URL: http://www.elsevier.nl/loca{:e/entcs/volumeio.htlml 16 pages

Computing with Contexts
A simple approach

David Sands

Department of Computing Science,
Chalmers University of Technology and Gdteborg University,
S-412 96 Géteborg, Sweden; dave@cs.chalmers.se

Abstract

This article describes how the use of a higher-order syntax representation of contexts
[due to A. Pitts] combines smoothly with higher-order syntax for evaluation rules, so
that definitions can be extended to work over contexts. This provides ”for free” —
without the development of any new language-specific context calculi — evaluation
rules for contexts which commute with hole-filling. We have found this to be a useful
technique for directly reasoning about operational equivalence. A small illustration
is given based on a unique fixed-point induction principle for a notion of guarded
context in a functional language.

1 About contexts

The notion of a context is widely used in programming language semantics —
for example in the definition of operational equivalences, or program transfor-
mation, and in certain styles of operational semantics definitions.

A context is just a term with some holes. The holes are place-holders for
missing subterms. Each hole may occur zero or more times, and the process of
filling a hole with a term is the textual operation of replacing all occurrences
of a hole by the corresponding term. For most of this article we will consider
contexts with just one hole, and that hole may occur zero or more times in
the context.

The difference between hole-filling and the usual notion of substitution
arises when the language contains binding operators; filling a hole with a
term may cause variable in the term to be bound.

For example, the lambda-calculus context (Az.[])Az.\y.[] is a context with
one hole, written [], and this hole occurs twice. Call this context C. Filling
the hole in C' with the term z y, which is typically denoted by C[z], results
in the term (Az.x y)A\z.\y.x y. Note that the resulting term has one free
occurrence of the variable y, and that the variable x has been captured — in
this example by two different lambda abstractions. Because of this possibility

(© 1998 Published by Elsevier Science B. V.

N LALN LI

of variable-capture (even in the case when a hole occurs just once in a term),
such contexts cannot be identified up to renaming of bound variables, since
renaming does not “commute with hole filling”. In this example:

fill with z y
Az.[DAz y.[] -(A\z.z y)A\z. Ny Y
a-convert A1l with
(Az.[DAz Ay.[] ey (Az.z y) Az y.z y

Note that the terms of the right-hand side are not a-convertible. Such prob-
lems arise when one attempts to argue properties about the behaviour of
“terms-in-context”. For example, in direct proofs about contextual equiva-
lence.

Representations of Contexts: Previous work

Talcott and Mason et al [MT91,AMST97,Tal97] present some direct proofs
about contextual equivalence in a lambda calculus with effects. In order to
be made rigorous, these arguments require the development of a calculus of
generalised contexts. This development is based on Talcott’s earlier work on a
theory of binding structures [Tal92,Tal93]; related work is reported by Mason
[Mas96].

The Talcott/Mason approach takes the following form. For the particular
term language under study one must

(i) introduce a generalised definition of contexts where holes are decorated
with (generalised) substitutions;

(ii) establish basic definitions for generalised contexts, such as substitution
and hole-filling;

(iii) lift the definition of computation (reduction) up to generalised contexts
(iv) establish the main result: that reduction “commutes with hole filling”

One can motivate the Talcott/Mason representation of contexts by considering
the last point: the problem of extending the definition of reduction to work
on contexts in such a way that it commutes with hole-filling. Consider the
lambda-calculus context (Az[])I (where I is the identity function, \z.z). If
one extended (-reduction naively to contexts we would obtain:

(Az[) —p[]

This is clearly not adequate, since e.g. filling the hole with z does not “com-
mute” with this reduction:

(e DI ————(]
fill with z | fill with z
(\x.z)1 —l Z z

The problem here is that the reduction step “forgets” the term I. The solution
2

N LALN LI

is to decorate holes with explicit substitutions, so that e.g.,

Ozl) —4 [][I/ﬂﬂ

But once this extension is made, the range of substitutions must also be per-
mitted to contain generalised contexts, so that e.g.,

[
O) 8 where g = [/a]

Summary

In this note we show how an alternative approach to representing contexts
significantly simplifies, and to some extent generalises the “context calculus”
that is required to compute with contexts.

