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Abstract. We modify the reflection method to enable it to deal with
partial functions like division. The idea behind reflection is to program
a tactic for a theorem prover not in the implementation language but in
the object language of the theorem prover itself. The main ingredients
of the reflection method are a syntactic encoding of a class of problems,
an interpretation function (mapping the encoding to the problem) and a
decision function, written on the encodings. Together with a correctness
proof of the decision function, this gives a fast method for solving prob-
lems. The contribution of this work lies in the extension of the reflection
method to deal with equations in algebraic structures where some func-
tions may be partial. The primary example here is the theory of fields.
For the reflection method, this yields the problem that the interpretation
function is not total. In this paper we show how this can be overcome by
defining the interpretation as a relation. We give the precise details, both
in mathematical terms and in Coq syntax. It has been used to program
our own tactic ‘Rational’; for verifying equations between field elements.

1 Introduction

We present a method for proving equations between field elements (e.g. real
numbers) in a theorem prover based on type theory. Our method uses the re-
flection method as discussed in [6,5]: we encode the set of syntactic expressions
as an (inductive) data type, together with an interpretation function [—] that
maps the syntactic expressions to the field elements. Then one writes a ‘normal-
ization’ function N that simplifies syntactic expressions and one proves that this
function is correct, i.e. if N(t) = g, then the interpretations of ¢ and ¢ ([t] and
[q]) are equal in the field. Now, to prove an equality between field elements a
and b, one has to find syntactic expressions #; and ts such that N (t1) = N (t2)
and [t1] is @ and [to] is b. This method has been applied successfully [2] to ring
expressions in the theorem prover Coq, where it is implemented as the ‘Ring
tactic’: when presented with a goal a = b, where a and b are elements of a ring,
the Ring tactic finds the underlying syntactic expressions for a and b, executes
the normalization function and checks the equality of the normal forms.

The application of the reflection method to the situation of fields poses one
big extra problem: syntactic expressions may not have an interpretation, e.g. %.
So, there is no interpretation function from the syntactic expressions to the actual
field ([—] would be partial). The solution that we propose here is to write an



interpretation relation instead: a binary relation between syntactic expressions
and field elements. Then we prove that this relation is a partial function. The
precise way of using this approach is discussed below, including the technical
details of its implementation in Coq. For the precise encodings in Coq see [4].

The reflection method in general

Reflection is the method of ‘reflecting’ part of the meta language in the object
language. Then meta theoretic results can be used to prove results from the ob-
ject language. Reflection is also called internalization or the two level approach:
the meta language level is internalised in the object language. The reflection
method can (and it has, see e.g. [7]) be used in general in situations where one
has a specific class of problems with a decision function. It is also not just re-
stricted to the theorem prover Coq. If the theorem prover allows (A) user defined
(inductive) data types, (B) writing executable functions over these data types
and (C) user defined tactics in the meta language, then the reflection method
can be applied. The classes of problems that it can be applied to are those where
(1) there is a syntactic encoding of the class of problems as a data type, say via
the type Problem, with (2) a decoding function [—] : Problem — Prop (where
Prop is the collection of propositions in the language of our theorem prover),
(3) there is a decision function Dec : Problem — {0,1} such that (4) one can
prove Vp:Problem((Dec(p) = 1) — [p]). Now, if the goal is to verify whether a
problem P from the class of problems holds, one has to find a p : Problem such
that [p] = P. Then Dec(p) (together with the proof of (4)) yields either a proof
of P (if Dec(p) = 1) or it ‘fails’ (if Dec(p) = 0 we obtain no information about
P). Note that if Dec is complete, i.e. if Vp:Problem((Dec(p) = 1) < [p]), then
Dec(p) = 0 yields a proof of =P. The construction of p (the syntactic encoding)
from P (the original problem) can be done in the implementation language of
the theorem prover. Therefore it is convenient that the user has access to this
implementation language; this is condition (C) above. If the user has no access
to the meta language, the reflection method still works, but the user has to
construct the encoding p himself, which is very cumbersome.

