the observed round trip time. Thus,

302 SINHA ET AL.

round trip time computations are highly susceptible to fluctu-
ation depending on the size of the TCP congestion window.
As a consequence, RTO values computed by the sender tend
to be very high – as large as 32 s for CDPD. A combina-
tion of large RTO for loss recovery and wrongly throttling
the congestion window upon random packet loss can result in
extremely poor TCP performance under typical WWAN op-
erating conditions, as we have observed in our experiments
with the CDPD network.

In recent years, there have been several proposals to op-
timize TCP for wireless networks. These proposals typi-
cally have had three flavors: (a) improving reliability at the
link layer [10], (b) providing TCP-aware smarts in the base
station [4], and (c) splitting the TCP connection into two
parts [2,24] – one in the backbone network and one over the
wireless link running a specialized protocol [24]. Most of
these solutions focus almost exclusively on making the loss
characteristics of the wireless link transparent to the sender,
while preserving the congestion control mechanisms of TCP.
As we will discuss in section 2, contemporary solutions ad-
dress only a part of the problem of WWAN environments and
leave a lot of scope for improvement.

In this paper, our goal is to identify the fundamental causes
of performance degradation of TCP in commercial WWAN
networks, and design a transport protocol that effectively ad-
dresses these causes. We seek to design a deployable, robust,
fair, efficient, and reliable transport protocol for commercial
WWAN networks. To this end, we present the Wireless Trans-
mission Control Protocol (WTCP), which enunciates the fol-
lowing three key principles:

1. WTCP uses purely end-to-end mechanisms, thereby
eliminating the need for transport-level support from
the network infrastructure, in contrast to related work
[2,4,10,24]. We choose end-to-end mechanisms for three
reasons. First, an end-to-end solution generically aimed
for all wireless networks would eliminate the need for
network specific transport layers at the end hosts. For
the end host, especially the oft resource-scarce mobile
host, this results in a single transport layer solution for
all wireless networks and hence, allows the end hosts
to move seamlessly across different wireless networks.
Second, the connection end-points in most of the cur-
rent WWAN deployment scenarios are a mobile host and
a dedicated proxy – both of which are already wire-
less/mobility aware. By deploying WTCP at the mobile
host and the proxy, it is thus feasible to propose end-to-
end transport layer solutions for WWAN environments
without having to change the TCP implementations on
all stationary hosts. Third, WWAN network providers
are typically unwilling to introduce TCP-aware smarts in
the base station or mobile switching station for reasons
discussed in section 2.

2. WTCP uses rate-based rather than window-based trans-
mission control. As a result, WTCP shapes its data traffic,
never allows a burst of packet transmissions, and is also
less prone to the unfairness observed in TCP when com-

peting connections have different round-trip times [16].
Furthermore, it is the receiver that adaptively computes
the desired transmission rate based only on the character-
istics of the data path. Consequently, WTCP is relatively
insensitive to problems in the ACK path and can handle
asymmetric channels well.

3. WTCP uses the ratio of the inter-packet separation at the
receiver and the inter-packet separation at the sender (re-
call that the sender shapes data traffic) as the primary
metric for rate control rather than using packet loss and
retransmit timeouts. It also tries to remain in congestion
avoidance phase at all times by detecting and reacting to
incipient congestion. As a result, WTCP reduces the ef-
fect of non-congestion related packet losses on the com-
putation of transmission rate. Additionally, WTCP is less
prone to large round-trip-time variations as the conges-
tion window size increases, which is inevitable in stan-
dard TCP-variants due to the low-bandwidth nature of the
channel.

We do not claim that WTCP is the manna for wireless
transport protocols; as with any other transport protocol, it
has its own disadvantages. In this paper, we also present a
detailed discussion on the issues regarding the design and im-
plementation of WTCP.

The rest of the paper is organized as follows. Section 2
identifies the typical characteristics of the WWAN environ-
ment, and how they adversely affect the performance of TCP.
Section 3 describes the key design principles and mecha-
nisms of WTCP. Section 4 presents the algorithms for con-
gestion control and reliability for WTCP. Section 5 evaluates
the performance of the WTCP through a user-level implemen-
tation tested over CDPD networks and through simulations
in ns-2. Section 6 compares WTCP to related work. Section 7
presents some design issues and future work in WTCP. Sec-
tion 8 concludes this paper.

2. Characteristics of WWAN environments

At a high level, most WWAN environments exhibit one or
more of the following characteristics: the bandwidth is very
low and varying, the latency is very high and varying, black-
outs exceeding 10 s occur occasionally, and for unreliable
WWAN networks, non-congestion related packet loss may
be significant when the user is traveling at moderate to high
speeds.

We have used CDPD as the evaluation platform for WTCP
though our design is not specific to any particular data net-
work. CDPD is a packet data network that overlays the AMPS
cellular telephone infrastructure. A CDPD “full duplex chan-
nel” is a pair of unidirectional channels, each with a raw ca-
pacity of 19.2 Kbps. Up to maximum of 30 users can share a
pair of uplink/downlink channels. A set of channels may be
dedicated for CDPD transmission, or CDPD users may be dy-
namically assigned to channels that are preferentially shared
by cellular phone calls – in the latter case, users are more

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 303

likely to see short-term blackouts. CDPD transmits com-
pressed and encrypted data, and adds 48.2% Reed–Solomon
coding overhead for forward error correction. Two charac-
teristics of CDPD are germane to our discussion: the effec-
tive throughput of a CDPD channel typically does not exceed
12 Kbps, and the majority (�75%) of the end-to-end latency
is incurred in the CDPD part of the network between the mo-
bile switching station and the mobile host. We will revisit
the impact of the latter point when we discuss wireless trans-
port protocols that rely on TCP-aware smarts at the base sta-
tion [4].

WWAN wireless networks in general, and CDPD networks
in particular, typically exhibit the following six characteris-
tics.

1. Non-congestion related packet loss. Even though CDPD
adds 134 bits of Reed–Solomon error-correcting code
to every 278 bit block of data, we have measured non-
congestion related error ranging from 0 to 10% depend-
ing on the speed of mobility (measured over a range of
0–55 mph), location of the user vis-à-vis the base station,
and co-channel interference.
TCP assumes that all packet losses result from conges-
tion. A 5% non-congestion related packet loss can, thus,
significantly degrade the performance of TCP.

2. Very low bandwidth. As we mentioned above, between 1
to 30 users may share a single CDPD channel of raw ca-
pacity 19.2 Kbps. For RAM, the channel is 8 Kbps, while
for Ardis, the channel may be 4.8 Kbps or 19.2 Kbps.
Due to the extremely low bandwidth, the delay-band-
width product of a connection is small (typically 2 or
3 packets). This can affect the congestion control and fast
retransmit mechanisms of TCP adversely. TCP some-
times observes artificially larger congestion windows as
a result of deep buffering in the CDPD network. While
this allows a connection to pump in more packets into the
network, it artificially increases the round trip time and
significantly affects TCP performance in case of a time-
out.

