
Large Scale Bayes Point Machines

Ralf Herbrich
Statistics Research Group

Computer Science Department
Technical University of Berlin

ralfh@cs.tu-berlin.de

Thore Graepel
Statistics Research Group

Computer Science Department
Technical University of Berlin

guru@cs.tu-berlin.de

Abstract

The concept of averaging over classifiers is fundamental to the
Bayesian analysis of learning. Based on this viewpoint, it has re-
cently been demonstrated for linear classifiers that the centre of
mass of version space (the set of all classifiers consistent with the
training set) — also known as the Bayes point — exhibits excel-
lent generalisation abilities. However, the billiard algorithm as pre-
sented in [?] is restricted to small sample size because it requires
O
(
m2
)
of memory and O

(
N ·m2

)
computational steps where m

is the number of training patterns and N is the number of random
draws from the posterior distribution. In this paper we present a
method based on the simple perceptron learning algorithm which
allows to overcome this algorithmic drawback. The method is al-
gorithmically simple and is easily extended to the multi-class case.
We present experimental results on the MNIST data set of hand-
written digits which show that Bayes point machines (BPMs) are
competitive with the current world champion, the support vector
machine. In addition, the computational complexity of BPMs can
be tuned by varying the number of samples from the posterior.
Finally, rejecting test points on the basis of their (approximative)
posterior probability leads to a rapid decrease in generalisation er-
ror, e.g. 0.1% generalisation error for a given rejection rate of 10%
.

1 Introduction

Kernel machines have recently gained a lot of attention due to the popularisation
of the support vector machine (SVM) [10] with a focus on classification and the
revival of Gaussian Processes (GP) for regression [12]. Subsequently, SVMs have
been modified to handle regression [9] and GPs have been adapted to the problem of
classification [5]. Both schemes essentially work in the same function space that is
characterised by kernels (SVM) and covariance functions (GP), respectively. While
the formal similarity of the two methods is striking the underlying paradigms of
inference are very different. The SVM was inspired by results from statistical/PAC
learning theory while GPs are usually considered in a Bayesian framework. This
ideological clash can be viewed as a continuation in machine learning of the by

now classical disagreement between Bayesian and frequentistic statistics. With
regard to algorithmics the two schools of thought appear to favour two different
methods of learning and predicting: the SVM community — as a consequence of the
formulation of the SVM as a quadratic programming problem — focuses on learning
as optimisation while the Bayesian community favours sampling schemes based on
the Bayesian posterior. Of course there exists a strong relationship between the two
ideas, in particular with the Bayesian maximum a posteriori (MAP) estimator being
the solution of an optimisation problem. Interestingly, the two viewpoints have
recently been reconciled theoretically in the so-called PAC-Bayesian framework [2]
that combines the idea of a Bayesian prior with PAC-style performance guarantees
and has been the basis of the so far tightest margin bound for SVMs [?]. In practice,
optimisation based algorithms have the advantage of a unique, deterministic solution
and the availability of the cost function as an indicator for the quality of the solution.
In contrast, Bayesian algorithms based on sampling and voting are more flexible and
have the so-called “anytime” property, providing a relatively good solution at any
point in time. Often, however, they suffer from the computational costs of sampling
the Bayesian posterior.

In this contribution we review the idea of the Bayes point machine (BPM) as an
approximation to Bayesian inference for linear classifiers in kernel space in Section
2. In contrast to the GP viewpoint we do not define a Gaussian prior on the length
‖w‖K of the weight vector. Instead, we only consider weight vectors of length
‖w‖K = 1 because it is only the spatial direction of the weight vector that matters
for classification. It is then natural to define a uniform prior on the resulting ball-
shaped hypothesis space. Hence, we determine the centre of mass (“Bayes point”) of
the resulting posterior that is uniform in version space, i.e. in the zero training error
region. While the version space could be sampled using some form of Gibbs sampling
(see, e.g. [3] for an overview) or an ergodic dynamic system such as a billiard [?]
we suggest to use the perceptron algorithm trained on permutations of the training
set for sampling in Section 3. This extremely simple sampling scheme proves to be
efficient enough to make the BPM applicable to large data sets. We demonstrate
this fact in Section 4 on the well-known MNIST data set containing 60 000 samples
of handwritten digits and show how an approximation to the posterior probability of
classification provided by the BPM can even be used for test-point rejection leading
to a great reduction in generalisation error on the remaining samples.