In this paper we first explain the reflection method by looking at the example
of numbers with multiplication. We point out precisely which are the essential
ingredients. Then we extend the example by looking at numbers with multi-
plication and division. Here the partiality problem arises. We explain how the
reflection method can be applied to this example. This is an illustration of what
we have implemented in Coq: a tactic for solving equations between elements of
a field (a set with multiplication, division, addition, subtraction, constants and
variables). The tactic has been applied successfully in a formalization of real
numbers in Coq that we are currently working on.

2 Equational reasoning using the reflection method

We explain the reflection method by the simple example of numbers with mul-
tiplication. Suppose we have F : Set, - : F—F—F, 1 : F and an equivalence



relation =p on F (either a built-in equality of the theorem prover or a user
defined relation) such that

(i) =F is a congruence for - (i.e. if a =p b and ¢ =p d, then a- c = b - d),

(i) - is associative and commutative,
(iii) 1 is the unit with respect to -.

Phrased differently, (F,-, 1) is an Abelian monoid. When dealing with F, we will
want to prove equations like

(@-c)-(1-(a-b))=p(a-a)-(b-c) (1)
where a, b, ¢ are arbitrary elements of F. To prove this equation in a theorem
prover each of the properties (i)—(iii) above has to be used (several times). It is
possible to write a ‘tactic’ in the theorem prover that does just that:

Apply each of the steps (i)—(iii) to rewrite the left and right hand side
of equation (1) until the two sides of the equation are literally the same.

Obviously this is not a very smart tactic (e.g. it does not terminate when the
equality does not hold) and of course we can do better than this by applying
(1)—(iil) in a clever order. For the case of Abelian monoids, this can be done by
rewriting all terms into a normal form which has the shape

ar-(ag (... (an-1)...))

where n > 0 and ay,...,a, are elements of F' that can not be decomposed,
listed in alphabetic order. So a; may be a variable of type F or some other term
of type F', that is not of the form —-— or 1. A tactic, which is written in the
meta language, has access to the code of a;, hence it can order the a; according
to some pre-defined total order, say the lexicographic one. (Note that a normal
form as above can not be achieved via a term rewrite system, because we have
to order the variables.) So, a more clever tactic does the following.

Rewrite the left and right hand side of equation (1) to normal form and
check if the two sides of the equation are literally the same.

Following [5], there are three ways to augment the theorem prover with this
proof technique for equational reasoning.

1. Add it to the primitives of the theorem prover,

2. Write (in the meta language) a tactic, built up from basic primitive steps,
that performs the normalization and checks the equality.

3. Write a normalization function in the language of the theorem prover itself
and prove it correct inside the theorem prover; use this as the core of the
tactic.

The first is obviously undesirable in general, as it gives no guarantee that the
method is correct (one could add any primitive rule one likes). The second and
third both have their own pros and cons, which are discussed extensively in [5].
It is our experience (and of others, see [2]) that especially for theorem provers
based on type theory, the third method is the most convenient one if one wants
to verify a large numbers of problems from one and the same class. We will
motivate why.



Reflection in type theory

We still work with the Abelian monoid (F), -, 1) from before and we want to verify
equation (1). The equality on this monoid will be denoted by =p, which may be
user defined or not, as long as it is an equivalence relation and a congruence for -.
Note that there is also the definitional equality, built-in into Coq. This is usually
denoted as =gs,, as it is generated from the literal (a-) equality by adding the
computation steps 3, ¢ (for unfolding definitions) and ¢ (for recursion). Defini-
tional equality is decidable and built into the type checker; it is included in the
equality =p (if two terms are definitionally equal, they are equal in any respect).
We introduce an inductive type of syntactic expressions, E, by

E:=V|C|ExFE
where V is the type of variables, let’s take
V=N

and C is the type of constant expressions, containing in this case just one element,
u. In type theory (using Coq syntax) the definition of V and E would be as
follows.

Definition V : Set := nat.

