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Abstract

Single-agent planning in a multi-agent environment is chal-
lenging because the actions of other agents can affect our
ability to achieve a goal. From a given agent’s perspective,
actions of others can be viewed as non-deterministic out-
comes of that agent’s actions. While simple conceptually,
this interpretation of planning in a multi-agent environment
as non-deterministic planning is challenging due to the non-
determinism resulting from others’ actions, and because it is
not clear how to compactly model the possible actions of oth-
ers in the environment. In this paper, we cast the problem
of planning in a multi-agent environment as one of Fully-
Observable Non-Deterministic (FOND) planning. We extend
a non-deterministic planner to plan in a multi-agent setting,
given the goals and possible actions of other agents. We use
the other agents’ goals to reduce their set of possible actions
to a set of plausible actions, allowing non-deterministic plan-
ning technology to solve a new class of planning problems
in first-person multi-agent environments. We demonstrate
our approach on new and existing multi-agent benchmarks,
demonstrating that modelling the other agents’ goals reduces
complexity.

1 Introduction
Synthesising a plan for an agent operating in a multi-agent
domain is a challenging and increasingly important problem
(Bolander and Herzig 2014). When an agent acts in an envi-
ronment with other agents, it must be aware of the possible
actions of others and how they might affect the continued
feasibility of achieving a goal. In this work, we focus on a
version of the multi-agent planning problem where the goals
and possible actions of all agents are known, and the state of
the world is fully observable. These restrictions capture a
wide class of multi-agent problems, including many collab-
orative and competitive games. In Fully Observable Non-
Deterministic (FOND) planning, an agent must synthesize a
policy to achieve a goal with some guarantee. The actions in
a FOND problem are non-deterministic; that is, any one of a
number of outcomes may occur when the agent executes the
action. The world is fully observable, so the agent knows
the outcome of the action after execution.

In this paper, we cast the first-person view of a multi-agent
planning (MAP) problem as a FOND planning problem, tak-
ing advantage of recent advances in that field. The key to our
approach is that the choice of action by other agents can be

Figure 1: Tic-Tac-Toe example from X’s perspective

viewed as a non-deterministic effect of our own action. Any
valid sequence of actions from other agents can potentially
result in a different state of the world, which we encode as
the non-deterministic outcomes of our own action. As an
example, consider the partially played game of Tic-Tac-Toe
in Figure 1 where we are playing X and it is our turn. Play-
ing the right column / middle row can subsequently lead to
four possible states where it is our turn again: these are the
non-deterministic outcomes of our move.

A number of recent advances in FOND planning have im-
proved the scalability of the solvers significantly (Fu et al.
2011; Alford et al. 2014; Muise, McIlraith, and Beck 2012;
Ramirez and Sardina 2014). We wish to take advantage of
these improvements for solving MAP problems, but achiev-
ing this is not simply a matter of encoding the problem in a
form that FOND planners can solve. If we naively encode
the problem as input to a FOND planner, then the encod-
ing must enable the planner to take account of the context in
which other agents execute their actions: in particular to re-
spect that for any particular state of the world, there may be
only a small subset of actions that are applicable. As a result,
to capture the behaviour of other agents as non-deterministic
action effects must involve either: (1) enumerating the ac-
tions in some way to find those that are applicable; or (2)
fully specifying the actions and effects to account for every
situation that the other agents may encounter. Both options
result in a combinatorial explosion on the size of the encoded
FOND problem. Our approach takes an alternative direction
and modifies an existing solver to support consideration of
applicable actions, allowing us to keep the encoding of the
MAP problem compact and naturally expressed.

Considering all of the applicable actions for other
agents can result in a prohibitively large amount of non-



determinism. To mitigate this, we consider restricting the
possible actions of another agent to a set of plausible actions,
which are those that lead to states with the highest heuristic
value for the agent given their goal. We do not consider
how the goals of others are known, but in many scenarios
the goal is known apriori or can be inferred; e.g., using goal
recognition (Ramı́rez and Geffner 2010). This gives us a
general means to focus on the worst case scenario, if we are
considering agents with conflicting or opposing goals, or to
focus on the expected scenarios if we are working towards
the same goal as other agents (e.g., on the same team). Note
that we do not presume authority over our teammates actions
– rather, we wish to plan for what they would plausibly do
given that they share a goal similar or the same as our own.