* The first simplification is that the representation of contexts — which is
due to Pitts [Pit94] — is based on higher-order syntax (i.e. typed lambda-
calculus as a syntactic meta-language), so no new calculus needs to be
developed;

* The second simplification is that we show how many common definitions
involving terms, e.g., evaluation relations, reduction, abstract-machine steps
and sets of terms or contexts specified by grammars, can be “automatically”
extended to contexts in such a way that they commute with hole-filling “for
free”.

» It generalises previous approaches in the sense that it is not tied to a par-
ticular syntax or a particular relation involving terms (i.e. reduction).

The author has already made extensive use of these techniques in a number
of proofs about operational semantics; the initial motivations for this work
were the proofs about the GDSOS operational semantics rule-format presented
in [San97]. The proofs' of many of the results reported there build on the
ideas presented in this note.

There are a few alternative context-calculi that have appeared in the
literature. Lee and Friedman [LF96] propose a calculus in which contexts
are regarded as concrete representations (source code) for terms. More re-
cently, Hashimoto and Ohori [HO98] describe a context calculus which ex-
tends lambda calculus to include first-class contexts (via context abstraction
and context application (= hole-filling). Their main result is that the calcu-
lus is confluent, and this is achieved with the help of a type system. Their
calculus involves labelling hole variables with renamings, which is reminicent
of Talcott’s approach.

The remainder of this note is organised as follows: In section 2 we introduce
Pitts’ representation of contexts. In section 3 we show how this representa-
tion combines smoothly with the use of higher-order syntax in term-based
definitions (e.g. operational semantics rules), so that definitions extend to

1 Due to space limitations, these proofs do not appear in the conference article

3

N LALN LI

contexts “for free”. By way of illustration, in the concluding section we look
at a small application of the ideas to the proof of a unique fixed-point theo-
rem (in the style of guarded-recursion theorems in process calculus) for a lazy
lambda-calculus with constructors.

2 A Second-order Representation of Contexts

The definition of contexts which we adopt here was introduced by Pitts in
[Pit94]. Pitts’ main motivation for adopting a non-standard definition of
contexts appears to be that standard contexts cannot be identified up to a-
equivalence.

Pitts solves this problem by using function variables to represent holes,
and to represent hole filling by substitution of meta-abstractions for these
function variables. This representation does indeed enable contexts to be
identified up to renaming of bound variables; the key point of this note is that
the representation allows hole-filling to “commute” with many other relations
involving terms, not just a-equivalence.

The basic idea can be illustrated by some examples. A hole will be repre-
sented by an application of some function-variable £ to a vector of variables.
Each function variable has a given arity, which dictates exactly how many
arguments it expects. For example, the conventional context (Az[])I could be
represented by (Az.£(x))I (so in this case £ has arity 1). This representation
of the context can be a-converted in the usual way. Hole-filling is represented
by substituting a meta-abstraction for . Filling (Az[])I with z will now be
represented by applying the substitution [(x)x/g]

(Az£@)D[@)7] = ((y-£()D(@)))
(Ay.(z)z - (y))])
(Ayy)I)

In the second line we have informally written a meta-syntactic application
(x)x - (y) to represent the application of the abstraction (z)z to the variable
y is reduced to y. Since we only need second-order function-variables (i.e.,
function variables which range over abstractions of terms) these meta-beta-
reductions can be incorporated into the definition of substitution itself.
Notice also with this example that we can now [-reduce the context:

((Az.£(2))I) =5 £(1)

and now we get S(I)[(x)x/g] = I as we hoped. As we shall see in the next
section, the fact that this works boils down to a simple associativity property
of substitutions (the standard lambda-calculus substitution lemma).

4

N LALN LI

Term Syntax

In the general definitions which follow we will adopt a type-theory-style
abstract syntax for terms (see e.g. [HL78 MN95 NPS90,PE88]). For specific
examples we will use the familiar terms from the lambda-calculus, and their
usual concrete syntax.

First we fix a countably infinite set Var of ordinary variables. A language L
is specified by a set of operators O of a fixed arity. As usual, the arity specifies
the number of operands for each operator, but it specifies more than just this,
since we wish to specify the syntax of operators with binding. Each operand
is possibly an abstraction, i.e., a list of zero or more distinct variables followed
by a term, where the variables are considered bound in the term. The arity
of an operator is therefore given by a sequence of natural numbers; the length
of the sequence is the number of operands, and the natural numbers are the
number of bound variables associated with the corresponding operand. For
example, the terms of the lambda calculus would be represented in this syntax
by the set of operators {\, apply} with arity(\) = (1), arity(apply) = (0, 0).

