
II!IWACM TRANSACTIONS ON NETWORKING. VOL. 6, NO. I, FEBRUARY 1998 15

TCP for High Performance in Hybrid Fiber
Coaxial Broad-Band Access Networks

Reuven Cohen, Member, IEEE, and Sri&as Ramanathan

A~slrucl-Motivated by the phenomenal growth of the Internet
in recent years, a number of cable operators are in the process
of upgrading their cable networks to offer data services to resi-
dentin1 subscribers, providing them direct access to a variety of
community content ns well as to the Internet. Using cable modems
thnt implement sophisticated modulation-demodulation circuitry,
thcsc services promise to offer a several hundredfold increase in
ncccss speeds to the home compared to conventional telephone
modems, Initial experiences indicate that cable networks are
susceptible to a variety of radio-frequency (RF) impairments
lhnt cnn result in significant packet loss during data commu-
nicntion. In the face of such losses, the transmission control
protocol (TCP) that is predominantly used by data applications
dcgrnda drnmaticnlly in performance. Consequently, subscribers
of broad-band data services may not perceive the projected
imndrcdfold increase in performance. In this paper, we analyze
the performance of TCP under different network conditions using
shmdntlons and propose simple modifications that can offer up
to threefold increase in performance in access networks that are
prone to losses. These modifications require only minor changes
to TCP implementations at the local network servers alone (and
not nt subscribers’ PC’s).

brrfc,~ Term- Broad-band access, hybrid fiber coaxial net-
works, residential data services, TCP performance.

I. INTRODUCTION

T I-10 RECENT phenomenal growth of the Internet has
opened up a vast market for high-speed data services

to the home. To pursue this emerging market, a number of
telephone carriers and cable operators are actively deploy-
ing various broad-band access technologies including wire-
line technologies such as asymmetric digital subscriber line
(ADSL) over telephone copper lines, hybrid fiber coaxial
(HFC) technology-a variant of today’s cable networks, and
fiber to the curb-an extension of the fiber in the loop concept
[S], Local multipoint distribution alternatives using wireless
technologies are also under development. In this paper, we
focus on broad-band data services offered over HFC access
networks, which have emerged as a cost-effective technology
for many cable operators and a few telephone carriers.

Using cable modems that employ efficient data modula-
tion schemes, these HFC access networks are capable of
transporting tens of megabits of information per second,
thereby offering a several hundredfold increase in access
bandwidth compared to conventional telephone modems [5].

Mnmwripc received July 10. 1997: revised September 22, 1997; approved
bv IEEE/ACM TRANSACTI~M ON NEIVORKINO Editor J. Crowcroft.
W R. Cohen was v&h HewleU-Packard Laboratories. Haifa 32000. Israel. He

is now with the Dcpartmenl of Computer Science. Technion. Haifa 32000,
Jhrwt Winil: rcohen@cs.tcchnion.ac.il).

S. Rnmnnnlhnn is whh Hcwlctt-Packard Laboratories. Palo Alto, CA 94304
USA (emnil: srinivesOhpl.hp.com).

Pnblidlcr Item Idcnlilicr S 1063-6692(98)01971-2.

However, initial experiences indicate that real-world HFC
networks are susceptible to a variety of radio-frequency (RF)
impairments that can result in significant packet loss during
data communication [7]. In the face of such losses, the trans-
mission control protocol (TCP), which is predominantly used
by data applications, degrades dramatically in performance.
Consequently, subscribers of broad-band data services may not
perceive the projected hundredfold increase in performance.

This paper analyzes the performance of TCP under dif-
ferent HFC network conditions. Based on this analysis, we
highlight architectural considerations and maintenance targets
for HFC networks supporting data services. To enhance the
performance of TCP in an HFC network during periods when
the network is error prone, various methods of tuning TCP
parameters are proposed. Simulation studies demonstrate that
these methods are complementary to one another and can result
in an over threefold increase in performance under certain
loss conditions. A major attractiveness of these enhancements
is that the performance improvements can be obtained by
tuning TCP implementations at the HFC network servers
alone, without requiring any changes in subscribers’ PC’s,

The rest of this paper is organized as folIows. Section II
outlines the typical architecture of a broad-band data system.
Section III highlights the performance problems experienced
by TCP applications in HFC networks. Section IV char-
acterizes the performance of TCP under different network
conditions. Various methods for enhancing TCP performance
over HFC networks are discussed in Sections V and VI.
Section VII discusses the implications of the TCP performance
results for cable operators deploying broad-band data services.

II. BROAD-BAND DATA SERVICE ARCHITECTURE

Fig. 1 depicts a typical architecture of a broad-band data
system that services residential subscribers in a metropolitan
area. At the heart of this system is a local sewer camnplex that
houses servers supporting a variety of community services in-
cluding bulletin boards, newsgroups, electronic mail, directory
services, Web access, etc., as well as caching servers to main-
tain local copies of Web pages that are frequently accessed
from the Internet. The servers are interconnected by a high-
speed asynchronous transfer mode (ATM) network. Routers
and firewalls enable connectivity from the HFC network to
external networks including the Internet. Data retrieved from
the server compIex is routed over the HFC network via one
or more signal conversion systems (SCS’s). To enable data
transmissions to coexist with transmission of analog television
signals, data transmissions over the HFC network are analog
modulated. Frequency-division multiplexing is used over the

1063-6692/98SlO.OO 0 1998 IEEE

16 IEEElAChl TRANSACTIONS ON NETWORKING. VOL. 6, NO. 1,FEBRUARY 1998

Con
lhel

System

PI& I. Cortfiguration for providing broad-band data services over an HFC network,

Sarvsr Complex

Slgnal Conversion
Sydem (SCS)

Cable Modem (CM)
.--..---

Subrcriber PC

Client Applications

t-i
Applicatton Protocols
HlTP, FTP. NNTP,...

I TCP
I

Pig. 2. Protocol layering in the broad-band data system.

HFC network to permit the data channels to operate at different
frequencies than analog television channels. The design of
the HFC network forces distinct downstream and upstream
channels to be used for communication to and from the home,
respectively. In most deployments, the downstream channels
operate in the 450-750-MHz frequency band whereas the
upstream channels operate in the 5-40-MHz band.

In a subscriber’s home, access to broad-band data ser-
vices is enabled through a cable modem (CM) that connects
over a lOBase-T interface to a home PC. The CM contains
modulution-demodulation hardware to receive and transmit
signals over the HFC network. In keeping with the current
trend on the Internet, where a majority of the traffic is
Web access from various servers, the traffic in the broad-
band data system is expected to be predominantly retrievals
from the server complex to subscribers’ homes. Many CM
implementations themselves are asymmetric, offering up to
30 Mb/s for downstream transmission to subscribers’ homes
nnd OS-4 Mb/s for upstream transmission from subscribers’
homes to the server complex.

Fig, 2 depicts the typical protocol layering in the broad-band
dnta system, The client application component executes on the
subscriber’s PC and communicates with server component(s)
in the server complex, The standard Internet protocol (IP)
suite is used for communication between subscriber PC’s, the
server complex, and the Internet. IP packets are transported
over ATM between the server complex and the SCS. For
communication over the HFC network, the IP packets are
encapsulated into HFC link packets.