3. Large round trip time and variance in round trip time.
In CDPD, we have observed typical round trip times be-
tween 800 ms to 4 s. A large fraction of this time is due
to transmission on the wireless link (e.g., transmitting a
512 byte packet at 12K bps takes 300 ms), and over 75%
of the latency is typically incurred in the segments of the
connection lying in between the mobile switching station
and the mobile host. In figure 3(a) we observe the varia-
tion in round trip time for UDP handshakes that progress
in bursts of 8 from 1.8 s to 6 s for successful handshakes.
This plot shows the impact of large transmission delay on
rtt when the sender bursts packets.
TCP sets the retransmission timeout to be the sum of the
average round trip time and four times the mean deviation
of the round trip time (RTO← rtt+4×�(rtt)). This may
result in very large RTOs (e.g., 32 s) in CDPD because of
two reasons: (a) rtt and �(rtt) are inherently large, and

(b) ACKs from the receiver get bunched (see below), and
since ACKs clock data packets in TCP, data packets are
sent out in bursts, which further increases the mean and
deviation of rtt. Thus, timeouts affect TCP performance
very severely on CDPD.

4. Asymmetric channel – bunching of ACKs. CDPD uses
DSMA/CD [1] for contention resolution in the channel.
Contentions among mobile users for the uplink chan-
nel are resolved by binary exponential backoff. Con-
sequently, CDPD suffers from the well known “capture
syndrome” of binary exponential backoff [21], in which
a highly loaded shared medium ends up bursting the
queued packet transmissions of each contending host in
turn. RAM also suffers from the same problem.
For the common case of downlink data transmission,
ACKs from the mobile to the backbone host get bunched.
This further skews the round trip time computation, and
also causes the sender to burst out packets as mentioned
above.

5. Occasional blackouts. Prolonged fades, sudden degra-
dation in signal quality such as traveling through a tunnel
or between overlapping base stations, and temporary lack
of available channels (when cellular phone calls are oc-
cupying the channels) can cause blackouts lasting 10 s or
more, and results in the back-to-back loss of a sequence
of packets. Traveling at 55 mph, we observed several
blackouts ranging from 10 s to 10 min during the course
of a day.

6. Inter-packet delays as a congestion metric. We have ob-
served that sharp increases in the short-term average in-
terpacket delay observed by the receiver almost always
precede congestion-related packet loss in the CDPD net-
work. Specifically, an increase in the average inter-
packet delay perceived by the receiver is an indication
of increased contention for the wireless link and is a pre-
cursor to loss unless connections throttle back their send-
ing rate. In figure 3(b) we observe the interpacket delay
sample points, the computed long-term and short-term
interpacket delay averages, and the computed mean de-
viation as a function of time at the receiver. The sender
sends packets with a constant interpacket separation of
1 s. Clearly, interpacket separation is a useful metric to
pace the progress of the connection and can be used to
perform rate control.
In wireline networks, the use of both delays and inter-
packet separation as a metric for predicting congestion
has not been well accepted because of the large variation
in delays experienced by packets over the Internet. How-
ever, this approach works well in our target environment
because of the extremely low bandwidth of WWANs,
wherein the transmission time over the wireless link pre-
dominates. TCP-Vegas uses a variant of this approach by
monitoring round trip times at the sender instead of in-
terpacket delays at the receiver [6]. Unfortunately, using
TCP-Vegas as-is will not work as well in WWAN envi-
ronments because of asymmetric channels and the effect

304 SINHA ET AL.

of bursting packets on the computed rtt (points 2 and 4
above).

2.1. High level architectural tradeoffs in WWAN
environments

Before going into the details of the WTCP design, we need
to step back and discuss the tradeoffs between using end-to-
end mechanisms for wireless TCP versus using smart mecha-
nisms in the network in order to assist wireless-unaware TCP
end-points. Related work on wireless optimizations for TCP
has typically argued against end-to-end mechanisms on the
grounds that it is impractical to change the protocol stacks
of all stationary hosts merely to accommodate mobile hosts.
Thus, most of the previous work has focused on making the
lossy nature of the wireless link transparent to the station-
ary end host by introducing smarts at the base station via one
of three mechanisms: reliable link layers [10], TCP-aware
“snoop” mechanisms [4], or splitting the connection into two
(wireline and wireless) distinct components [2,24].

Link layer retransmission [10] works well when the la-
tency over the wireless link is small compared to the coarse-
grained TCP timer. In the ideal case, the link layer retransmis-
sions are not expected to significantly interfere with the end-
to-end rtt computations or congestion control mechanisms –
except to eliminate random channel loss. In WWAN net-
works, it is the transmission time over the wireless network
that constitutes the bulk of the observed end-to-end latency.
Consequently, providing only a reliable link layer abstraction
at a packet-level time scale and keeping TCP unchanged at
the end hosts simply will not work because they will inter-
fere with the reliability and congestion control mechanisms of
TCP. If the wireless data network provides fine grained link-
level retransmissions, e.g., RLP used in HDR [22], then link
layer mechanisms can effectively mask channel error from
higher layers.

The Snoop protocol [4] instantiates TCP-aware smarts at
the base station (or mobile switching station) in order to elim-
inate the problem of false fast retransmits or slow starts due
to random packet loss over the wireless channel. This ap-
proach assumes that the transmission time over the wireless
link is significantly smaller than the coarse-grained TCP timer
and round trip time. Moreover, Snoop works well only when
the bandwidth-delay product of the wireless link is at least
3 packets long. However in WWAN environments, Snoop
does not work well because of two reasons: (a) it exacerbates
the problem of large and varying round trip times by suppress-
ing duplicate ACKs, and (b) duplicate retransmissions may be
initiated by both the Snoop agent and the end host (which may
observe a timeout) because of comparable timeout values at
the two entities. In fact, we have observed that snooping may
possibly degrade the performance of TCP when the latency
over the wireless link dominates the round trip time. In sum-
mary, we believe that Snoop works well in the environment
for which it was designed, but it does not work well in the
WWAN environment.

Indirect TCP protocols [2,24] break the TCP connection
at the base station, and maintain two separate connections –
one over the wireline network and one over the wireless net-
work. I-TCP violates the fundamental end-to-end guarantees
of TCP by splitting the connection. Note that the connection
split must happen at the base station (or mobile switching sta-
tion) serving the mobile host, and the connection state must be
moved across base stations upon handoff. The wireless com-
ponent of I-TCP is quite simplistic and does not address is-
sues such as (a) non-conformance with end-to-end semantics,
(b) overhead of moving state between base stations, (c) de-
ployability constraints due to mandatory changes in base sta-
tions, and (d) design of the transport protocol for the wire-
less link. As a practical matter, the I-TCP architecture may
not be feasible for WWANs because it requires significant in-
frastructure support and maintenance of connection state from
the WWAN network, which is autonomously managed and
may not even understand TCP/IP internally (e.g., RAM). It is
important to note that I-TCP calls for splitting each transport
connection transparently to the TCP end-points. It is, thus,
quite distinct from the WWAN deployment scenario of a mo-
bile host connecting to a dedicated stationary proxy in the
backbone.

To summarize, we believe that previous approaches that
seek to hide the problems of WWAN networks from TCP
at the end host by adding TCP-aware smarts in the mobile
switching station are not applicable to WWAN networks for
two reasons: (a) such approaches require the base station to
maintain significant state, understand TCP/IP, and are often
tuned to specific flavors of TCP, and (b) the fact that the la-
tency between the mobile switching station and the mobile
host is the dominant component of a large and varying round
trip time makes such approaches less effective. The bottom-
line is that for WWAN environments, both endpoints must
cooperatively address the issues unique to the environment.
Moreover, it is desirable to eliminate network-level smarts
because the base stations are owned by an autonomous entity
that may not even be running IP internally. We believe that
the key issues that need to be addressed – the non-congestion
related packet loss, large and highly varying latency, asymme-
try in data/ACK channel behavior – can be effectively solved
with the end-to-end mechanisms proposed in this paper. Of
course, the penalty for using the end-to-end mechanism is
that the remote end-point in the backbone must also change.
Luckily, the nature of the WWAN environment and the cur-
rent deployment pattern already supports the common case of
WWAN users typically connecting through a dedicated proxy
server on the backbone.