Let z, y, etc., range over Var, and let p, g range over O.

The terms of L, T, ranged over by M, N are defined inductively as follows:

MyeT---M,eT
zeT p((il)Ml,---a(in)Mn) €T

each z; is a list of k; distinct variables.

arity(p) = (k1,...kn)

For example, the term (Az.y)z would be written in this abstract syntax as
apply(A((z)y),).

Contexts

Now we can be more precise about the definition of contexts. We follow
[Pit94] quite closely, albeit with a more general term-syntax, (but a more
casual treatment of free variables).

Contexts are an extension of terms to include hole-variables. Fix a count-
ably infinite set HVar of hole variables. Each hole variable &, has an associated
arity (which we will also denote arity(£)) which is a natural number. Hole
variables of arity n will range over abstractions of the form: (zy,...,z,)M.

The contexts 7%, ranged over by C, D, C' etc are defined inductively as
follows:

CeTr---C,eT~
zeT* £(Cy,...,C,) eT

arity(§) =n

CeTlT - -C,eT
p((#1)Cy, ..., (2,)Cp) € T*

each z; is a list of k; distinct variables.

arity(p) = (k1, ... kn)

5

N LALN LI

Hole Filling

Hole filling is defined by substitution. The usual definition of substitu-
tion of terms for variables is routinely extended to substitution of contexts
for variables. We use the notation C[C/;] to denote the result of simulta-
neous substitution of contexts C = Cy,...,C, for some distinct variables
T=21,...,%p.

Substitution in the case of hole variables requires a little more attention. If
& is a hole variable of arity &, then we need to define the result of substituting
a meta-abstraction of the form (z,...,z;)D for occurrences of £ in a context
C.

The definition of substitution is much as one would expect, inductively
following the term-structure, and avoiding free-variable capture along the way.
The interesting case is the following:

E(Cre s, C@n - 21)P)e) = DIC5)
where € = Cy[(@1,- - o)D), G [(@1, - 20) D]
This step can be (informally) broken down into two stages,
(i) the substitution of (Z)D for £ to yield
(@)D (C1[(@)DYe], ..., Cp[(@)Dfe])
(ii) the meta-g-reduction of the application to give
DIC (@], ..., C[(@)D)e]

Of course this is only informal, since the meta-application which appears after
step 1 is not part of the syntax.

About substitution

Something which should be borne in mind when considering the presenta-
tion of syntax that we are using is that it is really just a fragment of a simply
typed lambda-calculus. There is just one base-type, o, representing the type
of terms. An operator of arity e.g., (0,2) can be thought of as a constant
of type (o x ((0 X 0) = 0)) — 0. An ordinary variable has type o, and a
hole-variable of arity n can be thought of as having type

(o0x-+-x0)—o0
~————
n

Thinking of our syntax as a typed lambda calculus one should note that
we only consider terms which are head-normal forms. One could add meta-
application and projections to the syntax to obtain a more complete syntactic
metalanguage (as in Martin-Lo6f’s theory of arities [NPS90]) although we do
not consider this necessary for present purposes.

It should now be no surprise that certain standard results from the lambda-
calculus carry over to contexts. We mention one such result which will be

6

N LALN LI

useful in the next section: a cut-down version of the substitution lemma, which
states a commutativity property of substitutions:

Lemma 2.1 (Substitution Lemma) Ify ¢ Fv(D) \ Z then
Cl@)D/e][N),] = N)[(@)De]

Representing conventional contexts

If we are to use this alternative — and more general — representation of
contexts in order to facilitate reasoning about e.g. contextual (operational)
equivalence, then it is important to understand the connection to the conven-
tional notion of context.

Conventional contexts correspond to a strict subset of contexts — namely
those in which all occurrences of a hole variable £ occur as £(Z) for some
distinct variables z.

For a conventional context C' containing zero or more occurrences of a hole
[], let traps(C) denote the set of the variables which are in scope at at least
one occurrence of the hole in C' — i.e. the set of variables which may become
trapped (captured) at some occurrences when the hole is filled. So for example
traps((Az.[])(A\y.[])) = {z,y}. Let traps(C) denote some canonical vector of
the trapped variables (e.g., listed from left-to-right according to the bindings
in C).