III, TCP PERFORMANCE IN HFC NETWORKS

A, Problent Dejhitiort

One of the primary ways of characterizing performance
of the broad-band data system as perceived by subscribers

is in terms of throughput observed by applications operating
above the TCP layer. Since it is an end-to-end performance
metric, throughput is dependent on several factors including
the configuration and loading of the servers and of subscribers’
PC’s. From the networking perspective, the achieved through-
put depends not only on the bandwidths available on the
downstream and upstream channels but also on the specific
TCP implementations used at the servers and PC’s (e.g., BSD
Unix has Tahoe and Reno TCP variants that differ in the
congestion control mechanisms they implement and, hence,
offer differing throughput), and on the settings of different
TCP parameters including the socket buffer size, the maximum
segment size used, etc. ‘Iwo other dynamically changing
factors that significantly affect the achieved throughput are the
degree of loading of the network and the physical network’s
noise characteristics, referred to henceforth as media errors.
Since both of these contrasting network conditions result in
the same symptom, i.e., packet loss, differentiating between the
two cases is a challenge. TCP has many built-in congestion
control mechanisms to handle network overload effectively,
However, when operating in a network that is prone to
media errors, TCP reacts in the same way as it does during
congestion, i.e., it slows down transmissions even though the
network is not overloaded. This results in a sharp decrease in
TCP’s performance [121.

This problem is especially significant in HFC access net-
works which are prone to a variety of RF impairments owing
to defects in home wiring and cracks that appear in the coaxial
cables because of exposure to harsh environmental conditions
[7]. Since most of the common noise sources operate in
the lower frequencies, the upstream channels are especially
vulnerable to RP impairments. Our initial experiences with
monitoring data services over HFC networks indicate that the

COIIEN AND RAMANATHAN: HYBRID FIBER COAXIAL BROAD-BAND ACCESS NEnVORKS 17

RF impairments at the physical layer usually result in packet
losses ranging from 1% to lo%, especially on the upstream
channels, In extreme cases, packet losses have been observed
to be as high as 50% [12].

II, Related Work

1) TCP Congestion Control Mechanism: The various
mechanisms that current TCP implementations incorporate to
adapt to the network conditions are based on [lo]. In the
initial slow-start phase of a TCP connection, the transmitter
starts with a transmission window of one packet’ and then
doubles its window during every round trip (this amounts to a
growth of the window by one packet for each acknowledgment
(ACK) received), until the maximum permissible window
size, determined by the connection’s socket buffer setting,
is reached, This exponential rate of growth of the window
may be constrained when the receiver implements a delayed
ackrrowlcdgmm strategy. As per this strategy, the receiver
holds back the transmission of an ACK for a received packet
until a subsequent packet is received, at which time it transmits
a cmrrlutive ACK to acknowledge both of the received
packets, RFC 1122 indicates that the receiver must transmit
at least one ACK for every two maximum-sized data packets
received [3], While using delayed ACK’s, the maximum
period for which the receiver can wait for a subsequent packet
is limited to about 200 ms.

To detect packet losses, the transmitter uses the straightfor-
ward method of estimating round-trip times of packets. Based
on the transmission times of packets and the arrival times of
ACK’s, the transmitter maintains an estimate of the maximum
round-trip time over a TCP connection. When an ACK for a
packet does not arrive within the maximum round-trip time
(and no ACK’s for subsequent packets are received), the
transmitter detects the packet loss, retransmits the lost packet,
shrinks its transmission window to one, and reverts back to the
slow-start phase, The time that the transmitter spends waiting
for an ACK of a lost packet to arrive is referred to as a timeout.
Following a timeout, slow-start happens until the transmission
window reaches half the value it had when the timeout
occurred. From this point onwards, the transmitter enters
the congestion avoidance mode, growing its window by one
packet for every round-trip time. In this mode, window growth
is linear, rather than exponential as in the slow-start phase.

While the above strategy is useful when several packets
are lost in a transmission window, the TCP transmitter has
a more eflicient way to detect and recover from isolated
packet losses, Isolated packet losses result in out-of-sequence
packet arrivals at the receiver and trigger the transmission
of duplicate ACK’s (dupACK’s). Upon receiving three
dupACK’s, assuming that the packet referred to by the
dupACK’s has been lost, the transmitter performs fast
retransmit by immediately retransmitting the lost data packet.
When the ACK for the retransmitted packet is received,

‘For simplicity, in this paper, TCP’s transmission window sizes are
expressed In terms of maximum-sized data packets rather than in terms of
bylcs, Rrthcrmore, packets arc assumed to be numbered with consecutive
scqucncc numbers, rather than by the number of bytes contained in each
pnckct,

the transmitter performs fast recovery by shrinking its
transmission window to half the value of the window at the
time when the packet loss was detected. Then, the transmitter
begins to operate in the congestion avoidance mode.

2) TCP Over L.ossy Nefivorks: The problems in TCP per-
formance over lossy networks have thus far been addressed
mainly in the context of wireless local area networks (LAN’s),
Three main approaches have been proposed for such networks.

Reliable link layer protocols: In this approach, the link
layer protocol incorporates retransmission mechanisms to
recover from media errors, thereby masking the effect
of media errors from the TCP layer above. Most SCS-
CM protocols being currently used for communication
over the HFC network do not guarantee reliable delivery,
Incorporating reliability into these protocols would neces-
sitate changes in the SCS and CM designs. Furthermore,
since not all applications require reliability, a common
reliable link protocol cannot be used for all applications.
“TCP-aware” link layer protocols: A typical example
in this category is the Snoop protocol [2]. As per this
approach, a base station in a wireless LAN tracks all TCP
connections and maintains a cache of recently transmitted
packets. When the base station notices dupACK’s, it re-
transmits packets locally on the wireless segment without
the original TCP transmitter (that is on a wired network)
even being aware of the loss. This approach is not suitable
for large network deployments, in which a wireless base
station or an SCS in an HPC network must snoop on all
packets that they route and maintain state information for
each TCP connection.
“Split connection” prorocols: In this approach, a TCP
connection between the source on a wired network and
destination on a wireless network is transparently split
into two transport connections: one for the wired network
and another for the wireless network [l]. The TCP
implementation for the wireless network is modified so
as to be aware of handoffs in the wireless network and to
initiate slow-start immediately after a handoff. Although
initially designed to handle mobility issues, this approach
is also useful in handling packet losses that occur in the
wireless network locally [2]. In an HPC network, the split
connection approach must be implemented at the SCS,
thereby requiring per-connection state information and
processing at the SCS.

Many approaches that have been proposed for increasing
the performance of TCP during congestion are applicable, to
some extent, in lossy HPC networks. The implementation of
selective acknowledgment in TCP to enable the transmitters
to more precisely determine packets that are lost and recover
from such losses is proposed in [l 11. Initial testing of the selec-
tive acknowledgment feature promises significant performance
gains in lossy networks. However, to be useful, selective
acknowledgment requires changes in TCP implementations not
only in the servers but also in the several hundred thousand
subscriber PC’s.

The problems with the exponential window increase during
the TCP’s slow-start phase are highlighted in [9]. In cases

I8 IEEE/ACM TRANSACTIONS ON NElWORKING, VOL. 6. NO. I. FEBRUARY 1998

when the TCP socket buffer setting is very large, the expo-
nential window increase can overwhelm the network routers
and lead to timeouts. To overcome this problem, a method
for enabling the TCP transmitter to estimate and adapt to the
nvailnble bandwidth on the network is proposed in [9].