To realize our approach, we modified the state-of-the-art
FOND planner PRP (Muise, McIlraith, and Beck 2012). We
evaluate the approach on three multi-agent domains adapted
from existing problems. The evaluation addresses our strate-
gies for restricting non-determinism, and demonstrates the
capability to solve MAP problems with existing FOND plan-
ning technology. By using a FOND planner at the core of our
approach, which subsequently uses a classical planner at its
core, we take advantage of every new advancement in ei-
ther FOND or classical planning. We also discuss the issues
surrounding the interpretation of MAP as FOND.

Next we describe the background concepts and notation
required for our approach. Following this, we describe our
approach for solving MAP problems as FOND, and how to
heuristically reduce the amount of non-determinism in the
domain. Next, we provide details on an evaluation of our
approach, and we conclude with a discussion of related work
and future directions.

2 Background
2.1 (FOND) Planning Notation
We describe briefly here the requisite planning background
and notation (cf. Ghallab et al. (2004) for a full treatment).
A Fully Observable Non-Deterministic (FOND) planning
problem P consists of a tuple 〈F ,I,G,A〉; F is a set of flu-
ents, and we use S as the set of all possible states; I ⊆ F is
the initial state; G ⊆ F characterizes the goal to be achieved;
and A is the set of actions. An action a ∈ A is a tuple
〈Prea,Effa〉 where Prea ⊆ F is the precondition (i.e., the
fluents that must hold for a to be executable) and Effa is
a set of one or more outcomes. An action with only one
outcome is deterministic; otherwise it is non-deterministic.
Each e ∈ Effa contains a set of positive and negative effects
that update the state of the world, and we use Prog(s, a, e)
to denote the state reached when action a is executed with
outcome e in state s. After executing an action, exactly one
outcome is used to update the state of the world. The plan-
ning agent does not know which outcome in advance, and so
must plan for every contingency.

Following Cimatti et al. (2003), we consider three types
of solution to a FOND planning problem: weak, strong, and
strong cyclic. The representation for all three is in the form
of a policy P that maps the state of the world to an action:
P : S → A. We say that a state s′ is reachable from s by the

plan P if it is equal to s or if there exists some other state s′′
reachable from s such that s′ is a possible successor to the
execution of P(s′′) in state s′′.

P is a weak plan if there is some state that is reach-
able from I where G holds. P is a strong cyclic plan
if for every state s that is reachable from I, there is an-
other state reachable from s where G holds. Finally, P is
a strong plan if it is a strong cyclic plan and no state s
reachable from the initial state is reachable from the pos-
sible successors of s (i.e., a reachable cycle is impossible).
The distinction between strong and strong cyclic plans is,
as the terms imply, the presence of cycles in the reachable
state space of the plan P. Finally, the all-outcomes deter-
minization of a FOND problem 〈F ,I,G,A〉 is the classi-
cal planning problem 〈F ,I,G,A′〉 where A′ is defined as:
A′ = {〈Prea, [e]〉 | a ∈ A and e ∈ Effa}

Solving the all-outcomes determinization is a technique
used to compute weak plans, as any classical plan for the
all-outcomes determinization represents a weak plan for the
original FOND problem.

2.2 A First-person View of Multi-agent Planning
There are a variety of multi-agent planning (MAP) for-
malisms (e.g., see (Brafman and Domshlak 2008; Brenner
2003; Kovacs 2012)), however, we consider a first-person
view of planning in the simplified setting where the world is
fully known and is observable to all agents. Actions may be
non-deterministic, but outcomes are known immediately by
all agents in the domain. This setting is most related to the
NAPL syntax for multi-agent planning introduced in (Jensen
and Veloso 2000).