For each context C, we inductively define the mapping (-)c which takes
a conventional context to a generalised context by replacing holes with the
context C:

(x)e = x
<p((jl)cla) (jn)cn»(C p((i1)<cl>(C> RN (‘fn)<cn>(C)
({De=C

In other words, mixing the conventional and general context notations we
could say that (C)¢ = C[C].

A conventional context C can be represented by (C)¢(z), where z are the
captured variables of C'. Then the operation of filling C' with the term M
is represented by the substitution [(J_J)M/d The following lemma makes this
claim precise:

Lemma 2.2 For any conventional context C, and any term M, if traps(C) =
Z and & is any hole variable of arity |Z|, then

CIM] = (C)g(a)[(F)Mg]
The proof is by induction on the structure of C.
The extended definition of contexts (henceforth called simply contexts)
subsume conventional contexts; conventional contexts correspond to contexts

with one hole variable, and for which all occurrences are identically of the
form &(z) for some vector of distinct variables Z.

7

N LALN LI

3 Extending Definitions from Terms to Contexts

The purpose of this section is to show how typical syntax-oriented definitions
can be lifted to operate over contexts in a natural way.

We proceed by considering a tiny example: an evaluation relation for the
lazy lambda calculus.

MUz M M'[N/JIN
MN{N'

Ax. M x. M
We would like to lift this definition to contexts in the following obvious
way:
CYrz.C C'[D 4D
Ch|yDr

Ax.Cl A\z.C

What is more, for this definition to be useful we would like to be sure that
hole-filling and the evaluation relation commute. We could just knuckle down
and prove this, but the point we wish to make in this section is that this will
always work for syntax oriented definitions, by virtue of the representation of
contexts. To see why this is so, we will need to be more formal about the rules
which make up such inductive definitions.

Formal rules

In order give a precise meaning of rules such as those above we switch to the
second-order syntax for terms and introduce a syntax for meta terms. For the
terms of a given language, fix a countable set of metavariables Mvar ranged
over by X', V, etc. Metavariables will range over both terms and abstractions
of terms, and will be used to formalise rules such as those above. Metavariables
will be assumed disjoint from hole variables and ordinary variables. Just as
for hole variables, with each metavariable X', we associate an arity which is
a natural number. The idea is that metavariables of arity 0 will range over
terms, while meta variables of higher arity will range over abstractions. Value
metavariables always have arity 0.

Definition 3.1 7o define the meta-terms for a given language we define an
indezred set of meta-abstractions {MT,;},.,, (ranged over by M, N, etc.).
MT, are the meta-terms proper, used to denote terms in formal definitions.
For each k > 0, MT), s the set of meta-terms which represent k-variable
abstractions of terms. The raw syntax of meta-terms follows the syntax of
terms, with the exception of a meta-application operator, which appears in the
form X - (My,...,M,). These sets are given inductively by the following

8

N LALN LI

rules:

() =
ceMT, XeMT, arity(&) = n
M e MT,
(xl,...,xn)MEMTn
M, e MTy--- M, € MT,)
L 0 O arity(X) =n

X-(My,...,.M,) € MT,

M e MTy, ... M, € MT},,
p(Mla .. ,Mn) € MTO
One can easily see that meta-terms include the terms of the language. Meta-

terms are used to formalise syntax-oriented definitions. The rules above can
be formalised as:

arity(p) = (k1 ... ky)

XU X X - (V)2
apply(X, V)| Z

AU,

A raw instance of a rule is obtained by applying a substitution to the
metavariables in a rule. A substitution replaces metavariables by term-abstractions
of the corresponding arity. For example, the substitution ¢ = [(33)33$/X1]
applied to the rule-schema (which incidentally has zero premises) AX;{AX;
gives A(z)zxd A(z)xz The valid instances (usually just called rule-instances)
are defined inductively in the obvious way as a the raw instances for which
each premise is a conclusions for some valid instance. There may be other
side-conditions, e.g., that all instances involve only closed terms.

Extending Instances to Contexts

Any collection of rule schemas can thus be viewed as inductively gener-
ating certain sets. Lifting these definitions to contexts is now trivial: simply
allow the instances of a rule to contain hole variables. In other words we al-
low substitution instances of a rule to replace metavariables by contexts (or
abstractions of contexts). We will call such an instance a context rule instance.