We denote n –tuples by italic bold letters (e.g. x = (x1, . . . , xn)), vectors by
roman bold letters (e.g. x), random variables by sans serif font (e.g. X) and
vector spaces by calligraphic capitalised letters (e.g. X). The symbols P,E and I
denote a probability measure, the expectation of a random variable and the indicator
function, respectively.

2 Bayes Point Machines

Let us consider the task of classifying patterns x ∈ X into one of the two classes
y ∈ Y = {−1,+1} using functions h : X → Y from a given set H known as the
hypothesis space. In this paper we shall only be concerned with linear classifiers:

H = {x 7→ sign (〈φ (x) ,w〉K) | w ∈ W } , W = {w ∈ K | ‖w‖K = 1} , (1)

where φ : X → K ⊆ `n2 is known1 as the feature map and has to fixed beforehand.
If all that is needed for learning and classification are the inner products 〈·, ·〉K in

1For notational convenience we shall abbreviate φ (x) by x . This should not be confused
with the set x of training points.

the feature space K , it is convenient to specify φ only by its inner product function
k : X × X → R known as the kernel, i.e.

∀x, x′ ∈ X : k (x, x′) = 〈φ (x) ,φ (x′)〉K .
For simplicity, let us assume that there exists a classifier2 w∗ ∈ W that labels all
our data, i.e.

PY|X=x,W=w∗ (y) = Ihw∗ (x)=y . (2)
This assumption can easily be relaxed by introducing slack variables as done in the
soft margin variant of the SVM. Then given a training set z = (x,y) of m points
xi together with their classes yi assigned by hw∗ drawn iid from an unknown data
distribution PZ = PY|XPX we can assume the existence of a version space V (z) ,
i.e. the set of all classifiers w ∈ W consistent with z :

V (z) = {w ∈ W | ∀ (xi, yi) ∈ z : hw (xi) = yi } . (3)
In a Bayesian spirit we incorporate all of our prior knowledge about w∗ into a prior
distribution PW over W . In the absence of any a priori knowledge we suggest
a uniform prior over the spatial direction of weight vectors w . Now, given the
training set z we update our prior belief by Bayes’ formula, i.e.

PW|Zm=z (w) =
PZm|W=w (z)PW (w)

EW

[
PZm|W=w (z)

] =

∏m
i=1 PY|X=xi,W=w (yi)PW (w)

EW

[∏m
i=1 PY|X=xi,W=w (yi)

]
=

{
PW(w)

PW(V (z)) if w ∈ V (z)

0 otherwise
,

where the first line follows from the independence and the fact that x has no depen-
dence on w and the second line follows from (2) and (3). The Bayesian classification
of a novel test point x is then given by

Bayesz (x) = argmaxy∈Y PW|Zm=z ({hW (x) = y})
= sign

(
EW|Zm=z [hW (x)]

)
= sign

(
EW|Zm=z [sign (〈x,W〉K)]

)
.

Unfortunately, the strategy Bayesz is in general not contained in the set H of
classifiers considered beforehand. Since PW|Zm=z is only non-zero inside version
space, it has been suggested to use the centre of mass wcm as an approximation for
Bayesz , i.e.

hbp (x) = sign
(
EW|Zm=z [〈x,W〉K]

)
= sign (〈x,wcm〉K) ,

wcm = EW|Zm=z [W] . (4)

This classifier is called the Bayes point. In a previous work [?] we calculated wcm

using a first order Markov chain based on a billiard-like algorithm (see also [7]). We
entered the version space V (z) using a perceptron algorithm and started play-
ing billiards in version space V (z) thus creating a sequence of pseudo-random
samples wi due to the chaotic nature of the billiard dynamics. Playing billiards
in V (z) is possible because each training point (xi, yi) ∈ z defines a hyperplane
{w ∈ W | yi 〈xi,w〉K = 0} ⊆ W . Hence, the version space is a convex polyhedron
on the surface of W . After N bounces of the billiard ball the Bayes point was
estimated by

ŵcm =
1

N

N∑
i=1

wi .

2We synonymously call h ∈ H and w ∈ W a classifier because there is a one-to-one
correspondence between the two by virtue of (1).

Although this algorithm shows excellent generalisation performance when compared
to state-of-the art learning algorithms like support vector machines (SVM) [10], its
effort scales like O

(
m2
)
and O

(
N ·m2

)
in terms of memory and computational

requirements, respectively.