3. The WTCP approach

Any reliable transport protocol must provide the following
functions: (a) connection management, (b) congestion con-
trol, (c) flow control, and (d) reliability. WTCP reuses the
standard TCP mechanisms for flow control and connection
management. We now focus on the key design choices in
WTCP for congestion control and reliability.

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 305

3.1. Congestion control

The key aspects of congestion control in WTCP are that it
is rate based, uses interpacket delay as the primary mecha-
nism to determine rate adaptation, performs the rate adapta-
tion computations at the receiver, predicts the cause of packet
loss and reacts accordingly, and varies the granularity of rate
increase/decrease depending on the type of congestion ob-
served. Additionally, WTCP also tailors its startup behavior
to work well for short-lived flows. We describe the design
aspects of WTCP congestion control in more detail below.

1. Rate-based transmission control. As we mentioned in
section 2, for the common case of bulk data transfer from
the backbone host to the mobile host, ACKs are often
bunched together on the return path to the sender because
of the nature of channel arbitration, e.g., DSMA/CA used
in CDPD. With the window-based self-clocking mecha-
nism of TCP, this results in the sender bursting back-to-
back data packets, which skews round trip time computa-
tions, causes more bursty queuing at the base station, and
consequently more packet drops. WTCP alleviates these
problems by using a rate based scheme that does not use
ACKs for self-clocking. Adopting a rate-based approach
does involve explicit clocking and shaping the traffic ac-
cording to the current transmission rate of the connec-
tion; however, the rates are typically small enough that
coarse grain timers (O(100 ms)) are sufficient to perform
the clocking effectively.

2. Inter-packet delay as the main mechanism for transmis-
sion control. We have observed that monitoring the av-
erage interpacket delay at the receiver provides a fairly
accurate measure of the available channel rate for low
bandwidth channels. Specifically, the ratio of the aver-
age inter-packet separation at the receiver and the average
inter-packet separation at the sender provides a respon-
sive metric to determine if the transmission rate needs
to be increased, or decreased. Thus, when the network
is uncongested or has incipient congestion, reacting to
changes in the interpacket delay ratio serves to keep the
network uncongested, and significantly reduces the num-
ber of congestion-related packet losses. WTCP, thus,
uses this mechanism as the primary transmission rate
control mechanism, and essentially uses incipient con-
gestion detection without waiting to lose packets before
throttling down the sending rate.

3. Distinguishing the cause of packet loss and adjusting
transmission rate accordingly. While interpacket delays
are the main mechanism for dealing with incipient con-
gestion, if the network suddenly moves from uncongested
to congested state (e.g., due to a sudden influx of new
connections or sudden decrease in available resources),
then packets are dropped due to congestion. Our algo-
rithm must detect such losses and throttle the sending rate
aggressively. In other words, when the receiver observes
packet losses, it must predict the cause of the losses and

react appropriately. If the loss is predicted to be due to
congestion, then the sending rate is throttled down.
We use a heuristic based on the average per-packet sep-
aration to distinguish congestion losses from random
losses. In this heuristic, the receiver initially predicts
that all losses are non-congestion losses. Consider that
packets i and j were received (j > i), but packets
i + 1, . . . , j − 1 were all lost. In this case the receiver
computes the average inter-packet separation for each of
the lost packets equal to

per_pktsep← recv_timej − recv_timei

j − i
,

where recv_timei is the time at which the last bit of
packet i arrives. If the value of per_pktsep is close
to the measured inter-packet separation at the receiver
(i.e. within the band [average − K · mean deviation,
average + K · mean deviation], where K is a constant),
then the receiver predicts that the losses were all random
losses. Otherwise, the receiver predicts that there was at
least one congestion loss, and the sending rate is reduced
by half.

4. Performing transmission control computations at the re-
ceiver. In WTCP, the receiver performs the rate con-
trol mechanisms described above, and computes the new
transmission rate of the sender. With each data packet,
the sender transmits its current interpacket separation.
Based on local state and the state in the packet, the re-
ceiver has all the information it needs to update the trans-
mission rate. This is done at regular intervals, which we
refer to as update epochs. An update epoch begins when
the sender starts using a new rate and lasts for a fixed time
period. At the end of the epoch, the receiver performs the
rate control computations and sends the rate update back
to the sender in its acknowledgment. Having the receiver
perform the rate computations eliminates the effect of de-
lay variations and losses in the ACK path. Even if ACKs
get bunched, delayed, or lost, the transmission rate is not
altered. WTCP can thus deal with asymmetric channels
effectively.

5. Variable granularity rate adjustment. TCP uses the well
known linear-increase–multiplicative-decrease policy for
adjusting its congestion window. While LIMD is stable
and asymptotically converges to fair channel allocation,
the efficiency of the LIMD algorithm is a function of how
severely the decrease is performed. TCP reduces its con-
gestion window by half upon observing a packet loss. In
WTCP, we seek to detect incipient congestion and react
to it early on in the common case. The goal of WTCP is to
decrease the transmission rate multiplicatively in order to
ensure fairness, less aggressively when reacting to incip-
ient congestion in order to improve efficiency, and more
aggressively when reacting to real congestion in order to
reduce packet loss and alleviate congestion quickly. In
order to achieve these goals, WTCP maintains a history
of transmission increase/decrease in the recent past. If

306 SINHA ET AL.

the receiver is required to perform transmission decrease
multiple times in quick succession, it starts to decrease its
transmission rate more aggressively. If the receiver ob-
serves a congestion based packet loss, it halves its rate.
As a result of this approach, incipient congestion is han-
dled by a gentle decrease of the transmission rate, but
severe congestion is handled by an aggressive decrease
in transmission rate.

6. Startup behavior. Since round trips are large in WWAN
environments, and since some data transmissions may
be short-lived, WTCP attempts to compute the appropri-
ate transmission rate for a connection immediately upon
startup rather than going through slow start. WTCP uses
the “packet-pair” approach [13], wherein it sends two
back-to-back packets of maximum segment size (MSS)
and computes their interpacket delay during connection
establishment. This serves as an approximate estimate
for the sending rate. Though the packet-pair approach
is known not to work too well in wireline environ-
ments [20], we have used it as a first-cut approach. We
will investigate this approach in the near future.

7. Blackout detection. Blackouts occur when the connec-
tion experiences back-to-back losses for extended peri-
ods of time due to poor channel conditions or lack of
available channels. As described in section 3.2, the reli-
ability mechanism of WTCP elicits an acknowledgment
(positive or negative) from the receiver for every packet
that has been sent, before the sender decides to resend it.
Thus, if a packet has not been acknowledged (positively
or negatively) for a threshold period of time, the sender
enters the blackout phase and starts probing the receiver
in order to elicit an acknowledgment. Upon a successful
packet handshake after entering the blackout phase, the
sender reverts to the old transmission rate that it was us-
ing before the onset of the blackout phase. This ensures
that the packet losses during the blackout phase do not
affect the transmission rate.

3.2. Reliability

The key aspects of reliability in WTCP are that it uses se-
lective acknowledgments, it does not use retransmit timeouts,
and that it tunes the frequency of sending acknowledgments
to the dynamic network conditions. We describe these aspects
below:

1. Selective acknowledgments. As noted in related work,
selective acknowledgments are very useful in TCP [17].
WTCP uses selective acknowledgments for ensuring re-
liability. The receiver periodically sends ACKs at a fre-
quency tuned by the sender (see below), containing the
cumulative and selective ACK. By inspecting the ACK,
the sender can detect a hole in the receiver’s sequence of
received packets. By comparing the state contained in the
ACK with local state stored with the last (re)transmission
for each unacknowledged packet, the sender can deter-
mine if this last (re)transmission was lost, or could still

be in transit. Thus, selective acknowledgment allows the
sender to retransmit only lost packets.