As input to the planner, we have a collection of agents,
each of which has its own set of actions, Ai, and possibly
its own goal Gi ⊆ F . The planning agent’s task in our
MAP setting is to synthesize a policy that maps states to ac-
tions given the uncertainty of what other agents will do, and
the analogies to FOND solutions are direct. Ideally the goal
state of the planning agent should be guaranteed, but if this
is not possible the agent should strive to achieve robust poli-
cies that achieve the goal with a high probability of success.
While we do not compute optimal solutions, we do evaluate
the policies based on this notion of solution quality.

3 Approach
First, we present our general approach for solving fully ob-
servable MAP problems using FOND planning, and discuss
the issues that would arise if we instead used FOND as a
black box. We then describe how to heuristically restrict the
problem’s non-determinism in cases where the goals of other
agents in the domain are given.

3.1 MAP as FOND
Our method of solving MAP problems as FOND is straight-
forward on the surface, but powerful in practice: we view the
set of possible states that result from other agents conduct-
ing actions as non-deterministic outcomes to the planning
agent’s own choice of action. Figure 2a shows how, in a set-
ting with 3 agents, {me, ag1, ag2}, me choosing action a can



(a) Full MAP execution (b) Full FOND interpretation (c) Plausible MAP execution (d) Plausible FOND outcomes

Figure 2: Example execution for agents ag1 and ag2 after me executes action a. Subfigures (c) and (d) show plausible outcomes.

lead to 5 different states depending on the actions that ag1
and ag2 decide to execute on their turn. Figure 2b shows
the conceptual interpretation of our decision to perform ac-
tion a. Intuitively, we care about only the states that we may
arrive in after a is executed, so we can therefore view the
collective decisions of other agents as non-determinism in
the world if we choose action a.

For simplicity, we assume agents execute in round-robin
fashion according to the sequence −→ag, although this is not
strictly necessary to apply our approach.1 The planning
agent, labelled me and corresponding to agent ag0 in −→ag, acts
first followed by every agent from −→ag; and then the process
repeats. Thus, for every action a ∈ Ai in agent i’s action
set, the precondition of a is augmented with a fluent stating
that agent i is the current acting agent, and the effect is aug-
mented with a proposition stating that agent i+1 mod |−→ag| is
the next acting agent. Initially, me is the current actor. We
use App(s, ag) for s ∈ S and ag ∈ −→ag to signify the ac-
tions that are applicable by agent ag in state s. App(s, ag) is
empty if ag is not the current acting agent for state s. Figure
2a shows how one action a executed by me can be followed
by three possible actions of ag1 and then potentially seven
different actions by ag2 before agent me has a turn again.

Not all FOND planners are built using the same solving
technique, but many approaches (e.g., NDP (Alford et al.
2014), FIP (Fu et al. 2011), and PRP (Muise, McIlraith, and
Beck 2012)) build a policy by exploring the reachable state
space and augmenting the policy with new plan fragments
when encountering a previously unseen state. Adapted from
the description of PRP (Muise, McIlraith, and Beck 2012),
Algorithm 1 gives a high level view of computing a policy.

The GenPlanPairs(〈F , s, s∗,A〉, P) algorithm attempts to
find a weak plan from s to the goal assuming that we are om-
niponent (i.e., we control the actions of others). It does this
by simply merging actions from all agents into a single set
and planning as normal using this set; that isA =

⋃
i∈−→agAi,.

This is the result of using the all-outcomes determinization,
which assumes that the world is deterministic and we can
choose any outcome of a non-deterministic action.

The key distinction between Algorithm 1 and PRP’s ap-
proach is that we generalize line 11. In this context, the

1If joint actions are required, we need only to be able to enu-
merate the different possible action combinations given the state of
the world and a single action choice for our agent.

Algorithm 1: Generate Strong Cyclic Plan

Input: FOND planning task Π = 〈F ,I,G,A〉
Output: Partial policy P

1 Initialize policy P
2 while P changes do
3 Open = {I}; Seen = {};
4 while Open , ∅ do
5 s = Open.pop();
6 if Satisfies(s,G) ∧ s < Seen then
7 Seen.add(s);
8 if P(s) is undefined then
9 GenPlanPairs(〈F , s,G,A〉, P);

10 if P(s) is defined then
11 for s′ ∈ GenerateSuccessors(s, P(s)) do
12 Open.add(s′);

13 ProcessDeadends();

14 return P;

original PRP algorithm defines GenerateSuccessors(s, a) to
be: {Prog(s, a, e) | e ∈ Effa}.