An entirely new variant of TCP, called TCP Vegas, that im-
plements new slow-start and congestion avoidance techniques
to adaptively adjust the TCP window upon sensing network
congestion is proposed in [4]. Unlike earlier implementations,
TCP Vegas uses a line-grained timer to time every packet
and ACK and to accurately estimate the round-trip time.
Based on this estimate, TCP Vegas determines, much earlier
than TCP Reno or Tahoe, if and when packets should be
retransmitted, This proposal requires significant changes to
existing TCP implementations and is yet to be adopted in
commercial products,

C, Corurihrtions of This Work

This work analyzes the performance of TCP applications
in the unique asymmetric and heterogeneous environment that
HFC networks offer, Since different upstream and downstream
channels with different noise characteristics are used in HFC
networks, the paper studies the relative effect of packet loss
and ACK loss on TCP applications and the variations of these
effects with data transfer size. Simulations indicate that TCP
npplications are much more sensitive to loss of data packets
thnn to loss of ACK’s and that larger data transfers are likely to
be affected much earlier and to a greater extent than smaller
transfers.

Focusing mainly on downstream data transfers from the
server complex to subscribers’ homes, we explore various
methods of tuning TCP parameters of existing TCP imple-
mentations to ensure better network performance. Since it
determines the maximum transmission window that a TCP
connection can use, the socket buffer setting directly governs
the nchieved throughput. Using simulations, we illustrate that
proper sizing of TCP socket buffers by taking into account
that the buffering capacity of the CM’s is critical for high
performance in HFC networks. Toward this end, we derive an
analytical model for determining the TCP socket buffer size
setting. Since the effective socket buffer size is the minimum
of the buffer sizes set at the two ends of a connection, the
buffer size setting thus determined can be enforced from
the local servers without requiring configuration changes to
subscribers’ PC’s,

WC also study the impact that delayed ACK implementation
in subscriber PC’s has on throughput, especially during times
when the network is prone to losses, and devise ways to over-
come these problems using minor alterations to TCP parameter
settings at the local servers. To further increase network
performance under losses, we propose ways of tuning the TCP
retransmission timeouts and fast retransmit implementations at
the local servers to increase TCP’s reactivity to loss. These
modilications are simple to implement yet highly effective.
Moreover, these modifications require only minor changes to
TCP implementations at the local network servers alone (and
not at subscribers’ PC’s). Although designed in the context
of HFC networks, the modifications are general enough to be

applicable to other access technologies, especially wireless,
that are prone to media errors.

IV. CHARACIERIZING TCP PERFORMANCE
IN HFC NETWORKS

A. Network Model

In order to characterize the performance of TCP applications
in HFC networks, we have developed a model of a typical
I-EC network using the ns network simulator from Lawrence
Berkeley Laboratories. The downstream and upstream band-
widths on the HFC network are assumed to be 25 and 3
Mb/s, respectively. Based on experimentations in typical HFC
networks, the round-trip delay between the servers and a
subscriber PC is set to 20 ms. Since we are concerned mainly
with the performance of TCP under losses introduced by media
errors, the following simplifying assumptions are made.

l Although an SCS can support multiple downstream and
multiple upstream channels, only one downstream chan-
nel and its corresponding upstream channel is modeled.

l Since we are interested in TCP performance under media
loss rather than under congestion, the precise contention
resolution and network access algorithms of the HFC
upstream link protocol are not modeled. Furthermore, in
the simulations, the number of simultaneous connections
is controlled so as to avoid network overload.

l In the absence of precise models for media errors that
happen over HFC networks, we model loss of TCP
packs and acknowledgment using Poisson distributions.
Consequently, the effect of burst losses is captured at
high loss rate.

The network traffic is assumed to be predominantly Web and
PIP access from the local server complex. All receivers and
transmitters are assumed to implement TCP Reno. In keeping
with most commercial TCP implementations, the receivers
are assumed to implement delayed ACK’s. The TCP data
packets and ACK’s are assumed to be 1460 and 40 bytes in
length, respectively. Since different downstream and upstream
channels are used over the HFC network, we begin our analysis
of TCP performance by considering cases when only TCP
ACK’s are lost and when only data packets are lost.

B. Effect of Acknowledgment Loss

Fig. 3 depicts the degradation in TCP performance with loss
of ACK’s for a 3-Mb data transfer. To study the effect of
ACK loss in isolation, the downstream channel is assumed to
be lossless. Because TCP uses a cumulative acknowledgment
strategy, where each acknowledgment indicates the sequence
number of the packet that the receiver expects next, loss of an
ACK can be compensated for by the arrival of a subsequent
ACK. For instance, when a transmitter receives the third
delayed ACK out of a sequence of AN’s numbered 2, 4,
8 ,--e, the transmitter can detect loss of the ACK numbered
6. However, since it receives ACK 8 corresponding to data
packets 6 and 7, and not a dupACK for packet 6, the
transmitter can infer that data packets 4 and 5 (corresponding
to ACK 6) were successfully received and therefore need not
be retransmitted. From this example, it is clear that loss of

COIIEN AND RAMANATHAN: HYBRID FIBER COAXIAL BROAD-BAND ACCESS NEWORKS 19

0.15 02 0.25
Upstream Acknowledgsment Loss

IQ 3, lXfcct of ACK loss on performance of a TCP connection transferring 3 Mb of data downstream from a local server.

I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Downstream Packet Loss

Pig, 4. Effect of downstream packet loss on performance of a TCP connection transferring 3 Mb of data downstream from a local server.

an ACK does not necessarily result in retransmission of data
packets. However, an increase in loss of ACK’s can have two
consequences that reduce throughput.

l Slowirlg t/le Irunnnifter: When an ACK is lost, the trans-
mitter has to wait for a subsequent ACK to recover
from the loss. Frequent ACK loss can introduce a signif-
icant waiting time at the transmitter, thereby slowing the
transmitter and lowering the throughput. Moreover, since
TCP’s slow-start and congestion avoidance algorithms in-
crease the transmission window based on AX’s received
at the transmitter, loss of ACK’s also slows down the
window increase, thereby reddcing throughput [13].

l Timeouts resulting in significant throughput reduction:
When the ACK’s for all outstanding packets in a transmis-
sion window are lost, the transmitter detects the loss only
after a timeout. Since most commercial TCP implemen-
tations use a coarse granularity (500 ms) retransmission
timer to estimate round-trip time, the waiting time before
a TCP transmitter retransmits a lost packet, computed
as the sum of the mean and four tinies the maximum

deviation in round-trip times, is at least 2-3 s [13].
Since typical data transfer times range from few tens of
milliseconds to several seconds, even a single timeout
during the lifetime of a TCP connection results in a
significant degradation in performance.

Fig. 3 contrasts the performance obtained for a Iarger TCP
socket buffer size. The larger TCP socket buffer size results
in a larger transmission window, which in turn results in a
greater number of ACK’s per transmis’sion window (the total
number of ACK’s generated during a data transfer remains
unchanged). The increase in ACK’s in a transmission window
reduces the probability of a timeout due to a loss of all of
the ACK’s associated with the window, thereby increasing the
robustness of the TCP connection to ACK loss.