2. No retransmit timeouts. As we have observed in sec-
tion 2, it is exceedingly difficult to maintain a reliable
estimate of the retransmit timeout. In fact, many of the
performance problems observed in various TCP flavors
are caused by erroneous RTO estimation. WTCP does
not use RTOs. Instead, it modifies the SACK algorithm
in order to achieve reliable transmission without RTOs.
This mechanism is described in section 4, and is a very
important aspect of WTCP.

3. Controlling ACK frequency. ACKs carry both reliabil-
ity and transmission control information, and the sender
must receive ACKs periodically in order to react to the
new transmission rate, and perform flow control. The
sender tunes the desired ACK frequency (and notifies the
receiver in the data packet) such that it expects to receive
at least one ACK in a threshold period of time (e.g., 5 s).
If the sender has one or more packets pending acknowl-
edgment for more than a threshold period of time, it goes
into the blackout mode. The tuning of the ACK frequency
is governed by several factors: (a) observed ACK loss at
the sender, (b) half-duplex or full-duplex nature of the
WWAN channel, and (c) average and deviation in the
inter-ACK separation observed at the sender. Note that a
receiver may also voluntarily generate a SACK immedi-
ately upon observing a hole in the packet sequence. The
effects of these factors on controlling the acknowledg-
ment frequency is part of ongoing work.

4. The WTCP algorithm

In WTCP, rate control and reliability are decoupled. The
receiver computes the desired sending rate via its rate con-
trol mechanisms, and notifies this rate to the sender in the
ACK packets. ACKs, thus, carry both reliability information
(SACK) and rate control information. The sender monitors
the reception of ACKs, and adjusts its rate accordingly. It
also monitors the ACKs to tune the ACKing frequency, which
it then notifies to the receiver in future data packets. If the
sender has one or more packets pending acknowledgments
for more than a threshold period of time, it goes into black-
out mode and periodically sends probe packets to elicit ACKs
from the receiver and recover from the blackout. The probe
packet mechanism is also used for loss recovery, eliminating
the need for timeout-based retransmission in WTCP.

We now describe the parameters contained in the pack-
ets of WTCP, and then describe the key functions of WTCP.
There are three types of packets: Data, ACK, and Probe. The
contents of these packets are as follows:

Data: 〈rel_seq_num, cctrl_seq_num, hack_seq_num, current
rate, ack frequency, packet_size, data〉.

ACK: 〈 ack_seq_num, hcctrl_seq_num, updated rate, CACK,
SACK 〉.

Probe: 〈cctrl_seq_num, optional_data〉.

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 307

The reliability sequence number (rel_seq_num) in the data
packet is the byte sequence number as in TCP, and is used
for sequencing and reliable delivery of packets. The conges-
tion control sequence number (cctrl_seq_num) is a monoton-
ically increasing packet sequence number that distinguishes
multiple transmissions of the same packet. The ACK packet
contains the CACK and SACK that acknowledge maximal se-
quences of contiguous data packets that have been received at
the receiver, and also the highest congestion control sequence
number (hcctrl_seq_num) seen thus far by the receiver. This
is used by the sender in a variant of the SACK algorithm to
eliminate retransmit timeouts.

ACKs are sequenced by the ACK sequence number
(ack_seq_num), which is monotonically increasing for every
ack sent from the receiver. Each data packet from the sender
contains the highest ACK sequence number (hack_seq_num)
that it has seen so far, and this information is used at the re-
ceiver in rate control to determine if a sender has already re-
acted to its previous rate adjustment.

Other parameters in the data packet include the current
sending packet separation, the desired ACK frequency, packet
size, and data. Besides other parameters, the ACK packet al-
ways contains the desired sending packet separation.

The probe packet contains a congestion control sequence
number (cctrl_seq_num) but no data. As in the case of
data packets, sending a probe packet also increments the
cctrl_seq_num by 1.

We now describe the rate control and reliability mecha-
nisms of WTCP.

4.1. Rate control

The choice of the threshold used for deciding whether to in-
crease or decrease the transmission rate is crucial to the de-
sign of WTCP, and so is the use of history for computing the
amount of decrease. These two key aspects of the rate control
mechanism are described below:

• Increase/decrease phase. Recall that rate updates are
epoch-based. The increase phase is used to probe the con-
nection for available capacity. In our algorithm, we main-
tain a running average of the ratio of receiver to sender
inter-packet separation, and update this average at the end
of each epoch. A natural question arises at this point:
given the running average of the ratio, what is the heuris-
tic to determine whether the rate must be increased or
decreased for the next epoch? In order to motivate this
heuristic, let us now consider a single flow traversing a link
of capacity, C. Let the rate of the flow be denoted by r .
When r < C, the link can support the rate r , and hence,
the ratio of the sending-to-receiving rate is 1. Thus, the re-
ceiver can increase the sending rate to probe the network
for additional bandwidth. Note that the maximum value
of r that the link can support is C. If the rate is increased
beyond this value such that r = C+α (where α is the con-
stant of increase), the maximum rate at which the receiver
will receive is still C. The ratio of the sending rate to the
receiving rate is, therefore, (C + α)/C, which translates

to 1 + α × receive_separation, where receive_separation
is the time interval between arrivals of last bits of con-
secutive packets. The flow has to decrease its rate since
the link is not able to support the rate of the flow. Thus,
(1+ α × receive_separation) defines the threshold for in-
crease or decrease for a single flow. The constant α should
be chosen to be a small percentage of the capacity C. For
our experiments, we chose α to be the number of bits in
one maximum sized packet per RTT, thus making WTCP
equally aggressive as TCP, to obtain a fair comparison
with TCP.

• Using history for graded multiplicative decrease. Since
we start to throttle the sending rate as soon as the ratio
of the receiver to sender inter-packet separation exceeds
the threshold, we react quickly to incipient congestion,
and rarely get to the stage where packets must be dropped
at routers due to congestion2. Since we expect to be in
the congestion avoidance phase most of the time, we can
afford to throttle more gently upon incipient congestion
(rather than the traditional 50% in TCP). However, as con-
gestion builds up, we must throttle rate more aggressively
in order to quickly account for the built-up congestion and
prevent packet losses from occurring. Essentially, this mo-
tivates having a simple notion of “history” of rate con-
trol and a simple gradation for rate throttling, where we
progressively throttle rate more severely for back-to-back
decrease phases. In our algorithm, we do this by main-
taining a decrease variable, δ, which is reset to 0.1 when-
ever we encounter the increase phase, and is doubled in
each decrease phase. During the decrease phase, the rate
is throttled to a fraction (1 − δ). This provides a graded
multiplicative decrease, as the granularity of decrease in-
creases exponentially for successive decrease phases (i.e.
if the previous decrease phase was not sufficient to throttle
the rate adequately).
As a result of this approach, incipient congestion is han-
dled by a gentle decrease of the transmission rate, but se-
vere congestion is handled by an aggressive decrease in
transmission rate, which is not more than 50%. When a
loss occurs, we reduce the sending rate by 50%, following
popular TCP-friendly LIMD (Linear Increase Multiplica-
tive Decrease) congestion control. In a related work, we
have explored this algorithm in more detail [14].