Given the agent sequence −→ag, GenerateSuccessors(s, a)
enumerates the applicable options for each agent in turn,
including the non-deterministic effects of their possible ac-
tions. Algorithm 2 outlines this procedure in detail.

Line 6 is critical because it determines the options to con-
sider for another agent, and later in the paper we present al-
ternatives to App(s′, ag) to improve the problem efficiency.

In addition to modifying GenerateSuccessors(s, a), we
also account for the multi-agent setting. For example, during
the computation of partial states for the policy and deadend
detection, the variable representing the current acting agent
is maintained in all cases. While not strictly necessary for
soundness, it helps the planner to avoid focusing on unreach-
able parts of the state space.

Another modification was made to handle deadends:
when PRP detects a deadend, it creates a forbidden state-
action pair that avoids actions that have at least one outcome
leading to the deadend. We modified this to cycle through
the list of agents in reverse to prevent the planning agent
from executing actions that could lead to deadends. For ex-
ample, consider Figure 1. One omnipotent strategy may be
to play in the top middle spot, as it brings us close to win-



Algorithm 2: GenerateSuccessors(s, a)

Input: State s, action a
Output: Set of successor states S

1 S = {Prog(s, a, e) | e ∈ Effa} ;
2 for i = 1 . . . |−→ag| do
3 ag = −→ag[i];
4 S ′ = ∅;
5 for s′ ∈ S do
6 for a′ ∈ App(s′, ag) do
7 S ′ = S ′ ∪ {Prog(s′, a′, e) | e ∈ Effa′ };

8 S = S ′;

9 return S ;

ning with the top row. However, doing so means that O has
a winning move at the middle right spot, which is a deadend
for us. The modified version for the forbidden state-action
procedure will create rules that forbid every move other than
playing the one shown that blocks O from winning.

We now turn our attention to various considerations when
solving MAP problems with FOND technology.

The value of doing nothing When planning in a multi-
agent environment, it is important to consider whether or not
to use noop actions. These actions simply change the current
acting agent into the next agent in sequence without chang-
ing the state of the world. The advantage of allowing noop
actions for the other agents is that the computed policies can
be far more compact: if other agents cannot interfere with
our plan, assigning noop actions to them will produce a com-
pact policy. Another benefit of using noop actions is that for
the acting agent ag in state s, the set App(a, ag) will always
be non-empty.

On the other hand, including a noop action can increase
the applicable action space, causing the planner to work
harder to compute a solution. This is evident in the Tic-Tac-
Toe domain with the goal of drawing the game — solving
the problem to completion without noop is roughly an order
of magnitude faster than with. Ultimately, the decision to
include noop actions should be made on a per-domain basis.

(Un)Fair non-determinism Typically, FOND planning
assumes fairness (Cimatti et al. 2003): if an action is ex-
ecuted infinitely many times, every non-deterministic out-
come will occur infinitely often. Agents are, of course, not
always fair. By using a FOND planner, we are synthesiz-
ing policies under the assumption of fairness, although we
evaluate the policies without this assumption, as discussed
in Section 4.

While this assumption is not ideal, it does serve as a nat-
ural relaxation of the full multi-agent setting. Ultimately,
it would be safer to produce strong plans rather than strong
cyclic plans. There are encoding techniques that we do not
discuss here that force all solutions to be strong plans, but
it is crucial to observe that many domains are inherently
acyclic. This means that a FOND planner, even with the as-
sumption of fairness, will produce a strong plan. Examples
include any game or setting where an agent can never return

to the same state (e.g., Tic-Tac-Toe, board games, etc). In
these settings, the fairness assumption does not play a role:
an action will never occur infinitely often.