Inductive E : Set :=
evar : V->E

| eone : E

| emult : E->E->E.

To define the semantics of an expression e : E, we need a valuation p: V — F
to assign a value to the variables. The interpretation function connecting the level
of the syntactic expressions E and the semantics F' is then defined as usual by
recursion over the expression.

[-],: E—F

In Coq syntax the interpretation function I is defined as follows, given the
Abelian monoid <F, fmult, fone>:

Variable rho : V->F.

Fixpoint I [e:E] : F :=
Cases e of
(evar v) => (rho V)
| eone => fone
|  (emult el e2) => (fmult (I el) (I e2))
end.



Now we write a ‘normalization function’:
N:E—>E

that sorts variables, removes the unit (apart from the tail position) and associates
brackets to the left. We don’t give its encoding N : E -> E in Coq, but give the
following examples.

N ((vo * u) * (v1 % v2)) =gs, (Vo * (v1 * (V2 xu))),
N ((vg % vg) xv1) =gs, (vo * (v1 * (v2 * u))).

The equality =gs, is the internal (computational) equality of the theorem prover:
no proof is required for its verification; a verification of such an equality is
performed by the type checker.

We prove the following key lemma for the normalization function.

normcorrect :  [e], =r [N(e)],
In Coq terminology: we construct a proof term
normcorrect : (rho: V -> F)(e:E)((I rho e) = (I rho (N e))).

The situation is depicted in the following diagram; normcorrect states that the
diagram commutes.

N

E E

[-] [-]

F————F
=F

Solving equation f =p f’ with f and f’ elements of F' now amounts to the
following.

— Find (by tactic) e, e’ and p with
lelp =ps. f and [€'], =ps. f'
— Check (by type checker) whether
N(e) =gs N (€')
The proof of f = f’ is then found by

f=ps. el =r IN(©)], =ps. IN(€)], =F [€'], =p5. [



from normcorrect for e and €’ and trans of =g. In a diagram:

E N E N E

[-] [-] [-]

F F F
=F =F

In Coq this means that we have to construct a proof term of type
f =g

This is done from normcorrect using the proofs of symmetry and transitivity
of =p, sym and trans.

sym  : (x,y:F) x=y) > (y=x.

trans : (x,y,z:F) (x=y) > (y =2) > (x = 2).

The crucial point is that

(normcorrect rho e) : ((I rhoe) = (I rho (N e))).
(normcorrect rho e’) : ((I rho e’) = (I rho (N e’))).

can only be fitted together using trans, when (N e) and (N e’) are (di-
convertible. In that case we find that (I rho (N e)) is Bdi-convertible with
(I rho (N e’)) as well, so if we call that g by defining:

g := (I rho (N e))
then we find that:

(normcorrect rho e) (£ =g,
(normcorrect rho e’) (£ = g).

So using this, we can construct a proof term

(trans f g £’ (normcorrect rho e) (sym f’ g (normcorrect rho e’)))
£ =1,

The important points to note here are

(1) This proof term of an equality has a relatively small size, compared to a
proof term that is spelled out completely in terms of congruence (of =g w.r.t. -)
and reflexivity, symmetry and transitivity (of =p). The terms refl, sym, trans,
and normcorr are just defined constants. The terms rho, e and e’ are generated
by the tactic; rho being of size linear in f and £’ with a rather small constant.
A proof term that is completely spelled out has a polynomial size in £ and £’.

If we unfold the definitions, we observe that the bulk of the proof term is in
normcorr. This will be rather large but it only has to be extended with a part



of — roughly — the size of the input elements themselves. So, then the proof term
is still linear in the size of the input terms.

(2) Checking this proof term (i.e. verifying whether it has the type £ = £’)
can in general take rather long. This is because type checking now involves
serious computation, as we use the language of the theorem prover as a small
programming language. The bulk of the work for the type checker is in verifying
whether (N e) and (N e’) are 3di-convertible.