Thus, the basic tenets of our approach are that it is rate-
based with receiver-based rate computations, and that it uses
linear increase and graded multiplicative decrease for conges-
tion avoidance. With this framework in mind, we will now
present the details of the rate control algorithm.

4.2. The rate control algorithm

The pseudo-code for the rate control algorithm is shown in
figure 1. The rate control algorithm has two events associated

2 This is true for wireless networks with a large delay component only if we
assume deep buffering within the network. Our studies have shown that
this is indeed true of typical wireless data networks.

308 SINHA ET AL.

Figure 1. Algorithm for rate control at receiver.

with it: the arrival of a packet at the receiver, and a periodic
timer-based update.

When a packet arrives at the receiver, the receiver checks
to see if the packet is in sequence. If the packet is out of se-
quence (line 1), the receiver assumes that all the intermediate
packets have been lost. receiving N out of order packets).
In the event of such losses, the receiver predicts if the losses
are due to congestion and if so, it reduces the rate by half, or
else, it treats the losses as random losses and does not react to
them (line 2). This loss predictor uses the per-packet separa-
tion based heuristic described in the previous section. If the
packet has been received in sequence, the receiver computes
the separation between this packet and the previous packet
(line 4).

If the packet has the updated rate, then the ratio of the re-
ceiving to sending separation is computed, and the aggregate
of ratio over all samples is used to compute the short term and
long term averages at the end of an update epoch (lines 6–8).

At the end of every update epoch, the short term aver-
age (savg_ratio) of the ratio of receiving to sending separa-
tion is computed based on the samples obtained in the epoch
(line 12). A long term average (lavg_ratio) is used to main-
tain a limited history of ratios and to smooth out the effect
of brief network dynamics. It is maintained as an expo-
nential running average over the last six short term averages
(line 13).

When the lavg_ratio goes beyond a threshold, the rate is
decreased. This threshold, as described earlier, is 1 + α ×
receive_packet_sep. However, rather than using the receive
separation of one packet, the average receive separation com-

puted in the last epoch is used, which is obtained as a product
of savg_ratio and send_packet_sep. Hence, if the long-term
average ratio is less than the threshold (line 16), then it im-
plies that the network was able to support the previous rate
and so the rate control algorithm tries to probe by increasing
the rate (line 17). If a flow enters the increase phase, then the
decrease variable, δ, is reset to 0.1 (line 18).

If the average ratio is greater than the threshold, then
the receiver reduces the rate using the decrease variable δ

(line 20). The initial value of δ is 0.1. However, if the average
ratio is greater than the threshold for consecutive epochs, it
implies that the network resources have decreased or that the
flow might have to give some room to another flow. Hence,
the rate control algorithm doubles the value of δ, subject to a
maximum of 0.5 (line 21).

4.3. Reliability

As described earlier (section 2), RTT estimates are inaccu-
rate primarily due to the low bandwidth nature of the wireless
links. Hence, WTCP does not have a notion of a retransmis-
sion timer. WTCP depends on the following two techniques
for retransmission of packets.

1. SACK algorithm. The important steps in processing an
acknowledgment are shown in figure 2 as a pseudo-code.
In the figure, p.rel_seq_num represents the reliability se-
quence number of the packet and p.cctrl_seq_num rep-
resents the congestion control sequence number of the
packet. For every transmitted packet the sender keeps

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 309

Figure 2. The reliability algorithm for WTCP at the sender.

track of the congestion control sequence number of the
packet which was used to send it. The ACK process-
ing algorithm has a faster implementation but the presen-
tation here is aimed towards simplicity. Lines 2–8 are
executed for all unacked packets. If the packet is being
CACKed or SACKed, then it is removed from the un-
acked list (lines 2–5). A packet is marked for retrans-
mission when the sender recognizes that the receiver has
seen a packet with a larger congestion control sequence
number. Packets marked ready for retransmission have
a higher transmission priority compared to the new data
packets.

2. Probe packets. While the SACK algorithm described
above effectively detects “holes”, it will not recover the
loss of a packet unless another packet that was subse-
quently transmitted has been successfully received at the
receiver. Consequently, it is possible for the sender to
lose a sequence of packets, and then run out of more
packets to send. Since there is no concept of a retrans-
mission timer, lost packets would never be recovered.
In order to solve this problem, when the sender does not
have any data to send but the rate indicates that a new
packet can be sent out, it sends a probe packet instead.
The receiver responds to a probe packet with an acknowl-
edgment, and now the hcctrl_seq_num field in the ACK
contains a congestion control sequence number that is
larger than that of any transmitted packet. As a result, the
SACK algorithm described above kicks in for the detec-
tion and retransmission of packets (figure 2, lines 6–8).
Note that probe packets are also sent periodically during
the blackout period with increasing congestion control
sequence numbers, in order to elicit an acknowledgement
from the receiver.

5. Performance evaluation

We currently have a user-level implementation of WTCP that
we have evaluated over the CDPD network, and a simulation
model of WTCP in the ns-2 simulator. In this section, we
present the results of our performance tests of WTCP through
practical experiments and simulations.

5.1. Experiments on the CDPD network

We performed two sets of experiments on the CDPD network
accessible in Chicago, Illinois and Bloomington, Illinois. The

first set of experiments was aimed towards understanding the
characteristics of the CDPD network. These results were then
used to simulate a CDPD like environment and obtain perfor-
mance comparisons with other TCP approaches. The second
set of experiments compared an off-the-shelf implementation
of TCP Reno available with Windows 95C and Linux 2.0.33
against a user level WTCP implementation on the same plat-
forms. For all our experiments, the sender was a 233 MHz
Pentium PC running Linux 2.0.33, which was used as a fixed
host. The receiver was a 233 MHz Pentium Winbook laptop
running Windows 95C and was used as the mobile host. The
CDPD device was a Sierra Wireless AirCard.

We performed CDPD experiments at different locations,
and speeds of 0–55 mph at different times of the day. Due
to space constraints, we only present typical results obtained
while traveling at 55 mph.

5.1.1. CDPD network characteristics
To find out the random loss percentage while moving at
55 mph, we sent UDP packets of 512 bytes at 1 s intervals
over 30 min. The short term observed error rate varied be-
tween 1–15% with a long term average of around 4%.

For studying the effect of back to back packets on round
trip time, we performed several experiments with varying
burst sizes. The RTT increases linearly within a burst. The
typical values of RTT observed for a packet size of 512 bytes
is about 1.8 s. Figure 3(a) shows results from a experiment
with 512 byte packets and a burst size of 8. This shows that
bursting data packets would result in high RTT values with
high variance, resulting in high RTOs. This affects the perfor-
mance of TCP as is found in TCP experiments, described in
section 5.1.2.

For analyzing the effectiveness of the ratio of sender side
separation to receiver side separation, we measured the short
term average, long term average and the deviation of the ra-
tio. A sample plot for 100 packets sent at an interval of 1 s
is shown in figure 3(b). The graph shows the ratio of sender
side separation to receiver side separation, the short term av-
erage (50% weight on a new sample), the long term average
(12.5% weight on a new sample), and the mean deviation of
the long term average (12.5% weight on a new sample). The
graph clearly shows that the short term average is able to cap-
ture current network behavior, and the long term average does
not vary so much as shown by the low mean deviation of the
long term average.

310 SINHA ET AL.

(a) (b)

Figure 3. (a) RTT for burst size of 8 with packet size of 512 bytes. (b) Ratio of send to recv separation for packet sizes of 512 bytes sent at 1 s interval. Also
shown are the short term average, long term average and the mean deviation for the long term average.