Winning -vs- not losing In settings such as Tic-Tac-Toe,
where draws are possible, there is no distinction between
losing by a wide margin and drawing a game: if we cannot
win, then the state is a deadend. This falls under a general-
ization of goal achievement where we would like to satisfy
a hierarchy of objectives: e.g., I would like to win, and if I
cannot win I would like to draw.

Although the goal could be “any final state that is not a
loss”, as we did for one of the Tic-Tac-Toe problems,this
falls short of the goal to create a policy that wins whenever
possible. It is unclear how to evaluate the quality of a pol-
icy when multiple objectives are at play. For example, is a
policy that wins more often but loses some of the time better
than a policy that wins less often but never loses? We leave
this question as part of future work.

Issues with FOND as a black box We considered a va-
riety of approaches for encoding MAP problems directly to
use FOND planners in an off-the-shelf manner. However,
this leads to complications, making the approach unmanage-
able. Whether we use a monolithic action that captures all
of the possibilities for an agent, or many individual actions
that are all considered before the agent’s turn is up (with
only one being accepted), we would need heavy use of con-
ditional effects. The only state-of-the-art FOND planner ca-
pable of solving problems with conditional effects (Muise,
McIlraith, and Belle 2014) would be hampered by the range
of conditions on the encoded actions — all savings due to
leveraging state relevance would be lost, and as a result the
size of the policies would grow exponentially.

In general, encoding the options for how other agents can
act as part of the FOND problem itself comes with a vari-
ety of issues that range from prohibitively many actions to
overly-restricted conditional effects. We sidestep these ob-
stacles by modifying the FOND planner directly, as outlined
in 3.3.

3.2 Reducing Non-determinism
Though we avoided the difficulties discussed above by mod-
ifying a FOND planner directly, non-determinism can still
be unwieldy. If each agent has an average of k actions appli-
cable in an arbitrary state of the world, the number of non-
deterministic successors is on the order of O(k|

−→ag|). Here,
we consider restricting the reasoning to only a subset of the
applicable actions, thus making k a low constant.

At Line 6 of Algorithm 2, rather than considering all ac-
tions in App(s, ag), we use a plausibility function Γ, where
Γ(s, ag) ⊆ App(s, ag). Some examples include:

• Γ f ull(s, ag) = App(s, ag): The original set of all applica-
ble actions for agent ag.

• Γrandk (s, ag) = Random(Γ f ull(s, ag), k): A random subset
of (maximum) size k which is drawn from the set of ap-
plicable actions for agent ag.



Figures 2c and 2d show an example of using plausible
action for agents ag1 and ag2, after agent me executes ac-
tion a. Notice that from the non-deterministic perspective,
the three plausible outcomes are entirely disassociated from
the agents that lead us there. When using a random subset
of the actions as the plausibility function, we will indeed re-
duce the amount of non-determinism in the encoded domain.
However, this will clearly ignore some important actions.

Goal-based plausibility In many multi-agent settings, the
goals of the agents are known or can be inferred. Exam-
ples include any competitive or collaborative game where
the goal is to win, and teamwork scenarios where the goal is
common among all agents. If not known, we can try to infer
the goals (e.g., see (Ramı́rez and Geffner 2010)). For this
work, we assume that we have every agents’ goal.

We consider a heuristic for calculating the plausible ac-
tions based on these goals. Given the goals of the other
agents, we limit the set of plausible actions to those that
work towards the goal using any state heuristic function. We
extend the plausibility function to include the goal function
G, which maps an agent to its goal:

Γ(s, ag,G) ⊆ App(s, ag)

Considering an agent’s goal enables a wide variety of plau-
sibility functions, such as actions at the start of a plan for the
other agent’s goal, and nesting the reasoning of other agents
so that the next agent considers the goal of the following
agent. In this paper, we consider only one possibility: we
select the top k actions based on successor state quality us-
ing a given state heuristic function.