Let us consider a concrete example. Given the formal rule for beta-
reduction:

(AX)Y —p X1 - ()

where for the sake of readability we have written application in the usual

implicit form, we can construct a rule instance by applying the substitution
[(z)€(), 5(33)/)(1’ y] which gives:

(A(@)&()) &(z) =5 £(E())
9

N LALN LI

Generalising “evaluation/reduction commutes with hole filling”

The generalisation of the idea that “evaluation/reduction commutes with
hole filling” is that filling the holes in a valid rule-instance yields a valid rule
instance.

Theorem 3.2 Let % denote a formal rule with a set of premises P and a
conclusion c. Let o be some substitution of terms for metavariables such that
(%)0 is a generalised instance of the rule. Now suppose that T is a hole-filling
(a substitution of hole-variables for term abstractions of the corresponding
arity). Then the following are identical rule-instances:

(€))7~

where (o7) denotes the application of substitution T to the range of o.

Proor. It is easy to see that valid rule-instances are closed under substitution,
and hence that ((£)o)7 is a valid rule instance. Since metavariables and hole
variables are distinct, then the equivalence above follows immediately from
the substitution lemma. O

Other Syntactic Categories

The idea of extending definitions to work over contexts is widely applicable.
Definitions in operational semantics often involve the construction of several
syntactic categories which either contain terms or restrict the set of terms in
some way. For example,

e The definition of configurations in an SOS-style semantics or in the defini-
tion of an abstract machine containing e.g. stacks of terms or environments
(finite mappings from variables to terms). The definition of a rule-instance
is essentially the same, and so there are no problems in allowing instances
to contain hole-variables.

* The definition of particular subsets of terms, e.g., the values in a call-by-
value functional language V ::= constant | (V1,V2) | Ax.M | ... can be
lifted to “value contexts” in the obvious way; value metavariables used in
computation rules must then be instantiated with value contexts.

* A popular style of small-step operational semantics is to use evaluation con-
texts to describe a deterministic reduction strategy. An evaluation context,
usually specified by a grammar, is a context with exactly one hole. For
example, the evaluation contexts for a call-by-value lambda calculus with
strict pairing and left-to-right evaluation might be specified by

E:=[]|EM|VE|(E,M)|{(V,E)]|...
The evaluation rules can then be specified by e.g.
E[(AzM)V] — EIM[V/,]]

Formalising this style of definition presents no problems either: evaluation
contexts (for this language at least) are just abstractions of one variable

10

N LALN LI

(the hole). Note that in this particular example there are three definitions
which need to be generalised: values, evaluation contexts and the evaluation
rules themselves. The only precaution is to treat the hole variable in the
definition of evaluation contexts (which in this example can be taken to
have arity zero) as being distinct from all other hole variables.

4 Applications

A typical application of “direct reasoning about contexts” is to prove proper-
ties about a contextually-defined equivalence relation. Examples of this style
of “direct” reasoning can be found in e.g., [MT91,AMST97]; using the ap-
proach described here we can make such arguments rigorous with almost no
overhead in building a language-specific context calculus. We used this tech-
nique for several of the results described in [San97], where various theorems
about operational preorders are established for any language whose opera-
tional semantics rules fit a certain rule format.

In [MS98,Mor98| the approach described in this article is used to establish
a context lemma for call-by-need lambda calculi (in the latter including a
form of fair nondeterminism); in these applications the semantics is based on
an abstract machine, rather than a term-based computation model.

Most applications of “context evaluation” build upon a small-step opera-
tional semantics of some kind. This is natural since the larger the computation
step which is used, the less likely that the computation step can be applied to
a context. In the remainder of this article we consider an example application
where a large-step semantics still yields some useful computations on contexts.

4.1 A Unique Fized-Point Induction Theorem

A well-known proof technique in e.g. process algebra involves syntactically
characterising a class of recursion equations which have a unique solution.
Knowing that a recursive definition has a unique fixed point means that one
can prove equivalence with a recursively defined entity by showing that the
recursion equation is satisfied.

The usual syntactic characterisation is that guarded recursion: if recursive
calls are syntactically “guarded” by an observable action then the fixed-point
of the definition is unique.

We illustrate related notion of guarded context for a lazy lambda-calculus
with constants, and show — with the help of context evaluation — that guarded
contexts enjoy a unique fixed-point property. The process calculus notions of
guardedness are something of a panacea when it comes to reasoning about
recursion. Although the functional notion of guardedness falls a long way
short of this, there are still some interesting instances.