(a) (b)

Figure 4. Performance of TCP while moving at 55 mph. A blackout period is captured in (b).

5.1.2. TCP versus WTCP
We sent 100 KB of data using TCP Reno and WTCP across
various experimental conditions. At an average TCP takes
134 s to send 100 KB of data from the fixed host to the mobile.
WTCP takes less than 100 s on average for sending the same
amount of data. The total time taken by WTCP does not vary
with varying loss percentage, as the sending rate in WTCP is
not affected by random losses. In figures 4 and 5 we present
two typical TCP and WTCP performance results, which were
obtained while moving at a speed of 55 mph.

In figure 4(a), there are 8 random losses perceived at the
sender. TCP stalls at periods as it is waiting for reception of
acks to move/increase its congestion window. There are two
retransmission timeouts, one at 35 s (RTO 30 s) and another
at 128 s (RTO 17 s). For all other losses, TCP is able to re-
cover using fast retransmit. The large retransmission timeout
at approximately 35 s is because of the slow start mechanism
which aggressively fills up the buffers, resulting in large RTTs
and correspondingly large RTOs. In figure 4(b), there are two

sequences of losses one from 13 to 26 s and the other one
from 42 s to 120 s. During these blackout periods, TCP reacts
using the RTO mechanism and even backs off its RTO value
resulting in poor performance. It is doing slow start in the be-
ginning and after every retransmission timer run out. These
slow starts further skew the RTT and RTO computations be-
cause of a fast queue buildup, as discussed earlier.

In figure 5(a), there are 11 losses. At around 70 s, WTCP
enters into blackout and stops transmission for a few seconds,
till it starts getting acknowledgments from the receiver. But
overall, the rate of transmission is not effected by the random
losses. In figure 5(b), there are 3 random losses and a blackout
period of about 60 s. As soon as the blackout period is over,
WTCP starts sending at the rate it was using before going into
blackout.

A comparison of figures 4(a) and 5(a) shows that for ap-
proximately the same number of losses, TCP takes 170 s for
sending 100 KB data whereas WTCP takes 130 s (inclusive
of a short blackout). Similarly for Figures 4(b) and 5(b), we

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 311

(a) (b)

Figure 5. Performance of WTCP while moving at 55 mph. A blackout period was captured in (b).

find that TCP takes 140 s to send 40 KB data, whereas in the
same amount of time, WTCP is able to send about 80 KB
of data. As TCP does not distinguish between congestion
and random losses and has no mechanism to handle black-
outs, these results were expected ofTCP. Also, as WTCP has
smarts to distinguish between congestion and random losses,
and also recognizes blackouts, expectedly, it performs much
better than TCP on the real CDPD network.

5.2. Simulations

In this section we compare the performance of WTCP,
TCP-NewReno, TCP-Vegas and Snoop-TCP via simulations
using the ns-2 simulator. The WTCP protocol has been im-
plemented in ns-2 as a WTCP-Agent and WTCP-sink pair.
The WTCP-sink computes the new value for the send packet
separation and this information is carried back to the sender
with every ack. The network topology used in the simulations
is shown in figure 6. As we can see from the figure, the packet
transmission latency over the wireless network will dominate
the latency over the wireline part of the connection. Thus,
the results for this topology are representative of networks
with more complex wireline topologies. Even though this
topology does not mimic all the characteristics of any specific
wireless wide area network, it gives a clear picture of the per-
formance of various transport protocols over a channel with
low bandwidth and significant error rates. While networks
such as CDPD currently offer only 19.2 Kbps raw bandwidth,
it is expected to grow by two or three times in the future [23].
So results have been presented using 20 Kbps and 50 Kbps
bandwidth for the wireless channel. Also, the observed error
rate varies widely depending on factors such as the location
of the mobile host and its traveling speed etc. So for the sim-
ulations we have used an exponential error model with mean
error rates ranging from three to eight percent.

The rest of this section presents four different sets of re-
sults. For the first set of results we have used a single flow to
evaluate the performance of TCP-NewReno, TCP-Vegas and

Figure 6. Network topology.

WTCP with different bandwidths and error rates. As conges-
tion control is primarily concerned with the total number of
packets successfully sent and not the specific sequence num-
ber of the packet, we use the total number of packets received
at the sink to compare their performances. The next sub-
section uses multiple flows to study the aggregate through-
put obtained and the fairness characteristics of WTCP. In the
third subsection we compare WTCP with TCP-Reno using
the Snoop protocol. As the Snoop protocol in the ns simula-
tor as of version 2.1b4 is broken, we implemented the Snoop
as a Queue object that buffers packets being transmitted to
the mobile host, filters duplicate acknowledgments if neces-
sary and retransmits buffered packets on the arrival of the very
first duplicate ack. This reflects Snoop behavior accurately.
Sufficient buffer space was provided to avoid overflow. All
the simulations presented in this section use a packet size of
500 bytes.

5.2.1. Single flow
The results for this scenario shown in figures 7, 8 and 9, use a
wireless bandwidth of 50 Kbps, a queue size of 5 packets and
error rates of 0%, 4% and 6%, respectively. Figure 7 demon-
strates that WTCP provides the same throughput as TCP-
Vegas when the channel is error free. The next two figures
show that the performance of NewReno and Vegas degrade
significantly with increase in error rate. The figures indicate
that for a 50 Kbps channel with an error rate of 4%, WTCP

312 SINHA ET AL.

Figure 7. 0% error, 50 Kbps.

Figure 8. 4% error, 50 Kbps.

Figure 9. 6% error, 50 Kbps.

provides about 100% improvement in performance over the
other versions of TCP we have considered. Figures 10, 11
and 12 use a wireless bandwidth of 20 Kbps and error rates of
4%, 6% and 8%, respectively. The difference in performance
between WTCP and other mechanisms are less pronounced
with a smaller bandwidth because for a single flow, the pack-
ets already in the queue keep the channel occupied for a larger

Figure 10. 4% error, 20 Kbps.

Figure 11. 6% error, 20 Kbps.

Figure 12. 8% error, 20 Kbps.

period of time, thereby reducing the impact of the drastic re-
duction of the sender’s congestion window. Whereas with
multiple flows, the buffer space available for a single flow
will be less, and hence, the resultant throughput will decrease.
The results in this section indicate that in wide area wireless
networks, WTCP clearly outperforms its wire-line end-to-end
counterparts.

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 313

Figure 13. New flow.

Figure 14. Aggregate sent.

5.2.2. Multiple flows
In this subsection, we study the behavior of WTCP with mul-
tiple flows. For all the cases considered we have used a queue
size of 50 packets and bandwidth of 50 Kbps and an error rate
of 4% for the wireless channel. In the scenario shown in fig-
ure 13, a new flow is introduced into the system when another
existing flow is in a steady state. The introduction of a new
flow results in an increase in the receive packet separation
for the old flow. As a result, the old flow increases its send
packet separation thereby providing more room for the new
flow. The figure indicates that the new flow manages to ob-
tain the fair share of the wireless bandwidth in a short period
of time. The parallel lines clearly show that the wireless band-
width is equally divided between the new and the old flows.
Figure 14 gives the aggregate throughput obtained by three
flows started at the same time. The aggregate throughput ob-
tained by all the three flows with WTCP is higher than that
obtained with the other mechanisms. To measure the fairness,
we also used a fairness index [9] given by

F(x) =
(∑

xi

)2

n
(∑

xi
2
) ,

Figure 15. Snoop: 50 Kbps, 4% error.