Definition 1. Best Successor Plausibility Function
Let h be a state heuristic function that maps a state and goal
to a value. Given the state s, current agent ag, and goal func-
tion G, we define Γhk (s, ag,G) to be the function that returns
the top k actions from App(s, ag) ranked by the following
scoring function:

Score(s, a, ag,G) = max
e∈Effa

h(Prog(s, a, e),G(ag))

We can use any existing state heuristic in place of h.
For our current implementation, we use a variant of the FF
heuristic where successors are sorted first based on whether
or not the action was a “helpful operator” (Hoffmann and
Nebel 2001), and then subsequently based on the estimated
distance to the goal. We prioritize helpful operators to en-
courage the planner to consider the actions that seem helpful
for the other agent. As a plausibility function, this may work
well in some domains and poorly in others. Nonetheless, it
represents a reasonable first step for evaluating the potential
to reduce the non-determinism in the problem.

3.3 Modified FOND planner
We made a number of modifications to the planner PRP
to improve the efficiency of non-deterministic planning. In
Section 3.1 we discussed the key modifications that we made
to account for the multi-agent setting. We also changed

other aspects of the planner including: (1) parsing the vari-
ous goals of the agents and planning for the appropriate goal
as discussed in Section 3.2; (2) always keeping the fluent
that represents the active agent in the partial states for the
policy; (3) disabling the feature that attempts to repair a pol-
icy locally before planning for the goal; and (4) changing
the processing of unhandled states from a depth-first to a
breadth-first manner (i.e., the Open data structure in Algo-
rithm 1 was made into a queue as opposed to a stack). The
latter three changes are not strictly required, but did improve
the efficiency of the problems that we tested by a fair margin.
Additionally, we were forced to disable PRP’s “strong cyclic
detection” feature, because conceptually it would need sig-
nificant changes in order to work within the multi-agent set-
ting.

4 Evaluation
As our approach opens FOND planning to a new class of
problems, there are no publicly available benchmarks to
evaluate on as far as we are aware. Instead, we provide
new benchmark problems for three domains: Blocksworld,
Tic-Tac-Toe and Sokoban. We use these to evaluate our
proposed strategies for mitigating non-determinism, and the
general ability of the planner to solve fully-observable MAP
problems.

Experiment design We ran the generated policies against
1000 simulation trials, in which the moves of other agents
were selected by taking the best applicable action measured
using monte carlo rollouts, with the stopping condition of
achieving the agent’s goal. Policies were generated by run-
ning the planner for a maximum of 30 minutes and with a
limit of 2Gb memory. If the planner did not complete in the
time limit, the best policy found so far was returned. For
each problem, we report on the following:

1. Success rate: The percentage of the 1000 trials that ended
in success for the planning agent.

2. Policy size: The number of partial state-action pairs in the
best found policy. Note that because of relevance analysis,
the policy size typically is far smaller than the number of
actual states that it can handle.

3. Planning time: The number of seconds required to com-
pute the policy. 30m indicates that the best policy found
by the 30-minute mark was used. 8 indicates that the
planner ran out of memory, and no plan was returned.

Results
Table 1 show the results for each of the problems tested, and
we discuss the results for each domain in turn.

Blocksworld The Blocksworld domain includes the first
10 problems from the FOND benchmark set of the 2008 In-
ternational Planning Competition (IPC), with one additional
agent added. We set the goal of the second agent to be the
same as the acting agent, so this is a collaborative task. Note
that in this domain, the actions for either agent may be non-
deterministic (e.g., blocks may slip out of the hand).



Blocksworld Tic-Tac-Toe Sokoban

N p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p1 p2 p3 p4 p1 p2 p3 p4 p5

Success 1 38 63 31 20 0 4 0 19 12 11 0 1 45 48 100 99 97 67 28
rate (%) 2 62 66 61 73 17 22 47 81 18 39 0 2 47 100 100 98 96 98 100

3 92 97 90 96 49 62 81 90 84 76 0 4 47 100 100 98 96 97 100
4 100 100 100 100 95 70 89 100 98 86 16 3 47 100 100 8 8 99 100
∞ 100 100 100 100 100 68 85 100 100 100 100 100 79 100 100 8 8 8 8