We compare this to the approach of using a tactic that is written completely
in the meta laguage. This tactic will do roughly the same thing as our reflection
method: reduce expressions to normal form and generate step by step a proof
term that verifies that this reduction is correct. Checking such a proof term will
take about the same time. Some increase in speed may only be gained if we check
a user generated proof term, because this will (in general) avoid reducing to full
normal form (assuming the user sees the possible ‘shortcuts’).

(3) Generating the proof term is very easy, both for the reflection method
as for the tactic written in the meta language. The tactics generate the full
proof term without further interaction. Note that a completely user generated
proof term of an equality (which may be fastest to type check, see above), is not
realistic.

Here we also see why the reflection approach is particularly appealing for
theorem provers based on type theory: one has to construct a proof term, which
remains relatively small using reflection. Moreover, these theorem provers pro-
vide the required programming language to encode the normalization and inter-
pretation functions in.

Looking back at the example from the beginning, encoded in Coq, we have
as goal

Goal
((fmult (fmult a c¢) (fmult fone (fmult a b)))
= (fmult (fmult a a) (fmult b c))).

Now the tactic generates

(emult (emult (evar 0) (evar 2))
(emult eone (emult (evar 0) (evar 1)))).
(* the e : E %)
(emult (emult (evar 0) (evar 0)) (emult (evar 1) (evar 2))).
(x the e’ : E %)

and a function rho : V -> F which is defined in such a way that

(rho (evar 0)) = a
(rho (evar 1)) = Db
(rho (evar 2)) = c¢

Then it constructs a term as above,

(trans f g f’ (normcorrect rho e) (sym f’ g (normcorrect rho e’)))



where g is (I rho (N e)). Note that (I rho (N e)) =gs5 (I rho (N e’))
=pBde

(I rho (emult (evar 0) (emult (evar 0)
(emult (evar 1) (emult (evar 2) eone)))))

=gs, (fmult a (fmult a (fmult b (fmult c fone)))). This term is given to
the type checker. If it type checks with as type the goal, the tactic succeeds (and
it has constructed a proof term proving the goal); if the type check fails, the
tactic fails.

3 Reflection With Partial Operations

We explain partial reflection by adapting the example to include division. We
view division as a ternary operation:

a+b // p with p a proof of b #p 0.
This is very much a type theoretic view. One may alternatively write
a=bforbe{z|z#p0},

but note that this also requires a proof of b # 0, before + can be applied to it.

As a side remark, we note that we use the principle of irrelevance of proofs
when extending the equality on F' to expressions of the form a + b // p. That is,
if p and p’ are both proofs of b #r 0, then (a +b // p) =r (a+b//p’). In our
encoding in Coq, this is achieved by representing {z | z #r 0} by the type Pos
of pairs (b,p) with p : (b #F 0) with the equality on Pos the one inherited from
F. Then we let <+ be a function from F' x Pos to F'.

If we extend our structure with a zero element and a division operator, like
in fields, we encounter the problem of undefined elements. These cause trouble
in various places. First of all, there is the question of which syntactic expression
one allows: if 1/0 is accepted, which interpretation does it have (one has to
choose one). This is of course related to the question whether the theorem prover
allows to write down § (whatever its meaning may be). The second problem is
that a naive normalization function might rewrite 0/(0/v) to v (just because
x/(z/v) = x/x*v = 1xv = v). But then, 3 = a, which is undesirable. Note that

a
the ‘division by 0’ problem can occur in a more disguised form, e.g. in % = a,
a

with y a variable, which is correct under the side-condition that y #r 0. So,
it seems that, when normalizing an expression e, one would have to take the
interpretation [e], into account (and the interpretation of subexpressions of e)
to verify that the normalization steps are correct.

We have solved the problems just mentioned by

— Allowing syntactic expressions (like 1/0) that have no interpretation. So
[—1, is defined as a relation, for which it has to be proved that it is a partial
function.

— Writing the normalization function N in such a way that, if expression e has
an interpretation, then expression N(e) has the same interpretation as e.