C. EIfect of Data Packet Loss

In the previous section we have seen that by using larger
buffers for TCP connections, the effect of upstream ACK loss
can be mitigated. However, the effect of downstream data
packet loss is much too severe to be easily mitigated. Fig. 4

IEEEIACM TRANSACTIONS ON NETWORKING. VOL. 6. NO. 1. FEBRUARY 1993

depicts the dramatic reduction in throughput that results when
packet loss occurs during a 3-Mb data transfer. To concentrate
upon the effect of packet loss, the upstream channel is assumed
to be lossless, As is evident from the figure, even a 1% packet
loss results in over 50% degradation in throughput for an 8-kb
socket buffer. The degradation is even larger for larger socket
buffer sizes.

There arc several reasons for the dramatic degradation in
throughput when data packets are lost. Firstly, unlike in the
cnsc of ACK loss, each data packet loss results in one or more
dntn packet retransmissions. When a packet loss occurs, even
though TCP may recover from the loss using fast retransmit
followed by fast recovery, the TCP transmitter shrinks its
current transmission window by half and begins to operate
well below the maximum permissible window for several
round-trip times, Subsequent periodic losses before the TCP
connection reaches its maximum permissible window size can
cause the nverage transmission window to reduce even further.
Since TCP’s fast retransmit mechanism retransmits a packet
only after the sender receives three dupACK’s, fast retransmit
becomes ineffective when the TCP window falls below 4. At
this time, TCP can recover from a packet loss only by means
of a retransmission following a timeout. Timeout also happens
when multiple packet losses occur in the same transmission
window, In such cases, although the transmitter notices the
first packet loss and recovers from it using fast retransmit,
often following the recovery, TCP’s transmission window is
not lnrge enough for three dupACK’s to be received to recover
from a second packet loss [9].

The two consequences of packet loss mentioned above
significantly impact throughput. Since they last for several
seconds, the impact of TCP timeouts on performance is more
advcrsc than that of fast retransmits. The dramatic reduction
in throughput observed in Fig, 4 as packet loss increases is
attributable to the significant increase in probability of time-
outs with increase in packet loss. To illustrate the impact of
timeouts on throughput, Fig. 5(a) and (b) presents simulation
trnccs of a 3-Mb data transfer during times when packet loss is
I% and 3%, respectively. A gap in transmission represents a
timeout at the transmitter. Notice that whereas a 1% loss causes
just one timeout, a 3% loss causes 11 timeouts, resulting in a
fivefold increase in the transfer time.

As is evident from Fig. 4, a larger TCP socket buffer does
not improve performance when packet loss is high. This is
because frequent packet loss forces TCP to operate with a
smaller window and, hence, the connection does not make use
of the larger available buffer.

D. .l$ffcct of Packet Loss for DiJerertt Data Transfer Sizes

Fig. 6 compares the sensitivity of different data transfer
sizes to packet loss (their sensitivity to ACK loss follows a
similar pattern). To evaluate the effect of packet loss without
being biased by the implementation of delayed ACK at the
PC’s, a modified TCP Reno transmitter is used in the simula-
tion, (The peculiar problems introduced by delayed ACK and
modifications to deal with this problem are discussed later,
in Section V.) Under no loss conditions, the smaller transfers

I

I

I

I
.
I 1

tM I&M Ibw 4aw

(W
Fig. 5. Simulation traces indicating the transmission times of packets during
a 3-Mb data transfer for downstream packet loss rates of 1% and 3%. In the
latter case, throughput is five times lower than in the former.

yield much lower throughput than the larger transfers. This
is because TCP starts with an initial window of one packet
and requires several round-trip times to grow its transmission
window. Once the transmission window reaches its maximum
value, throughput achieved remains almost constant indepen-
dent of the data transfer size.

As Fig. 6 depicts, although packet loss affects data transfers
of all sizes, the extent of its impact varies depending on
the data transfer size. For the simulated network, throughput
degrades much more rapidly for data transfers of 300 kb and
above than for the smaller transfer sizes. For instance, when
the packet loss rate increases to 5%, the average throughput
of 300-kb data transfers drops from 2.8 to 0.2 Mb/s, whereas
for 30-kb transfers, throughput only changes from 1.5 to 0.9
Mb/s. To see why this is the case, consider Fig. 7, which
contrasts the distribution of throughput values observed during
30- and 300-kb data transfers. The 25 percentile, the median,

COHCN AND RAMANATHAN: HYBRID FIBER COAXIAL BROAD-BAND ACCESS NETWORKS 21

+-00/o packet loss
*-a- 0.5%packetlosz

--*--l%packetloss

------+
--s-3%packetloss

-----___ +----‘.. ..--44’ 5%packetIoss
- 4 - 10% packet loss

-&................~......,.,..~.
. ...*

0 100 200 300 ho0 500 600
Data Transfer Size (KByt8e)

pifi. 6, Effect of packet loss on throughput for different data transfer sizes from a PC with a TCP socket buffer of 8 kb.

r ,
l+smmam

(4

WI 003‘ 005 01
* FtddaBFkfAJl

04

Fig, 7. Distribution of throughput achieved during 100 runs of the simulator
for 30. and 300-kb datn transfers.

and the 75 percentile values, computed based on 100 runs
of the simulator for each loss rate and data transfer size, are
shown. The following observations can be made from Fig. 7.

l At a loss rate of l%, a majority of the 30.kb data transfers
are unaffected [Fig. 7(a)]. In contrast, over half of the
300.kb data transfers experience a significant reduction in
throughput, and one-fourth of the transfers achieve only a

third of the normal throughput [Fig. 7(b)]. This contrast-
ing behavior is attributable to the relative durations of
the two data transfers. Since a 30-kb transfer involves
transmission of a few packets only (approximately 20
packets of 1.5 kb each), the probability that such a transfer
experiences a packet loss is less than the probability that
a longer 300-kb transfer involving hundreds of packet
transmissions experiences a loss. For instance, when the
packet loss rate is l%, on an average, only one out of five
data transfers of 30 kb (20 packets) experiences a loss.
Furthermore, because of their smaller duration, the 30.kb
transfers are unlikely to experience timeouts because of
multiple packet losses. On the other hand, almost every
data transfer of 300 kb experiences packet loss. More
importantly, the probability of occurrence of multiple
packet losses and of timeouts is also correspondingly
higher for 300-kb transfers.

l As the packet loss rate increases, 30-kb data transfers
too begin to experience the effects of packet loss: a
3% loss reduces the median by 25% and a 5% loss by
66%. However, because of the shorter duration of the
transfers, the median and the 75 percentile values for
30.kb transfers are much higher than the corresponding
values for 300-kb data transfers. The different distribution
of throughput values in the two cases accounts for the
higher average throughput of the 30.kb transfers seen in
Fig. 6.

l At loss rates of 3% and higher, the 25 percentile through-
put values for the 30- and 300.kb transfers are compara-
ble, implying that when packet loss impacts a data transfer
instance, its effect on throughput is drastic, independent
of the data transfer size.

l Notice also the much larger difference between the 25 per-
centile and the 75 percentile values for the 30.kb transfers,
as compared to the 300.kb transfers. This implies that
when packet loss is 3% or more, subscribers transferring
30 kb of data are likely to observe significant variations in
throughput. In contrast, at this loss rate almost all 300.kb
transfers are likely to feel the impact of packet losses.

22 lEEE'ACMTRANSAClIONS ONNElX'ORKING.VOL. 6.NO. LFBBRUARY 1995

3ooo 4ooo 5ooo 6000 7m Boo0
htatrmsferrke(KBytw)

Pig, 8, Bffccl of CM buffer size on throughput of a TCP connection. In this simulation, there were no media errors at the physical layer. The CM
buffer WIN assumed to be 10 kb.