Figure 16. Snoop: 50 Kbps, 6% error.

where xi is the share of bandwidth obtained by a flow i and
n is the total number of flows. The fairness index is a con-
tinuous function in [0, 1], and the larger the index value, the
better the fairness. All the three congestion control mecha-
nisms considered were fair with the indices ranging between
0.978 and 1.0. This set of simulations also serves to indicate
that irrespective of the starting point of the flows, they all con-
verge to fairness.

5.2.3. Snoop protocol
Figures 15 and 16 correspond to the scenario in which a
50 Kbps wireless channel was used with the snoop protocol
being run at the base station. The queue size was set to 5
and the error rates were 4% and 6%, respectively. Also the
channel between the source and the base station was 1 Mbps
with a latency of 50 ms and the latency between the base sta-
tion and the sink being 200 ms. Since the latency between
the Snoop agent and the mobile host dominates the round trip
time, the use of Snoop does not translate into an improvement
in performance. Also the performance of TCP-Vegas dete-
riorates because Snoop interferes with the early congestion
adaptation mechanisms. Figure 16 considers the case where
the error rate is 6%. In this case too, WTCP performs bet-

314 SINHA ET AL.

ter than TCP-NewReno using Snoop. TCP-NewReno reacts
drastically to self-induced congestion losses. WTCP, how-
ever, uses the decrease variable which provides a graded re-
action. Note that the use of Snoop cannot improve the per-
formance of TCP-NewReno beyond the case where there are
no losses caused by channel errors. As we have seen in all
the subsections above, even with losses, WTCP performs bet-
ter than TCP-NewReno. Snoop is quite effective in hiding the
losses in the wireless channel from the source if the delay ex-
perienced after the point where the Snoop protocol executes
is very small compared to the total round trip delay. In other
cases, as seen from figures 15 and 16, it does not provide any
improvement.

6. Other related work

One of the key features of WTCP is its ability to detect wire-
less losses. Kunniyur and Srikant show in [15] that for loss
based LIMD (Linear Increase Multiplicative Decrease) algo-
rithms to work well in wireless networks, the sender must be
able to exactly distinguish between random losses and con-
gestion losses. Biaz and Vaidya show in [5] that, unfortu-
nately, most currently proposed “loss predictors” (i.e. metrics
that are used to distinguish random losses from congestion
losses) such as those based on the congestion detection met-
rics in [6], do not work well in practice. These results fur-
ther motivate our approach of not using packet losses as the
primary metric for congestion detection. In WTCP we use
the ratio of the receiver-to-sender inter-packet separation in
order to determine whether to initiate the increase phase or
the decrease phase of the LIMD algorithm. Biaz and Vaidya
also use this metric in [5], but only to predict if the loss is
congestion-related or not. We believe that detecting and react-
ing to incipient congestion is one of the powerful mechanisms
in our approach. Even in wireline networks, algorithms such
as TCP Vegas have tried to detect and react to incipient con-
gestion and reduce or eliminate packet loss [6]. However, the
specific mechanisms of TCP Vegas are prone to unfairness
and are not applicable for low bandwidth wireless networks
(because round trip time is highly affected by packet bursts in
TCP Vegas), as shown in this paper.

Some wireless TCP approaches try to use the existing fea-
tures of TCP to take care of mobility and high error rates.
Cáceres and Iftode [8] have proposed a mechanism based on
fast retransmits. After the mobile registers with a new base
station, it enters into the fast retransmit mode and also sends
a signal to the other end to do the same. One of the ways this
signaling can be done is by sending three duplicate ACKs.
Similarly, the M-TCP [7] approach, which is based on the
split connection approach, makes use of the persist mode of
TCP. At the split point of the TCP connection (or proxy), an
ACK for all but the last byte is forwarded to the fixed host.
On detection of a link failure, the TCP layer at the mobile is
frozen. The proxy on receiving no ACKs from the mobile,
advertises zero window along with the ACK for the last byte,
thus putting the fixed host in persist mode. When the link

is up, the proxy receives an ACK from the mobile, resulting
in the proxy informing the fixed host of the true window and
thus restarting TCP.

There are several similarities between the space commu-
nication environment and the mobile and wireless environ-
ments, such as link outage, high latency, varying RTT, data
corruption etc. As a result, research on transport layers
for satellite networks, is also relevant for our work. Durst
et al. [11] propose SCPS-TP, a protocol for space commu-
nications, which has several mechanisms for enhancing TCP
to counter the problems of data corruption, link asymme-
try and limited bandwidth. The mechanisms include using
ICMP messages to distinguish various losses, header com-
pression, use of an efficient selective negative acknowledg-
ment (SNACK) scheme, etc. Henderson and Katz [12] have
proposed STP as a transport layer protocol for use over a
satellite link to a mobile or over a link connecting two satel-
lites. STP has very low reverse traffic as it is not clocked by
ACKs from the receiver. Instead, the sender polls periodi-
cally to enquire about the status of the receiver’s buffer. The
receiver can also send an unsolicited status update message to
the sender.

Most of the above solutions are designed for taking care of
one or more general wireless problems such as high bit error
rate, high latency, handoff etc. The congestion control algo-
rithm of all of these solutions is based on that of TCP. Hence,
it is not clear how these would perform over WWANs (such
as CDPD, RAM, Ardis etc.). In contrast, WTCP addresses
issues specific to WWANs and proposes a rate control algo-
rithm which is fundamentally different from TCP and which
works efficiently in WWAN environments. WTCP is also ex-
tensible to environments with higher bandwidths and lower
delays such as wireless LANs.

7. Issues

In this section, we present some of the design and implemen-
tation issues that need to be addressed in WTCP. We also
briefly explain proposed future work in WTCP.

• Loss prediction mechanisms. As mentioned earlier in the
paper, WTCP uses loss predictors that are based on the
average packet separation observed at the receiver. Us-
ing this predictor, we are able to correctly predict random
losses. However, a few congestion losses could be mis-
takenly predicted as random losses. This results in an un-
desirable late reaction to congestion losses. Though we
observed very few instances of such mispredictions in our
tests with WTCP, we are working to improve the efficiency
of predictors that determine the nature of packet loss.

• Epoch based updates. The current implementation of
WTCP does updates at the end of an epoch. Once the
receiver sends an update to the sender at the end of the
epoch, the receiver does not start counting packets for
evaluating averages until the sender has confirmed receiv-
ing this update. Hence, the packets sent in the intervening

WTCP: A RELIABLE TRANSPORT PROTOCOL FOR WIRELESS WIDE-AREA NETWORKS 315

period (which is at least one round trip time) are not uti-
lized for rate control.

• Internet behavior. We have demonstrated the effectiveness
of WTCP in networks where the wireless latency domi-
nates the end-to-end delay and the variations in the delays
experienced due to queueing at the wireline switches do
not have a significant impact on the end-to-end delay. We
are currently investigating the performance of WTCP on
wireless networks with varying link delay.

• Impact of medium access protocol. For the common case
of data transfer from the base station to the mobile host,
the base station typically controls access to the wireless
channel. However, for the uplink case, the MAC protocol
determines which host obtains access to the channel, and
in such a situation, contention among hosts could disturb
the inter-packet separation of flows. For example, with
CSMA/CA, the host that gets the channel has a greater
probability of channel access for the next time slot. Thus,
uplink flows may not be rate based. This affects the rate
control mechanism of WTCP.