Rnd 100 100 100 100 100 68 88 100 100 100 39 81 52 100 100 71 48 37 8

Policy 1 32 27 31 111 49 25 68 63 43 30 42 47 14 7 11 27 27 138 906
size 2 48 77 78 316 141 99 175 217 73 83 88 107 26 15 11 26 31 5990 7891

3 125 114 157 576 298 246 445 459 126 164 121 260 19 15 11 26 31 10952 10223
4 337 236 593 932 757 973 892 830 593 526 871 250 22 15 11 8 8 10312 9270
∞ 550 286 631 1113 1149 785 987 699 867 818 1358 651 69 15 11 8 8 8 8

Rnd 586 444 671 1045 1076 662 1006 763 745 818 827 606 27 12 11 11 11 11 8

Planning 1 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 5 1 0.01 0.01 0.06 0.08 0.08 0.46 195
time (s) 2 0.02 0.04 0.04 0.14 0.06 0.04 0.08 0.12 0.02 0.04 155 11 0.26 0.01 0.06 0.08 0.10 30m 30m

3 0.06 0.06 0.06 0.32 0.24 0.16 0.56 0.36 0.04 0.10 658 40 0.50 0.01 0.06 0. 10 0.12 30m 30m
4 0.24 0.14 0.62 1.02 1.10 1.08 0.98 0.90 0.68 0.54 978 39 7.34 0.01 0.06 8 8 30m 30m
∞ 0.14 0.06 0.26 0.44 0.46 0.30 0.40 0.22 0.32 0.48 1765 114 39.32 0.01 0.06 8 8 8 8

Rnd 0.20 0.12 0.28 0.44 0.44 0.28 0.44 0.26 0.28 0.36 30m 130 0.01 0.01 0.08 0.06 0.08 0.08 8

Table 1: Success rate over 1000 simulated trials, generated policy size, and the time to synthesize a plan. 8 indicates a memory
violation, 30m indicates the solving was capped at 30 minutes, and N indicates the level of restricted non-determinism (∞
meaning no restriction and Rnd meaning a random subset of 3 applicable actions).

We found that in general, the policies were easy to com-
pute for any level of restricted non-determinism, and the
quality of the policies that restrict possible actions to 3 or
4 achieved near perfect performance in all problems. The
notable exceptions are problems p6 and p7. For these, the
loss in quality is a direct result of the lack of fairness in
this domain. For many simulations, both agents simply
“did nothing” expecting that the other would make the first
move. This reveals the need for some form of deadlock-
breaking mechanism in modelling problems that involve
multiple agents.

The good performance of the random outcomes is to be
expected in such a collaborative setting. However, because
the search is not focused on the other agents plausible ac-
tions, the subsequent size of the policies increase.

Sokoban For the Sokoban domain, each player must push
a box to a goal location, while an opposing agent attempts
to push it to a different location. Across the four problems,
the second agent starts closer to both our starting location
and the block (i.e., in problem p1 the other agent cannot
interfere, while in problem p5 the other agent can interfere
to a large extent). The domain is inherently competitive.

We found an interesting threshold for the construction of
policies in this domain. If the exploration considers any be-
haviour of the opponent that attempts to thwart our approach
to the goal, the planner becomes overwhelmed handling the
deadends. Partially, this is due to the type of deadends that
occur in Sokoban, and which the underlying planner does
not detect easily. Table 1 shows the effect of this as either

the maximum time limit (30m) or memory limit (8).
There is an interesting distinction between plans that con-

sider only a few outcomes (which is quite effective) and
those that scrutinize all outcomes (which run out of memory
in 4 of the 5 problems). When focusing on the actions that
help the opponent to achieve its goal, the planner can find
a highly successful solution. It struggles, however, when
considering actions that serve no other purpose for the op-
ponent than to prevent its own goal, as these include actions
that push the block to a position that is no use for any agent.