We will take an extension of the lazy lambda calculus [Abr90]: The syntax

11

N LALN LI

of expressions (M, N etc) is as follows:

M:=xz | MN | XM (Var; Apply; Lambda)
| case Lof {c,(Z1) = M;...c,(ZT,) = M,} (Case)
| c(M) (Constructors)

Constructors have a fixed arity (> 0), and we implicitly assume that instances
of constructor expressions and patterns always respect the arity. We will use
a deductive (“big-step”) style of semantics;

The results of computations are weak head-normal forms (WHNF): either
constructor terms c¢(L) or lambda-abstractions Az.M. Let V, W range over
WHNF’s. Now we define the convergence relation between closed terms by

the evaluation rules in figure 1. As usual we write M|} to mean IN. M| N Let

My e.M M[Ms,)}V
Ae.Mydz. M c(M){c(M) My M)V

Lyei(L) MilLjz)4V
case Lof {---ci(z;) = M;---} |V

Fig. 1. Convergence relation

L denote the operational preordering defined by M T N if and only if for all

conventional contexts C such that C[M] and C[N] are closed expressions, then

C[M}|} implies C[N]{. Let = denote the corresponding equivalence relation.
Now we are in a position to define the guarded contexts:

Definition 4.1 The guarded contexts, G, are conterts containing at most
one hole variable, and given by the following grammar:

Gu:=M | cHy,...,H,) | A2.H | case L of
C]_(.Tl) =G ... Cn(.f'n) = @G,

H:=¢M) | G
Since guarded contexts have just one hole variable, we will write G[(z)M] to
denote G[(j)M/f]
Theorem 4.2 (Unique Fixed Point) For all expressions M, N where v (M)U
FV(N) C z, the following proof rule is valid:

M = G[(z)M] N = G[(z)N]
M=N

Using the justification given in the previous section, we tacitly extend the

syntactic categories and definitions of one-step reduction and of convergence
to allow the occurrence of hole variables. We will let E range over evaluation

12

N LALN LI

contexts containing hole variables; V and W over weak head normal forms with
holes, and we extend the definitions of one-step reduction and of convergence
to these extended syntactic categories.

The main point of the example is that the proof of the above theorem is
facilitated by the following property of guarded contexts:

Lemma 4.3 For all guarded contexts G and all abstractions (z)M such that
G[(z)M] is closed,
V. G[(Z) M}V — TFV.G|V

where V is a guarded context (i.e. either of the form Ax.H or c(Hy, ..., H,)
Proor. The (<) direction follows easily from Theorem 3.2, since it follows
from G|V that G[(z)M]yV[(Z)M]. For the (=) direction, we assume that
G[(z) M)}V and proceed by rule induction to show that IV. G| V. We proceed
by cases according to the structure of G.
Case G = M: then V is simply V.
Case G = A\z.H: then V is just Ax.H. The case for constructors follows

similarly.

Case G = case L of {c1(Z1) = Gy - - - cn(Z) = G, } : then the rule for case

evaluation provides the following inductive hypotheses: L c;(L) for some

ci, and G; [I_//j/-z.]U«V for a guarded value context V. The latter case relies on
the observation that guarded contexts are closed under substitution. From
the case evaluation rule we conclude that G} V.

O

We sketch how the proof of the can be completed using the technique of
“simulation up to” (for this particular language this technique is described in
[San96], and is a simple adaptation of the (bi)simulation-style proof method).

Definition 4.4 (Simulation up to C) A relation R is a simulation up to
L if for all M, N, whenever M R N, then for all closing substitutions o, if
MallV then No W for some W such that one of the following two conditions
hold:

i) V=cM...M,), W=c(Ny...N,) and M;E;R;EN;ji€l...n
(i) V=AM and W = Ax.N" and M'C; R;EN'.
Proposition 4.5 If R is a simulation up to T then R C L

Now we can complete the proof of the theorem by constructing a suitable
relation and showing that it is a simulation up to T (equivalence follows by
symmetry of the argument).

Suppose that M = Gy[(Z)M] and N = Gy[(z) N]. We can assume without
loss of generality that Fv(Gy) C Z. We will show that

R = {G[(z)M],G[(Z)N] | Fv(G) C 7}
is a simulation up to C. Suppose that G[(Z)M]ol}. Since (Z)M is a closed

13

N LALN LI

abstraction, G[(z)M]o = Go[(z)M]. Since Go is also a guarded context by
lemma 4.3 we have that either

(i) Goy A\y.H, for some Hy, or
(ii)) Gollc(H; ...H,) for some constructor ¢ and some H; ... H,.