Syntactic expressions We now define the inductive type of syntactic expressions,
E, by
E:=V|C|E«xE|E/E

where V is again the type of variables, for which we take V ::= IN again. C is
the type of constant expressions, now containing a zero, z, and a one expression,
u. In type theory (using Coq syntax):

Inductive E : Set :=

evar : V->E
eone : E
ezero : E

|

|

| emult : E->E->E
| ediv : E->E->E.

Note that E doesn’t depend on F' and p; we have ‘light’ syntactic expressions
(without any semantic information). This implies that 1/0 is allowed in E: it is
a well-formed expression.

Interpretation relation The semantics of an expression is now not given by a
function but an interpretation relation:

o CEXF

Again, we need a valuation p : V — F to assign a value to the variables. The
interpretation relation can then be defined inductively as follows.

Un ][p fiff p(n) =F f,
u][pfifff:F 1,
z], fiff f=Fr0,
(erxe2) [, fiE3f1, fo € F (e1 ], f1) Alea ], f2) Af =F f1- [2),
(er/e2) o fiEIf1, fo € F (e ], fi) Ale2[p fo) A(f2 #r O) A (f =F f1+ fo).

In Coq let there be given a structure <F, fmult, fdiv, fone, fzero>,
with

fdiv: (x,y:F)("(y =_F fzero))->F

and the other operations and the equality as expected. The inductive definition
of [, is as follows.

Inductive I : E->F->Prop :=
ivar : (@:V)(f:F) ((rho n) = f) -> (I (evar n) f)
| ione : (f:F) (fone = f) -> (I eone f)
| izero : (f:F) (fzero = f) -> (I ezero f)
| imult : (e,e’:E)(f,f’,f’’:F)
((fmult f £°) = £°°) > (I e f) > (I e’ £7)



-> (I (emult e e’) f’7?)
| idiv : (e,e’:E)(£f,f’,f’’:F)(nz:"(f’ = fzero))
((fdiv £ f> nz) = f’°) > (I e f) > (I e’ £?)
-> (I (ediv e e’) £77).

Note that we do not just let ione : (I eone fone), but take fone modulo the
equality on F, and similarly for the constant, the variables and the two operators.
This is because I should be a partial function modulo the equality on F. In more
technical terms: correctness of normalization can only be proved with this version
of I.

Normalization and correctness The ‘normalization function’:
N:E—>E

now brings the expressions that have an interpretation in one of the following
two normal forms

(vy * (Vg ... (v xu)...)) [/ (w1 * (W k... (W xu)...)),

z/u,

with vy, ..., v,, w1, ... w,, variables and the two lists vq,...,v, and wq,...w,
disjoint. So, A creates two mutually exclusive lists of sorted variables, one rep-
resenting the enumerator and one representing the denominator. The sorting of
these lists is the same as for multiplicative expressions. In case A encounters a z
in the enumerator, the whole expression is replaced by z/u (which has interpre-
tation 0). For the expressions that do not have an interpretation (those e € E
for which there are no p : V—F, f € F with e[, f), the normalization function
can return anything.

We don’t give the encoding N : E -> E in Coq, but restrict ourselves to
some examples.

N(vo/(v1/v3)) * v1 =gs, (vo * (v3 % u))/u,
N((vo/(v1 *v2))/(v3/v2)) =ps. (vo * u)/(v1 * (v3 % u)).

We can understand the way N actually works as follows.

1. From an expression e, two sequences of variables and constants are created
s1 and sg, the first representing the enumerator and the second the denom-
inator. The intention is that, if e has an interpretation, then s;/s2 has the
same interpretation.