Tic-Tac-Toe For Tic-Tac-Toe, problems p1 and p2 start
with an empty board and our goal is to draw while the op-
ponent’s goal is to win. In problem p2, we do not allow
for noop actions, and as discussed earlier the performance
improvement is substantial. The low success rate of the re-
duced non-determinism is a result of how poorly our heuris-
tic function approximates the simulated behaviour of the
other agent. Randomly selecting 3 actions for the opponent
(i.e., roughly half of the applicable actions), on the other
hand, covers a wider set of states and thus improves the suc-
cess rate. However, our solver was able to find the perfect
strategy to ensure a draw, when given enough time.

In problems p3 and p4, both players’ goal is to win. Prob-
lem p3 starts with an open board that has no guaranteed strat-
egy to win, and problem p4 starts with one move each (be-
ginning in the bottom corners) so that a perfect strategy ex-
ists. In the latter case, we find that very few of the outcomes
are required to generate a highly successful policy, and the
perfect strategy is computed by the planner in a fraction of a



second.
Problem p3 is the typical starting configuration for Tic-

Tac-Toe, and it poses an interesting challenge for FOND
technology. State relevance, deadend detection and avoid-
ance, effective search heuristics, etc., all play an important
role in producing a successful and compact policy. Further,
because no state is repeatable in the game (aside from the
potential of noops), the assumption of fairness is not a con-
cern.

5 Summary and Related Work
In this work, we presented a novel application of FOND
planning in multi-agent environments based on the intuition
that actions taken by others in the world can be viewed as
non-deterministic outcomes of our own choices. This is in
contrast with treating the environment and the other agents
as an explicit adversary, which is the idea behind game struc-
tures used in verification (Piterman, Pnueli, and Sa’ar 2006),
which in turn are at the base of ATL interpretation structures
(Alur, Henzinger, and Kupferman 2002), in which a succes-
sor state is selected depending on the action that each agent
performs. The latter approach is the one captured, in a plan-
ning setting, by the notion of joint state-action pairs in Bowl-
ing et al. (2003). Although conceptually different, these two
approaches allow us to model actions whose effects are not
completely determined by the state of the world.

The work of Bowling et al. (2003) considers a setting sim-
ilar to ours where the goals of the other agents are known.
The distinction, however, is that they use the model of
agents’ goals to devise a game-theoretic notion of equilibria
for the agents, whereas we use the information to improve
the efficiency of reasoning.

The main contribution of our work is the realization of
the above intuition to leverage the recent advances in non-
deterministic planning for solving problems in a multi-agent
setting. A second key contribution is a means to reduce the
non-determinism in the domain by restricting the set of pos-
sible actions for other agents to those that are plausible given
their goal. We discussed some issues that arise when using
our approach, and demonstrated its ability to solve multi-
agent problems on a new suite of benchmarks that include
both collaborative and competitive tasks.

The connection that we make between multi-agent plan-
ning and FOND planning presents an exciting initial step
towards a range of more sophisticated techniques. The gen-
erality of a plausibility function opens the door to techniques
ranging from nested simulations of agent behaviour to on-
line learning methods that model other agents in the do-
main. It also provides an avenue to incorporate UCT and
sample-based approaches (e.g., the PROST planner (Keller
and Eyerich 2012)) with the more systematic search used by
determinization-based planners such as PRP. As evidenced
by the running example in this paper, our approach lends it-
self naturally to competitive games: we hope to apply this
work to general game playing in the near future.

An important step forward is to bring this approach to-
gether with our recent work on planning over multi-agent
epistemic states (Muise et al. 2015b). In that work, state
is represented using a belief base with syntactic restrictions

(Muise et al. 2015a), in which beliefs can be about the world
or about other agents’ belief, including their belief about us,
etc.; so called nested belief. The formalism supports ontic
actions: actions that modify the state of the world; and de-
ontic actions: actions that modify the knowledge or belief of
other agents. We encode these multi-agent epistemic plan-
ning problems as classical planning problems. However, the
modelled actions can only be performed by the single plan-
ning agent. Bringing the multi-agent planning as FOND
work from this paper together with multi-agent epistemic
planning will enable us to solve a rich set of problems in
which the planner considers both the actions others can take,
the beliefs they have, and how these two interact.
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