
Visual COKO: A Debugger for Query Optimizer Development
Daniel J. Abadi
Brandeis University

dna@cs.brandeis.edu

 Mitch Cherniack
Brandeis University

mfc@cs.brandeis.edu

1. INTRODUCTION
Query optimization generates plans to retrieve data requested by
queries. Query rewriting, which is the first step of this process,
rewrites a query expression into an equivalent form to prepare it
for plan generation. COKO-KOLA introduced a new approach to
query rewriting that enables query rewrites to be formally verified
using an automated theorem prover [1]. KOLA is a language for
expressing term rewriting rules that can be “fired” on query
expressions. COKO is a language for expressing query rewriting
transformations that are too complex to express with simple
KOLA rules [2].

COKO is a programming language designed for query optimizer
development. Programming languages require debuggers, and in
this demonstration, we illustrate our COKO debugger: Visual
COKO. Visual COKO enables a query optimization developer to
visually trace the execution of a COKO transformation. At every
step of the transformation, the developer can view a tree-display
that illustrates how the original query expression has evolved.

2. THE TOOL
A Visual COKO provides a similar interface to the standard
debugging tool, gdb. Like gdb, Visual COKO includes the
standard program execution control commands: step, next,
continue, break, and clear. These commands parallel the C
debugging commands in that, for the step and next commands, a
call to another COKO transformation is treated like a function
call.

Aside from providing control of transformation execution, Visual
COKO also displays the current state of the rewriting computation
after each step. This is accomplished by displaying the parse tree
for the query expression being rewritten (expressed in KOLA).
Visual COKO has three display options. The first option is to
display the entire query tree. The second option is to display only
the current branch that the transformation is working on. The final
option is to display a branch of the tree that is bound to a
temporary variable that will be later used in pattern-matching.

Like the term rewriting rules that they generalize, COKO
transformations are either successful or unsuccessful upon firing.
Similarly, every statement within a COKO transformation also
succeeds or fails. These success values determine the flow of
control in a COKO program. For example, entire sections of

COKO code might be contingent on a successful pattern-match
statement. The success option will, when activated, display the
success value of every completed statement as they occur. By
reporting the success values as they are generated, Visual COKO
assists the user in locating logical errors in control flow.

Paramount in COKO transformations are the KOLA rules that
they fire. The only way that COKO can alter a query is by firing a
KOLA rule on that query (it is for this reason that to prove a
COKO transformation correct, all one has to do is to prove the
correctness of all its component KOLA rules). Visual COKO
contains a rule option that, when activated, alerts the user every
time a rule is fired on a query, whether or not the rule firing
succeeded, and the input and output KOLA expressions.

The debugger also provides a conditional break command. Unlike
gdb where conditions are based on data values, Visual COKO
bases conditions on the success or failure of statement execution.
That is, the debugger will stop on a statement with a conditional
break only if the execution of that statement succeeded. This is
useful for monitoring rule firings, because most attempts to fire
rules fail, and therefore execution would stop infrequently.
Conditional breaks are inserted by way of the condition
command. Visual COKO also provides a transformation stack
window through which breaks (conditional or standard) can be
placed on any statement from any transformation that had called
the current transformation.

Visual COKO enables a query optimization developer to visually
trace the execution of a COKO transformation, one step at a time.
In functioning both as a debugger and as a visual aid, Visual
COKO facilitates the query optimizer development process.

3. THE DEMONSTRATION
Visual COKO and the COKO development process were
demonstrated. Visual COKO’s utility as a visual aid in tracing the
execution flow of a transformation was demonstrated by stepping
though various widely-used transformations. Visual COKO’s
utility as a debugger was shown with example transformations
with subtle bugs, and by demonstrating development sessions that
identified and removed them.

4. REFERENCES
[1] Cherniack, M. and Zdonik, S.B. Rule languages and internal

algebras for rule-based optimizers. Proceedings of the ACM
SIGMOD International Conference on Management of Data,
Montreal, Quebec, June, 1996.

[2] Cherniack, M. and Zdonik, S. Changing the Rules:
Transformations for rule-based optimizers. Proceedings of
the ACM SIGMOD International Conference on
Management of Data, Seattle, WA, June, 1998

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD’2002, June 4-6, Madison, Wisconsin, USA.
Copyright 2002 1-58113-497-5/02/06