• Buffer overflow. Since WTCP does not clock data pack-
ets and is rate-based, the sender does not stop transmitting
packets unless the receiver instructs it to do so or a black-
out is detected. The timeout period for declaring a black-
out is typically quite large (on the order of a few RTTs).
Hence, there is a possibility of a buffer overflow at the
sender before detection of a blackout.

• Granularity of inter-packet separation. Wireless LANs
and MANs have bandwidths that are an order of magni-
tude higher than WWANs. Thus, the inter-packet sep-
aration for flows in such networks is bound to be much
smaller than that for WWANs. This decreases the thresh-
old for increase/decrease phase of flows. As a result, we
have observed that for bandwidths greater than 2 Mbps,
the efficiency of WTCP drops to around 65%. We are
looking at ways to improve WTCP’s efficiency on higher
bandwidth networks.

• Multi-hop radio networks. While WTCP has been targeted
at last-hop wireless wide-area networks, we think it will
apply equally well in multi-hop wireless networks, such as
Metricom [18]. In addition to considering such networks
as part of future work in this area, we are also investigating
WTCP in the context of ad hoc networks, which are multi-
hop wireless networks where all the links are wireless and
all nodes are mobile.

8. Conclusion

WTCP is rate-based and the rate adjustment is performed at
the receiver; consequently, WTCP does not burst packets,
overcomes the problems of inaccurate round trip time com-
putations, and handles asymmetric channels. WTCP uses
inter-packet separation at the receiver as the primary met-
ric for rate control with congestion-related loss detection as
the backup mechanism; responding early to incipient conges-

tion helps to keep the algorithm stable and at the same time,
handling congestion-related losses causes WTCP to react cor-
rectly and fairly in worst-case scenarios of sudden congestion
peaks. WTCP uses SACK and no retransmission timers for
loss recovery; this enables efficient loss recovery without go-
ing into prolonged timeouts in the worst case. WTCP also
provides for recovery from blackouts and good startup behav-
ior for short-lived flows. In summary, WTCP handles most
of the problems of WWAN, including those traditionally ig-
nored by related work such as large and varying round trip
times, and the significant fraction of the delay being incurred
in the wireless segment.

References

[1] J. Agosta and T. Russle, CDPD: Cellular Digital Packet Data Stan-
dards and Technology (McGraw-Hill, New York, 1997).

[2] A. Bakre and B.R. Badrinath, I-TCP: Indirect TCP for mobile hosts,
in: Proceedings of International Conference on Distributed Computing
Systems (1995).

[3] H. Balakrishnan, V.N. Padmanabhan, S. Seshan and R. Katz, A com-
parison of mechanisms for improving TCP performance over wireless
links, in: Proceedings of ACM SIGCOMM (1996).

[4] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, Improving TCP/IP
performance over wireless networks, in: Proceedings of ACM MOBI-
COM (1995).

[5] S. Biaz and N.H. Vaidya, Discriminating congestion losses from wire-
less losses using inter-arrival times at the receiver, in: Proceedings of
IEEE Application Specific Systems and Software Engineering Technol-
ogy (1999).

[6] L. Brakmo and L. Peterson, End-to-end congestion avoidance on a
global internet, IEEE Journal on Selected Areas in Communications
13(8) (October 1995) 1465–1480.

[7] K. Brown and S. Singh, M-TCP: TCP for mobile cellular networks,
ACM Computer Communications Review 27 (October 1997) 19–43.

[8] R. Cáceres and L. Iftode, Improving the performance of reliable trans-
port protocols in mobile computing environments, IEEE Journal on Se-
lected Areas in Communications 13(5) (June 1995) 850–857.

[9] D. Chiu and R. Jain, Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks, Journal of Computer Net-
works and ISDN 17(1) (June 1989) 1–14.

[10] A. DeSimone, M. Chuah and O. Yue, Throughput performance of
transport-layer protocols over wireless LANs, in: Proceedings of IEEE
GLOBECOMM (1993).

[11] R. Durst, E. Travis and G. Miller, TCP extensions for space communi-
cations, Wireless Networks 3(5) (1997) 389–403.

[12] T.R. Henderson and R.H. Katz, Transport protocols for Internet-
compatible satellite networks, IEEE Journal on Selected Areas in Com-
munications 17(2) (February 1999) 345–359.

[13] S. Keshav, Congestion control in computer networks, PhD thesis, UC
Berkeley (1991).

[14] T. Kim, S. Lu and V. Bharghavan, Improving congestion control per-
formance through loss differentiation, in: Proceedings of IEEE Inter-
national Conference on Computers and Communication (1999).

[15] S. Kunniyur and R. Srikant, Fairness of congestion avoidance schemes
in heterogeneous networks, in: Proceedings of International Teletraffic
Congress (1999).

[16] T.V. Lakshman and U. Madhow, The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,
IEEE/ACM Transactions on Networking 5(3) (June 1997) 336–350.

[17] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, TCP selective ac-
knowledgement options, Internet RFC 2018 (October 1996).

[18] Metricom, http://www.metricom.com/

316 SINHA ET AL.

[19] T. Nandagopal, T. Kim, P. Sinha and V. Bharghavan, Service differen-
tiation through end-to-end rate control in wireless packet networks, in:
Proceedings of IEEE Mobile Multimedia Conference (1999).

[20] V. Paxson, On calibrating measurements of packet transit times, ACM
SIGMETRICS Performance Evaluation Review 26(1) (June 1998) 11–
21.

[21] S. Shenker, Some conjectures on the behavior of acknowledgment-
based transmission control of random access communication channels,
in: Proceedings of ACM Sigmetrics (1987).

[22] The Qualcomm High Data Rate Wireless Network, http://www.
qualcomm.com/hdr/

[23] Wireless Data Forum, http://www.wirelessdata.org/
[24] R. Yavatkar and N. Bhagawat, Improving end-to-end performance of

TCP over mobile internetworks, in: Proceedings of IEEE Workshop on
Mobile Computing Systems and Applications (1994).

Prasun Sinha received his B.Tech. in computer science and engineering
from IIT Delhi, India, in 1995, his MS in computer science from Michigan
State University in 1997 and his PhD in computer science from University
of Illinois at Urbana-Champaign in 2001. He is currently with Bell Labs,
Lucent Technologies. His research interests are in computer networking and
mobile computing.
E-mail: prasun@dnrc.bell-labs.com

Thyagarajan Nandagopal is a PhD candidate in the Electrical and Com-
puter Engineering Department at the University of Illinois and is affiliated
with the TIMELY Research Group. His research focuses on providing
Quality-of-Service in wireless networks.
E-mail: thyagu@timely.crhc.uiuc.edu

Narayanan Venkitaraman is currently with Motorola Labs., Schaumburg.
He received the B.E. degree in computer science and engineering from Anna
University, India, in 1997 and the M.S. degree in computer science from
University of Illinois at Urbana-Champaign in 1999.
E-mail: venkitar@labs.mot.com

Raghupathy Sivakumar received the B.E. degree in computer science and
engineering from Anna University, India, in 1996 and the M.S. and PhD
degrees from the University of Illinois at Urbana-Champaign in 1998 and
2000, respectively. He is currently an Assistant Professor in the Electrical and
Computer Engineering Department at Georgia Institute of Technology. His
research interests are in wireless networks and mobile computing, network
Quality-of-Service, and programmable networks.
E-mail: siva@ece.gatech.edu

Vaduvur Bharghavan is an Associate Professor in the Electrical and Com-
puter Engineering Department at the University of Illinois, where he heads
the TIMELY Research Group. His research interests are in mobile comput-
ing and computer networking.
E-mail: bharghav@timely.crhc.uiuc.edu