By theorem 3.2 we know that G[(Z)N]ol}, and it remains to show that, in
each respective case that H;[(Z)M]C; R; CH;[(Z)N]. By definition each H; is
either a guarded context or a hole. In the former case we have immediately
that H; [(z) M] R H;[(z)N] and so we are done by reflexivity of C. In the latter
case Hj is of the form ¢(L) so we have that

¢(D)(@)M] = ML) = Go[(z)MI[L/z] R Gol(z)NI[L/z]12N (L]

as required.

Example
We leave the following example as an exercise which is easily proved using
the unique fixed-point rule:
map f (iterate f x) & iterate f (f x)

wheremap :: (a -> b) -> [a] -> [b] and iterate :: (a -> a) -> a -> [al
are the usual Haskell recursive functions.

Acknowledgements
Thanks to Andy Moran for many helpful comments and discussions, and
to Sgren Lassen for suggestions for improvements to an earlier draft.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research
Topics in Functional Programming, pages 65-116. Addison Wesley, 1990.

[AMST97] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A
foundation for actor computation. Journal of Functional Programming,
7(1):1-72, January 1997.

[HL78] G. Huet and B. Lang. Proving and applying program transformations
expressed with second order patterns. Acta Inf., 11(1):31-55, January
1978.

[HO98] M. Hashimoto and A. Ohori. A typed context calculus. Technical
Report RIMS-1098, Research Institute for Mathematical Sciences, Kyoto
University, 1998.

[LF96] S. Lee and D. Friedman. Enriching the lambda calculus with contexts:
Toward a theory of incremental program construction. In Proceedings
of the 1996 ACM SIGPLAN International Conference on Functional
Programming, pages 239-250, May 1996.

14

N LALN LI

[Mas96] I. Mason. Parametric computation. In CATS’96, 1996.

[MNO95] R. Mayr and T. Nipkow. Higher-order rewrite systems and their
confluence. Technical Report Sep26-1, Technical University of Munich,
September 1995.

[Mor98] A. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb.
PhD thesis, Department of Computing Sciences, Chalmers, Sweden,
September 1998.

[MS98] A. Moran and D. Sands. A context lemma for call-by-need. Working
Note. Jan 1998. Revised May, 1998.

[MT91] I. Mason and C. Talcott. Equivalence in functional languages with
effects. Journal of Functional Programming, 1(3):287-327, July 1991.

[NPS90] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in
Martin-Lof’s Type Theory: An Introduction, volume 7 of International
Series of Monographs on Computer Science. Oxford University Press,
1990.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings
of the SIGPLAN ’88 Conference on Programming Lanugage Design and
Implementation (SIGPLAN ’88), pages 199-208. ACM Press, June 1988.

[Pit94] Andrew M. Pitts. Some notes on inductive and co-inductive techniques
in the semantics of functional programs. Notes Series BRICS-NS-94-
5, BRICS, Department of Computer Science, University of Aarhus,
December 1994.

[San95] D. Sands. Total correctness by local improvement in program
transformation. In Conference Record of POPL ’95: 22nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New York, January 1995. ACM Press.

[San96] D. Sands. Total correctness by local improvement in the transformation
of functional programs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 18(2):175-234, March 1996. Extended version
of [San95].

[San97] D. Sands. From sos rules to proof principles: An operational metatheory
for functional languages. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles on Programming Languages (POPL’97). ACM Press, 1997.

[Tal92] C. Talcott. Towards a theory of binding structures: An abstract algebra.
In Maurice Nivat, Charles Rattray, Teodor Rus, and Giuseppe Scollo,
editors, Proceedings of the Second International Conference on Algebraic
Methodology and Software Technology, Workshops in Computing, pages
201-215, London, May22-25 1992. Springer Verlag.

[Tal93] C. Talcott. A theory of binding structures and applications to rewriting.
Theoretical Computer Science, 112(1):99-143, April 1993.

15

N LALN LI

[Tal97] C. Talcott. Reasoning about functions with effects. In A. Gordon and
A. Pitts, editors, Higher-Order Operational Techniques in Semantics.
Cambridge University Press, 1998.

16