2. These two sequences are put in normal form, following the normalization
procedure for multiplicative expressions.

3. Variables that occur both in s; and sy are canceled, units are removed and
s1 is replaced by z if it contains a z.



Note that we tacitly identify a sequence s; with the expression that arises from
consecutively applying * to all its components. This is also the way we have
implemented it in Coq: we do not use a separate list data structure, but encode
it via * and u. On these lists, we define an ‘append’ operation, which we denote
by @. So, if s; and sy denote two expressions in multiplicative normal form,
51@Qs, is the multiplicative normal form of s; *ss. As a matter of fact, N doesn’t
do each of these steps sequentially, but in a slightly smarter (and faster) way.
In proving the correctness of N, one has to preserve the property that all
denominators are #p 0. In that, the first step is the crucial one. (The second step
is only a reordering of variables; one has to prove that this reordering preserves
the #p 0 property, which is easy. In the third step one has to prove that #p 0
is preserved under cancellation, which is the case: if a - b #p 0, then a #p 0.)
The first step has a nice recursion: if A'(e) = (s1, s2) and N(e') = (s}, s5), then

N(exe€') = (s1Qs], 55Qs)),
N(e/e') := (51Qs5, s2@Qs7]).

Now, if e % ¢/ has an interpretation, then (by induction) sz and s, have an
interpretation different from 0 and hence the interpretation of so@s}, is different
from 0. Similarly, if e/e’ has an interpretation, then (by induction) sq, s} and s
have an interpretation different from 0 and hence the interpretation of so@s] is
different from 0.

This is also how the correctness proof of N/ works: N itself doesn’t have to
bother about the interpretation of the expressions it operates on, because it is
written in such a way that, the fact that e has an interpretation implies (in a
rather simple way, sketched above) that N(e) has an interpretation (which is
the same as for e).

Again we note that A cannot be found as a term rewriting system, for one
because it orders variables, but more importantly because it only works properly
for expressions that have an interpretation. We can use this information, because
the expression we start from is derived from an existing f : F, which is well-
defined (otherwise we couldn’t write it down in the theorem prover). So, we
already know that the first e has an interpretation (namely f) and by virtue of
the construction of A/, this property is preserved.

We prove the following key lemmas.

normcorrect : el f = N(e)], f
extensionality - (e, f)N(e], f') = f=r .

Extensionality states that |, is really a partial function (w.r.t. the equality
:F) .

Reflection The reflection method for solving f =p f' is now:

— find (by tactic) e, e’ and p with
el, fand e ], f



— construct (see below) proof terms for these two statements
— check (by type checker) whether

N(e) =gs. N (€)
(=ps, means [di-convertible)

The proof of f = f’ is then found by:
elo f =NE)I,f
=f=f
e f =NE) ], f

from normcorrect (applied to (e, f) and (¢/, f'), respectively) and extensionality
(applied to (N(e), f, f)).

Just as in the case for reflection in Section 2, a precise proof term can be
constructed, which type checks with type f =g f’ if and only if these terms are
can be shown to be equal in the equational theory. In the next Section we will
exhibit such a proof term. The main work in type checking this proof term lies
in the execution of the algorithm A (but this is done by the type checker).

One problem remains. As we now have an interpretation relation, there arise
some proof obligations: it is not just enough to find encodings ¢ and e’ of f and
f'; we have to prove that they are encodings indeed. That is, we have as new
goals

el, fand e ], f

Of course, we don’t want the user to have to take care of these goals; the tactic
should solve them. This problem is dealt with in the next Section.

4 Proof Loaded Syntactic Objects

At the second step of the partial reflection method, we need proofs of e[, f.
One way is to let the tactic construct these; so from f : F', the tactic extracts
both e : E and p and a proof term p with p : e, f. This is possible, but it is
not what has been implemented. We have chosen to have one data type for both
expressions and proofs. The strategy for doing so (and which fits very well with
the type theoretic approach) is to create syntactic expressions with proof objects
inside
E
with a forgetful function | — | and an interpretation function [—],,

|—\:E_'—>E
-], E—F

The key property to be proved is then

lel 1o [l



 But note that E depends on F and p (it should ‘know’ about semantics), so
E is a type of ‘heavy’ syntactic expressions (including proof terms). This can
only work if we let E be a dependent type over F":

Ef
which in Coq terms is defined as:

Inductive xE : F -> Set :=

xevar : (i:V) (xE (rho i))

xeone : (xE fone)

xezero : (XxE fzero)

xemult : (f,f’:F)(e:(xE f))(e’:(xE £’))(xE (fmult f £’))

xediv : (f,f’:F)(e:(xE f))(e’:(xE £’)) (nz:"(f’ = fzero))
(xE (fdiv f £’ nz)).