From a data service operator’s perspective, the above discus-
sion indicates that subscribers who invoke larger data transfers
are likely to experience the effects of packet loss earlier and
to a greater extent than others.

V, TUNING TCP FOR HIGHER PERFORMANCE
BY SETTING TCP BUFFER SIZE

To enhance TCP performance in lossy HFC networks, in
the following sections we consider two complementary ap-
proaches. The Arst approach involves adjusting the TCP socket
buffer size to achieve maximum performance. The second
approach involves tuning TCP’s timeout and fast retransmit
mechanisms to reduce the frequency and the duration of
timeouts, respectively.

A, l!jfcct of Cable Modern B@er Capacity
011 TCP Perfortnarrce

A larger socket buffer allocation for a TCP connection
permits a larger number of packets to be transmitted per
unit time, thereby making better utilization of the available
bandwidth, Consequently, a larger TCP socket buffer enables
a signihcant increase in throughput when packet loss is not
very high (see Fig. 4). As already explained, an increase in
the socket buffer size also reduces the TCP connection’s
vulnerability to ACK loss.

However, in an HFC network, a limit on the TCP socket
buffer size is imposed by the buffering available at the CM’s.
Buffers are provided in a CM to counteract the difference in
transmission speeds between the downstream channel on the
HPC network (25 Mb/s in our simulated network) and the
lOBase-T connection between the CM and the PC (10 Mb/s).
Since the experiments described in Section IV were targeted
at understanding the effect of media errors, buffering at the
CM was assumed to be unbounded. However, in reality, in
order to be cost-competitive, most CM implementations are

Fig. 9. Illustration of timeout that occurs during the slow-start phase of a
TCP connection because the socket buffer size is set to be much larger than
the Chl buffer size.

likely to have limited buffering. Fig. 8 depicts the variation in
throughput for different data transfer sizes and socket buffer
sizes over an HFC network in which the CM’s have IO-kb
buffers. Since in this experiment we are interested in exploring
the effect of bounded buffering at the CM’s, the HFC network
is assumed to be lossless. Moreover, in this experiment, each
CM supports only one TCP connection.

As can be seen from Fig. 8, when the socket buffer size
increases from 8 to 16 kb, throughput almost doubles for large
transfers. However, when the buffer size is further increased
to 24 kb, throughput reduces significantly for transfers less
than 8 Mb. This drop in throughput is attributable to packet
losses that result from buffer overruns at the CM. Recall that
during the startup of a connection, in the slow-start phase, the
TCP transmitter grows its window exponentially, doubling its
window for each round trip. The window increase continues

23

6 16
secketBlJfIt?csIze (KBY$

46

Pig, 10, Variation in throughput for different TCP socket buffer sizes when three connections simultaneously access the HFC network via a CM
wl~h n IO-kb buffer.

either until the window reaches the socket buffer size, or until
packet loss occurs, Since it is possible that an entire window
of packets could be transmitted consecutively by a local server
to the PC, all of these packets could arrive in succession at the
CM, at the speed of the HFC downstream channel. Because of
the slower speed of the outgoing lOBase-T connection from
the CM, packets arriving in succession need to be queued by
the CM, When the TCP socket buffer size is much higher
thnn the CM buffer capacity, the CM may not be able to
accommodate the arriving packets. Hence, buffer overruns may
occur at the CM, resulting in several packet drops. Since the
fast retransmit strategy of TCP is not effective when multiple
packet drops occur in a window, the transmitter has to recover
only after a timeout (see Fig, 9).

Following the timeout, when slow-start is invoked again,
the transmitter maintains a threshold that it sets to half the
window size at which timeout occurred. When the window
size increases to reach this threshold, the TCP transmitter
moves into the congestion avoidance mode in which it begins
to increase the window linearly, by one packet every round
trip. As the window increases, eventually buffer overruns
still occur, but owing to the linear increase in the window,
only a single packet is dropped at the CM. Consequently, the
transmitter recovers from the loss using fast retransmit, instead
of having to timeout (see Fig. 9). However, the long initial
timeout period significantly impacts the throughput achieved
for data transfers of 8 Mb and less for socket buffer sizes of
24 and 48 kb (see Fig, 8). Larger transfers are able to benefit
from the larger socket buffer size.

The above experiment highlights the need to consider the
CM buffer capacity before setting the socket buffer size for
TCP connections. Another factor that must be considered in
deciding the socket buffer size is the number of connections
simultaneously supported via a CM. Many common Web
browsers frequently open multiple simultaneous connections
in an attempt to retrieve Web objects in parallel. Fig. 10
illustrates the performance observed when three simultaneous
TCP connections, each transferring 300 kb, share the IO-kb
buffer of a CM. In this case, packets could arrive over all three
connections simultaneously and can result in buffer overruns.
For the same socket buffer size, the larger the number of

connections, the greater the probability of buffer overruns.
In Fig. 10, the smaller socket buffer size performs the best.
As the socket buffer size per connection increases, throughput
degrades.

B. Determining the TCP Bujjeer Size

To compute the socket buffer size of a TCP connection, let
B represent the TCP socket buffer size and C the buffer capac-
ity of the CM, both represented in terms of TCP packets. Let P
represent the maximum TCP packet size in bits. Suppose that
only one connection is established via the CM. As explained
earlier, the socket buffer size setting that ensures data transfers
without timeout must be determined by considering the case
when an entire buffer full of data packets are transmitted
at the maximum rate to a CM. Ignoring TCP/IP and link
protocol header overheads for simplicity, for the simulated
HFC network configuration with a downstream channel rate
of 25 Mb/s, the time to receive a window full of packets at
the CM is (B-P)/25 ps. The CM begins transmission over the
lOBase-T connection to the PC connected to it only after the
first packet has been fully received from the HFC downstream
channel, at which time the available buffering at the CM is
C - 1. From this time, B - 1 packets are received by the
CM at the rate of 25 Mb/s and transferred from the CM at
the rate of 10 Mb/s. Thus, net accumulation at the CM during
this period is

@ ,:’ ’ ’ . (25 - 10) h4b.

To avoid any buffer overruns at the CM, the necessary
condition is

c> (B-l).P.15+1
25

.

Since timeouts occur during slow-start only when multiple
packet drops occur in a window, the above condition can be
relaxed by permitting at most one packet drop in a window.
This yields the relation

c> (B-1)-P-15
25 ’

24 IEEE/ACM TRANSACI-IONS ON NETWORKING. VOL. 6. NO. I. FEBRUARY 199s

In the simulated network, for a CM buffer of 10 kb (seven
packets), the maximum socket buffer size can be computed
from the above equation to be 19 kb, which matches the results
from Fig, 8.

When there are n connections supported by the same CM,
in order to guarantee that timeout does not occur, in the
pessimistic case, no more than one packet loss should occur
during buffer overflow. This leads to the condition

From the above equations, the TCP socket buffer size
setting can be computed based on the buffering at the CM
and the number of simultaneous connections to be used.
Since the per-connection throughput is directly related to the
TCP socket buffer size setting, the average rather than the
maximum number of simultaneous connections can be used
in the computation above. Alternatively, to ensure a minimum
throughput per connection, a data service operator may wish to
impose a restriction on the maximum number of simultaneous
connections supported from each subscriber PC. Since the
effective socket buffer size used for a TCP connection is
the minimum of the values supported at each end of the
connection, the socket buffer size computed above can be
enforced by setting the buffers of connections initiated from
the local servers to the above value, without the need to modify
subscribers’ PC configurations.