The type E'f represents the type of ‘heavy’ syntactic expressions whose inter-
pretation is f. The interpretation function is now

[, Ef = F
for which it should hold that
[el, =ss. f
so [—], is constant on its domain. In Coq terms we define:
xI := [f:F][e:(xE £)]f : (£:F)(xE f) -> F.

Note that we do not define the interpretation by induction on e : (xEf), but we
just return f (the intended interpretation). The obligation is now to prove that
the underlying ‘light’ syntactic expression has indeed f as interpretation. The
forgetful function, extracting the ‘light’ syntactic expression, now is

|~ |:Ef—E
It maps the ‘heavy’ syntactic expressions to the ‘light’ ones. In Coq terms:

Fixpoint xX [f:F; e:(xE )] : E :=
Cases e of

(xevar i) => (evar i)
xeone => eone
Xezero => ezero

(xemult £’ £’ e’ e’’) => (emult (xX f’ e’) (xX f’’ e’?))
(xediv £’ £’’ e’ e’’ p) => (ediv (xX £’ e’) (xX f’’ e’’))
end.

which is defined by induction over (xE £). The maps [—], and | — | ‘extract’ the
two components (syntactic expression and semantic element) from the ‘heavy’
encoding. The key result now is that the second extraction is an interpretation
of the first:

extractcorrect : Yz € Ef(|z|], [*],)

which is just Vo € Ef(|z| ], f).
The tactic now works as follows, given a problem f =g f’.



— find (by tactic) € € Ey, & € Ep and p with
el o £ and |&'| [, f*

— obtain (from extractcorrect) proof terms for these two statements
— check (by type checker) whether

N(lel) =pa N(€'])

~ So, the tactic creates e,e’ of type E indirectly by creating e,&" of types
E¢, Ey. In a diagram the situation is now as follows.

R
I / \ L
F F

=F

Ey

By

| |
[-1 [-1

The outside triangles commute due to extractcorrect; the large middle triangle
commutes due to extensionality; the other two triangles commute due to norm-
correct. If we make the proof term given by this method explicit, it is

(extensionality rho ne f f°
(normcorrect rho e f (extractcorrect rho f =xe ))
(normcorrect rho e’ f’ (extractcorrect rho f’ xe’)))
. f = £

where xe and xe’ correspond to € and &', and where we have defined

e = (xX £ xe).
= (xX £’ xe?).
ne := (N e).

This term is only well-typed when (N e) is Bdt-convertible with (N e°).

Normalizing Proof Loaded Objects

In presence of the type E t, we could do without the type E all-together. Then
we would define a normalization function A to operate on the ‘heavy’ syntactic
expressions of type Ey. This is possible (and it yields a simpler diagram), but it
is not desirable, because then the computation (reducing A'(€) to normal form)
becomes much heavier. Moreover, it would be more difficult to program N (hav-
ing to take all the proof terms into account) and the two levels in the reflection
approach would be less visible, therefore slightly blurring the exposition.



Nevertheless, for reasons of completeness we have also constructed (see [4])
the function N together with proofs that it is correct. Ideally, this would amount
to the following diagram

However, N can not have the dependent type E = Ef (for f: F), because the
value (in F') of the output of the normalization function is not literally the same
as its input value, but only provably equal to it. So, we can not construct A" as a
term xN : (z:F) (xE z) -> (XE z). Instead we construct xN : fE -> fE,
where fE is the type of pairs < f, e >, with f : Fande : (xE £). (In type
theoretic terms, this is the X-type of dependent pairs (f,e) with f : F and
e: E;.) Then we have to prove that if N'({f,e)) yields (f’,€’), then f and f’ are
(provably) equal in F.