VI. TUNING TCP FOR HIGHER PERFORMANCE
BY REDUCING THE EFFEC-T OF TIMEOUTS

Having determined the optimal buffer size setting for a TCP
connection, WC now explore various facets of TCP that can be
modilied in order to reduce the effect of TCP timeouts.

A. Eflcct of Delayed ACK

As indicated in Section IV, one of the causes of TCP time-
outs is loss of several successive ACK’s. Although increasing
the socket buffer size can reduce the probability of timeouts
due to ACK losses, as seen in Section V, the CM buffer
capacity imposes a limit on the TCP socket buffer setting.
In this section, we explore an approach for minimizing the
effect of ACK losses. Toward this end, we study the effect
that support for delayed ACK in TCP implementations of
subscriber PC’s has on performance.

Even in the absence of packet loss, we have observed that
delayed ACK implementation in the TCP receivers has an
adverse effect on performance of Web and FTP applications
in HPC networks (and in conventional LAN’s as well). In
most TCP implementations, following the establishment of
the TCP connection, the transmission window of the host
initiating the connection is one packet and that of the other
end of the connection is two packets. This is because although
both ends of the connection start with an initial window of
one packet, the last ACK in the TCP three-way handshake
sequence (SYN/SYNACK/ACK) causes the window of the
host accepting the TCP connection to increase by one packet.

TCP

TCP Window = lpkt

FTP cUent
at asubsuber PC

FfP Server

1 Data Transter I

TCP Wbdow = 2pkt.s

I-m-P
Connectlon
set-up

t=tTrP Server

TCP Wlndow =2pkiS

DataTransfer Beglns

TCP Window: 3pkts

I I

i i

(b)

Fig. 11. Illustration of the effect of delayed ACK implementation in TCP
stacks of subscriber PC’s on performance of (a) m and (b) HlTP data
transfers. In both cases, the initial delay of up to 200 ms for the first ACE:
from the subscriber PC reduces throughput by over 50% for data transfers
sizes of up to 150 kb.

The difference in the initial TCP windows has different
implications for FTP and HTTP applications.

l As illustrated in Fig. 11(a), when a subscriber starts an
FTP session with a server, a control connection is first
established between the subscriber’s PC and the server.
Get and pact requests for files are transmitted from the
subscriber PC to the server over the control connection.
The server then sets up separate TCP connections for
each get or prrt request. Since the server is the connection
initiator, its initial transmission window is one packet.
When data is transferred from the server to fulfill a
get request, the server starts off by transmitting one
packet and waiting for an ACK. Since the TCP stack in

COIlEN AND RAMANATHAN: HYBRID FIBER CD,UlAL BROAD-BAND ACCESS N~IJDRKs

I
0 200 400 SC0 8M) loo0 1200 14co 1tXO

Cbta Tnnlrr Sk (KSyt.8)

2s

Pig. 12. Illustration of the deleterious impact that delayed ACK implementation at subscriber PC’s can have on throughput of HTI’P and Fl? data
trnneferfi. Using an initial window of two packets for the TCP slow-start implementation at the local servces avoids the throughput degradation for
dntn tmnsfcrs bf 150 kb and less.

the subscriber PC supports delayed ACK, the subscriber
PC waits for up to 200 ms for subsequent packets
before generating an ACK for received packet. This
long initial wait time significantly impacts performance.
Fig. 12 illustrates that delayed ACK implementation at
subscriber PC’s reduces throughput by more than 50%
for transfers below 150 kb and by less than 10% for
transfers of 5 Mb and more. Note that because the initial
transmission window of the subscriber PC is two packets,
prrt requests do not experience this problem.

l HTTP requests experience a different problem. In this
case, the subscriber PC first initiates the TCP connection
to the server and transmits the HTTP request either to get
or post data. Unlike FTP, data transmission to or from
the server using HTTP occurs over the same connection.
Since the subscriber PC initiates the TCP connection,
the server has an initial window of two packets. Get
requests, which are the most common form of HTTP
access, may not experience the initial 200-ms delay if
the server fully utilizes its transmission window. This
is because the server can transmit two maximum-sized
packets, thereby forcing an immediate ACK from the
subscriber PC, However, many HTTP server implemen-
tations (e,g., NCSA 1.5, Netscape Enterprise Server)
transmit the HTTP response header separate from the
data, Typically, the header is the first packet transmitted
by the HTTP server in response to a request and is
much smaller than the maximum-sized TCP data packet.
Because of the transmission window restriction and the
size of the data read from the disk (typically 8 kb),
following the HTTP get response header, the server can
transmit at most one other maximum sized data packet
before it has to wait for an ACK from the subscriber PC.
Since it receives less than two maximum sized packets
worth of data, the subscriber PC delays its ACK, thereby
resulting in an initial delay of upto 200 ms for all HTTP
get responses,

A similar problem is described in [S] in the context of
persistent HTTP connections. [S] proposes an application
modification to solve this problem, by using buffered
I/O to ensure that the HTTP response header is never
sent out separately. However, this approach not only
requires changes to all application servers, but may not
also be incompatible with existing Web browsers that
expect to receive the header separately. Furthermore, this
solution does not resolve the performance problem for
FIP applications.

A more general way to avoid the above problems without
requiring any change in the application servers is to increase
the initial setting of the TCP window size used during slow-
start at the local servers alone to two packets (see Fig, 12).

Another drawback of delayed ACK is the reaction it induces
in TCP connections when media errors cause ACK loss.
Fig. 13 illustrates that for a 3-Mb data transfer, when upstream
ACK loss happens, a receiver that does not implement delayed
ACK remarkably outperforms a receiver that implements
delayed ACK. The difference in performance is attributable
to the 50% reduction in number of ACK’s when a receiver
implements delayed ACK, since only one ACK is transmitted
for every two received packets. This reduction in ACK’s
makes the TCP connection more vulnerable to experiencing
timeouts because of loss of all of the ACK’s in a window.
Furthermore, even in cases when timeouts do not occur,
because of the reduction in number of ACK’s, the transmitter
has to wait for longer time periods for an ACK that follows a
lost ACK. The large degradation in performance observed in
Fig. 13 indicates the need to increase the frequency of ACK’s
during communication over lossy HFC networks.

Avoiding delayed ACK at the receiver does not have the
same dramatic effect when the losses occur in the downstream
channels. This is because TCP Reno does not delay its ACK’s
when it notices packets arriving out of sequence. In contrast,
since the earlier TCP Tahoe implementation continues to delay
ACK’s even after it notices a packet loss, PC’s that implement

IEEE/ACM TRANSACUONS ON NETWORKING. VOL. 6. NO. I. FEBRUARY 1995

. ..-..a r- - - 4 - -Without Delayed ACK
...... 4......+. +Wiih Delaved ACK

I + m
0.16 0.2 0.26 0.3 0.35 0.4

Upstream ACK Loss

Pi& 13, Implementation of delayed ACK increases a TCP connection’s vulnerability to ACK loss. This example involves a 3-Mb data transfer over
II conncclion with maximum window size of 8 kb.

Pin. 14. Throunhout variation with ACK loss for different MSS values for a 3-Mb data transfer. By using a smaller MSS. a server can reduce the
cff&t of ACK& on throughput.

TCP Tahoe arc likely to see a significant improvement in
performance if delayed ACK is not used.

Avoiding the usage of delayed ACK requires changes in
TCP implementations of the several hundreds of thousands of
subscribers’ PC’s, an enormous and unrealistic task. Moreover,
applications such as telnet that transmit small TCP packets
frequently in both directions over a TCP connection benefit
signilicantly from delayed ACK implementation. In the next
section, we discuss changes to TCP implementations at the lo-
cal servers that can overcome the drawbacks of using delayed
ACK in the PC’s for bulk transfer applications.

ll, Setting TCP MSS Values

Observe that the number of ACK’s transmitted from a TCP
rccciver in a round-trip time is determined not only by the
socket buffer size but also by the maximum size of each data
packet, referred to as the maximum segment size (MSS). The
smaller the MSS value, the larger the number of ACK’s in a
window. To increase the robustness of TCP connections to
ACK loss, it is more efficient to use smaller MSS values
during periods of loss. Fig. 14 illustrates the improvement
in performance that can be obtained from reducing the MSS
even when the TCP receiver implements the delayed ACK
strategy. Importantly, since the MSS value for a downstream
data transfer is determined by the local server itself, TCP

connections originating from the local server can be made
more robust to upstream ACK loss by configuring the server
to use a smaller MSS.

There are, however, several tradeoffs that must be consid-
ered when deciding whether the smaller MSS value should
be used always or only during times of significant upstream
loss. On the positive side, besides offering greater resilience
to ACK loss, the smaller MSS may also decrease the packet
loss rate (e.g., depending on the burstiness of errors, if the
loss probability of I-kb packets is lo%, the loss probability
of 0.5kb packets will be between 5% and 10%). Another
advantage of smaller MSS is that a larger number of ACK’s
are generated by the receiver, which increases the probability
that the transmitter receives three dupACK’s necessary for
fast retransmit to be triggered following a packet loss. On
the negative side, a smaller MSS results in greater TCP/IP
and link protocol header overhead. Furthermore, TCP’s slow-
start and congestion avoidance mechanisms are slowed down
for the smaller MSS since TCP’s slow-start and congestion
avoidance mechanisms increase the transmission window in
terms of packets, irrespective of the MSS in use.

C. Using a Finer Granularity Retransmission Timer

An obvious improvement to enable TCP to react more
quickly to network losses is to use a finer granularity timer

COIIEN AND RAMANATHAN: HYBRID FIBER COAXIAL BROAD-BAND ACCESS NETWORKS 27

0 oi6 dl a15
6

aa cl3 as a4

0)

pig, 15, Increase in performance from increasing the granularity in TCP’s
rctrnnsmission timer to 200 ms (a) during downstream packet loss and (b)
during upntrcnm ACK loss. In this example, a 3-Mb data transfer was initiated
from n local server to a subscriber’s PC.

than the SOO-ms timer used in most current implementations.
This would enable the TCP transmitter to obtain a tighter upper
bound on the round-trip times, which in turn results in a reduc-
tion in the time that elapses before the transmitter times out and
retransmits a lost packet. Current TCP implementations use
two types of timers: a 200-ms timer that is used for supporting
delayed ACK and a 500-ms timer that is used for computing
round-trip times. Using the 200 ms timer to estimate round-
trip delays as well can increase TCP’s reactivity without
overly increasing its implementation overhead. As illustrated
in Fig, 15(a) and (b), this modification in the timer granularity
improves performance both for upstream and downstream
losses. The degree of improvement achieved depends on
the percentage of losses experienced over the network. For
example, when network loss on the downstream is 3%, this
simple modification yields an almost twofold increase in
performance.

D, Using “Super” Fast Retransmit

A further improvement in performance can be obtained by
tuning TCP’s fast retransmit mechanism to HFC networks.
Since in-sequence delivery of packets is guaranteed over the
I-WC network and all the way to the local server complex,
the receipt of the first dupACK at the server is a clear

TransmlHer
(Pa&H No)

ReceNer
(ACK No)

Tranmbr Wnes-oul when ;
ushgfastretransmlt I

I
,
8

(4

TransnMer
(Packet No)

Recehrer
(ACK No)

Fig. 16. Demonstration of the advantages of super fast retransmit when
muttiple packet losses occur in a transmission window of size eight packets.
(a) Fast retransmit causes a timeout when packets 11 and 14 are lost. (b) The
fast retransmit causes a timeout when packets 11 and 14 are lost. (b) Super
fast retransmit is able to recover from the two packets.

signal that a data packet has been lost. However, since TCP
has been designed to operate in more general networks,
where packets may be routed via different paths and may
therefore arrive out of sequence, the TCP transmitter waits
for three dupACK’s to arrive before retransmitting a missing
packet. In networks where packets are guaranteed to be
received in order, this strategy of TCP unnecessarily delays
the detection and retransmission of lost packets. Even more
significantly, this strategy makes TCP more vulnerable to
timeouts during periods of high loss-since at least three
dupACK’s are necessary to trigger a fast retransmit, TCP

IEEE/ACM TRANSACI’IONS ON NETWORKING, VOL. 6. NO. 1. FEBRUARY 1998

- + - Normal TCP

- - i - -TCP with 200ms Tiier

+TCP v&h 200ms Timer and Super fast retransmit

0.03 0.04
Downstream Packd Len

0.05 0.06 0.07

Pig, 17, The complementary effects of increasing the retransmission timer granularity and invoking super fast retransmit for a 3-Mb data transfer betlveen
n local server nnd a subscriber’s PC.

- +- 1% packet lcss.TCP

-1% packet loss. Modified TCP
- 4 - 5% p%cket Iuss. TCP

-5% packet loss. Modified TCP

- - i - -10% packet loss. TCP
+--w-m -----a--, +lO% packet loss. h4alified TCP

0 100 a0
Data Tmndr~br (KByW)

400 500 coo

Pig. 18, Illustration of the performance improvements that modified TCP offers for different data transfer sizes and different data packet loss rates.

requires the operating window to be at least four packets for
the fast retransmit mechanism to be effective. During periods
of significant loss, TCP’s operating window drops many times
below four, and a single packet loss during the time when the
window stays below four (which could be up to two round-trip
times) results in a timeout.

WC propose to modify TCP implementations at the local
servers of HFC networks so that fast retransmit is triggered
after the llrst dupACK is received at the server. By initiating
retransmission earlier, this approach, referred to as “superfast
I’I’IYUIISI&,” speeds up the recovery of TCP from isolated
packet losses, Much more significantly, super fast retransmit
reduces the probability of timeouts. Since it requires only a
single dupACK to retransmit a packet, super fast retransmit
can be triggered even when the window size drops to two and
a packet loss occurs. In addition, super fast retransmit increases
the possibility that the TCP transmitter detects and recovers
from multiple packet losses in a transmission window, as
demonstrated in Fig. 16. In this example, when two packets, 11
and 14, arc lost, a transmitter that implements fast retransmit

experiences a timeout for packet 14 since it receives only two
dupACK’s for this packet. In comparison, a transmitter using
super fast retransmit retransmits packet 14 soon after receiving
the first dupACK and is thereby able to recover from the packet
losses without experiencing a timeout.