If we cast this in purely mathematical terms, the situation is as follows. Define
E:=Xf :F.E'f and let wf be the predicate on syntactic expressions stating that
it has an interpretation (it is well-formed). It is defined as follows (for e : E).

wf (e) :=3f:F(e], f).

Now there are maps lift : {e : E |wf(e)} — Fand |—|: E — {e: E|wf(e)}.
Furthermore, we can construct a proof-object

normwf : Ve:E(wf(e) — wf (NM(e)))}.

Then we can read off the normalization function N : E — E from the following
diagram.

[ =] [lift [ — || [Lift
{e: E|wf(e)} —{e: E|wf(e)}
N

The proof term normuwf shows that A is indeed a function from the set of
well-formed expressions to itself. The correctness of N is given by

normcorrect : Ve:E([e] =r [N(€)]).

Here [~] : E — F is the interpretation function mapping (heavy) syntactic
expressions to elements of F. (As a matter of fact, it is just the first projection.)



5 Partial Reflection in Practice

The approach of partial reflection is successfully used in our current FTA project
(Fundamental Theorem of Algebra). First of all, we have a tactic called Rational
for proving equalities. This tactic is implemented as outlined above.

But often we do not just want to prove an equality, but rather to use an
equality to rewrite a goal in a different form. In order to explain how we have
implemented rewrite tactics, we first say something about the equality in the
FTA project. Our equality is just a congruence relation, respected by operations
(such as + and *) and certain predicates (such as <). This means we cannot just
replace equals by equals in any expression, but only those built-up from terms
respecting our equality. (This stands in contrast to the standard Leibniz-equality
in Coq; Leibniz-equals may be replaced in any proposition.) For instance, we have
the following lemma:

less_wd_left : (a,b,c:F)(a=b) -> (b<c) -> (a<c).

Hence, we have defined rewriting tactics for each important predicate that
respects our equality. For instance, the tactic Step_less_left t applies to a
goal p<q: it lets Rational solve the equation t=p and returns the new goal t<q.
It is defined for each t as

(Apply less_wd_left with b:=t) ;
[ Rational | (* Use Rational tactic to prove equality *)
Idtac ] (* Do nothing with new inequality *)

The following example illustrates its use. (Note that 1/z//H2 denotes 1 di-
vided by z with as proof of the side condition z#0 — z #pr 0 — the variable
H2.)

Hl : 0< z
H2 : z # 0
H3 : x*z < y*xz

x <y

< Step_less_left x*z*(1/z//H2)
H1 : 0 < z
H2 : z# 0

H3 : x*z < y*z

xxzx(1/z//H2) <y

6 Conclusion

We have extended the reflection method to include partial functions. The power
of the method lies in the fact that no new proof obligations arise. So, if the user
wants to prove a simple equation involving partial functions, the system does not



(have to) generate a new set of goals (in order to prove that all partiality side
conditions are fulfilled). That the necessary side conditions are fulfilled is already
proven by the correctness of the normalization function. Phrased differently:
normalization preserves well-definedness. The other crucial point is the fact that,
although some syntactic expressions may be undefined, the ones that our tactic
generates never are, for the simple reason that they are encodings of well-defined
semantic objects in the theorem prover. So, the normalization function starts off
from a syntactic expression that is well-defined (for the simple reason that the
semantic object is its interpretation) and the well-definedness is preserved under
normalization.

As a side remark, we point out that the fact that the encoding always yields
a well-defined syntactic expression is a statement on the meta-level. As the en-
coding function is a meta-function we can not expect to state this literally in the
theorem prover. We can state Vf : F3e : E3p(e ], f), but this does not capture
what we want to say: it is trivially true, taking a variable v for e and p(v) = f,
and it does not say anything about the encoding function.

The actual implementation of the method as a tactic for solving equations
between field elements has shown that this is a very useful technique. We believe
it is very generally applicable in situations where partiality occurs.
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