The effects of increasing the retransmission timer granular-
ity and employing super fast retransmit are complementary.
Whereas the former reduces the duration of each timeout, the
latter reduces the number of timeouts. Fig. 17 illustrates the
performance improvement that can be obtained from using a
TCP implementation with these modifications during different
network loss conditions for a 3-Mb data transfer.

Fig. 18 illustrates the performance improvements for differ-
ent transfer sizes. For the loss rates shown in the figure, the
modified TCP performs uniformly well for data transfers of
50 kb and above, offering performance improvements ranging
from 25% to 300%. For smaller transfers of 50 kb and less,
the effect of modified TCP is less dramatic for loss rates of 5%
and less. At higher loss rates, the performance improvements
even for small transfer sizes are very significant. For instance,

CQlll?N AND RAMANATI-IAN: WBRID FIBER COAXIAL BROAD-BAND ACCESS NETWORKS 29

for a 30-kb data transfer at a 10% loss rate, modified TCP
doubles the achieved throughput.

VII. IMPLICATIONS FOR BROAD-BAND
DATA SERVICE OPERATORS

In this section, we discuss some implications of our analysis
for HFC network operators and equipment manufacturers.

l Viability of data services even under harsh upstream net-
work conditions: In recent times, critics have doubted the
viability of providing data services over HFC networks,
mainly on account of the high error rates on the upstream
channels [GJ. Our analysis indicates that for downstream
access, TCP connections can be tuned to be highly robust
to loss of ACK’s on the upstream channel, so that
acceptable performance can be achieved even under harsh
upstream conditions. For example, with the enhancements
proposed in the previous sections, even a 20% loss of
ACK’s on the upstream channels results in less than 10%
reduction in TCP performance.

l Need to optimize performance by careful design and main-
Ic/tance: To the many who have believed that data com-
munication protocols are tolerant to loss, our analysis
has demonstrated that a low (1%) downstream packet
loss can degrade performance by up to 50%. To meet
subscriber expectations, data service operators must strive
to tune and maintain the physical network to reduce
RF impairments. Considering the predominance of down-
stream data transfers, the downstream channels must be
especially carefully tuned. Forward error correction and
bit interleaving techniques incorporated in the CM’s can
mask physical layer errors from the TCP Iayer. Proactive
monitoring can alert operators about impairments before
subscribers notice the problem.

In the future, when applications transfening data up-
stream become commonly used, upstream errOr rates must
be strictly controlled. Based on our analysis, we con-
jecture that upstream packet loss, more than the limited
upstream spectrum available, is likely to limit the achiev-
able throughput. Channel error sensing and frequency
agility capabilities in the CM’s can help in sustaining
high performance levels on the upstream channels.

9 I~riplications for CM-SCS architectures: In many first gen-
eration architectures, like the CM’s, the SCS too transmits
on the upstream frequencies and a separate frequency
translator is used to reflect upstream transmissions on
the downstream channels. Since noise on the upstream
channels is also reflected downstream, in such CM-SCS
architectures, even transmissions from the server complex
to subscribers’ PC’s may be affected by upstream noise
in the HFC network. Our analysis indicates that CM-
SCS architectures which separate upstream transmissions
from CM’s and downstream transmissions from the server
complex are likely to yield much higher performance for
TCP traffic.

l 5’Irrru’rg TCP socket buffer settings for optimal perjor-
ittartce: Until now, very little attention has been placed
to tune the TCP connection parameters to the specific
CM architecture. We have demonstrated the performance
advantages that can be obtained simpIy by tuning the TCP
socket buffer parameters based on the buffering capacity

of the CM’s and the number of simultaneous connections
supported by the CM.

We are beginning to implement and experimentally evaluate
the impact of our proposed modifications in real-world HFC
networks.

REFERENCES

111

[21

[31

t41

PI

WI
Fl

181

PI

1101

[Ill

t121

t131

A. Bakre and B. Badrinath. “I-TCP: Indirect TCP for mobile hosts,’
in Proc. 15th Int. Con& Distributed Computing Systems (ICDCS), May
1995.
H. Balakrishnan. S. Seshan. E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” in Proc. 1st ACM Co@
Mobile Computing and Networking. Berkeley, CA. Nov. 1995.
R. Braden, “Requirements for In?emet ho& communication layers,”
Internet Reauest for Comments RFC 1122. Oct. 1989.
L. S. Bra&o and L. L. Peterson, “TCP Vigas: End to end congestion
avoidance on a global Internet,” IEEE J. Select. Areas Commun., vol.
13, pp. 1465-1480. Oct. 1995.
J. Dail, M. Dajer, C.-C. Li, P. Magill. C. Siller. K. Srimm, and
N. Whitaker. “Adaptive digital access protocol: A MAC protocol for
multiservice broadband access networks,” IEEE Commun. Mq., vol.
34. DD. 104-112. Mar. 1996.
J. Dvorak, “The iioming cable modem fiasco,” PC &fog., Sept. 1995.
C. Elderinp. N. Himavat. and F. Gardner. “CATV return oath chamc-
terization &r reliable iommunications:’ IEEE Commun. M&.. vol. 33.
pp. 62-69. Aug. 1995.
J. Heidemann. (October, 1996) “Performance interactions between
P-HTIT’ and TCP implementations.” Computer Commun. Rev.
[Online]. Available: HTTPz httpz/www.isi.edu/div7/lsam/publications/
phttu-tcpintemctionsf.
j. C!. Hbe, “Improving the start-up behavior of a congestion control
scheme for TCP,” in Proc. ACM Sl(iCOWf’96, Palo Alto, CA, Aug.
1996, pp. 270-280.
V. Jacobson, ‘Congestion avoidance and control.” in ACM SIGCOMr21
Symp., Aug. 16-19. 1988, pp. 314-329.
M. Mathis and J. Mahdavi, “Forward acknowledgment: Refining TCP
congestion control,” in Proc. ACM SIGCOMM’96, Palo Alto, CA, Aug.
1996, pp. 281-292.
E. Perry and S. Ramanathan. “Network management for residential
broadband intern&e data services,” IEEE Commun. Mug.. vol. 34. pp.
114-121. Nov. 1996.
W. Stevens, TCP/IP Ilhtstruted, vol. 1. Reading, MA: Addison-
Wesley, 1994.

Reuven Cohen (M’92) received the B.Sc.. M.Sc..
and Ph.D. degrees in computer science from the
Technion, Ismel Institute of Technology, Haifa. Is-
mel, in 1986, 1988, and 1991, respectively.

From 1991 to 1993 he was with IBM T. J. Watson
Research Center, working on protocols for ATM and
high-speed LAN’s. Since 1993 he has been with the
Department of Computer Science, Technion, Ismel
Institute of Technology, Haifa. Israel. His most
recent work focuses on the design and evaluation
of protocols for routing, multicast, and transport.

management for emergir
services.

SrInivas Ramanathan received the B.Tech. decree
in chemical engineering from Anna University.
Madras, India, in 1988. the M.Tech. degree in
computer science and enbineering from theIndian
Institute of Technology. Madras, India, in 1990.
and the Ph.D. degree in computer science and
engineering from the University of California. San
Diego, in 1994.

He is currently a Research Staff Member at
Hewlett-Packard Labomtories. Palo Alto. CA,
where his research focuses on measurement and
lg broad-band networks. Internet technologies, and