3 Sampling the Version Space

Clearly, all we need for estimating the Bayes point (4) is a set of classifiers w drawn
uniformly from V (z) . In order to save computational resources it might be advan-
tageous to achieve a uniform sample only approximately. The classical perceptron
learning algorithm offers the possibility to obtain up tom! different classifiers in ver-
sion space simply by learning on different permutations of the training set. Given
a permutation Π : {1, . . . ,m} → {1, . . . ,m} the perceptron algorithm works as
follows:

1. Start with w0 = 0 and t = 0 .

2. For all i ∈ {1, . . . ,m} , if yΠ(i)

〈
xΠ(i),wt

〉
K ≤ 0 then wt+1 = wt+yΠ(i)xΠ(i)

and t← t+ 1 .

3. Stop, if for all i ∈ {1, . . . ,m} , yΠ(i)

〈
xΠ(i),wt

〉
K > 0 .

A classical theorem due to Novikoff [4] guarantees the convergence of this procedure
and furthermore provides an upper bound on the number t of mistakes needed until
convergence. More precisely, if there exists a classifier wSVM with margin

γz (wSVM) = min
(xi,yi)∈z

yi 〈xi,wSVM〉K
‖wSVM‖K

,

then the number of mistakes until convergence — which is an upper bound on the
sparsity of the solution — is not more than R2 (x) γ−2

z (wSVM) , where R (x) is
the smallest real number such that ∀x ∈ x : ‖φ (x)‖K ≤ R (x) . The quantity
γz (wSVM) is maximised for the solution wSVM found by the SVM, and whenever
the SVM is theoretically justified by results from learning theory (see [8, 10]) the
ratio d = R2 (x) γ−2

z (wSVM) is considerably less than m , say d� m .

Algorithmically, we can benefit from this sparsity by the following “trick”: since

w =

m∑
i=1

αixi

all we need to store is the m –dimensional vector α . Furthermore, we keep track
of the m –dimensional vector o of real valued outputs

oi = yi 〈xi,wt〉K =

m∑
j=1

αjk (xi, xj)

of the current solution at the i –th training point. By definition, in the beginning
α = o = 0 . Now, if oi ≤ 0 we update αi by αi + yi and update o by oj ←
oj+yik (xi, xj) which requires only m kernel calculations. In summary, the memory
requirement of this algorithm is 2m and the number of kernel calculations is not
more than d·m . As a consequence, the computational requirement of this algorithm
is no more than the computational requirement for the evaluation of the margin
γz (wSVM) ! We suggest to use this efficient perceptron learning algorithm in order
to obtain samples wi for the computation of the Bayes point by (4).

generalisation error

fr
eq

ue
nc

y

0.01 0.02 0.03 0.04 0.05 0.06
0

10
0

20
0

30
0

40
0

50
0

generalisation error

fr
eq

ue
nc

y

0.00 0.02 0.04 0.06 0.08 0.10

0
10

0
20

0
30

0
40

0

0.01 0.02 0.03 0.04 0.05

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

kernel Gibbs sampler

ke
rn

el
 p

er
ce

pt
ro

n

(a) (b) (c)

Figure 1: (a) Histogram of generalisation errors (estimated on a test set) using
a kernel Gibbs sampler. (b) Histogram of generalisation errors (estimated on a
test set) using a kernel perceptron. (c) QQ plot of distributions (a) and (b). The
straight line indicates that both distribution are very similar.

In order to investigate the usefulness of this approach experimentally, we compared
the distribution of generalisation errors of samples obtained by perceptron learning
on permuted training sets (as suggested earlier by [11]) with samples obtained by
a full Gibbs sampling [?]. For computational reasons, we used only 188 training
patterns and 453 test patterns of the classes “1” and “2” from the MNIST data set3.
In Figure 1 (a) and (b) we plotted the distribution over 1000 random samples using
the kernel4

k (x, x′) = (〈x, x′〉X + 1)
5
. (5)

Using a quantile-quantile (QQ) plot technique we can compare both distributions
in one graph (see Figure 1 (c)). These plots suggest that by simple permutation
of the training set we are able to obtain a sample of classifiers exhibiting the same
generalisation error distribution as with time-consuming Gibbs sampling.

4 Experimental Results

In our large scale experiment we used the full MNIST data set with 60 000 training
examples and 10 000 test examples of 28 × 28 grey value images of handwritten
digits. As input vector x we used the 784 dimensional vector of grey values. The
images were labelled by one of the ten classes “0” to “1”. For each of the ten classes
y = {0, . . . , 9} we ran the perceptron algorithm N = 10 times each time labelling
all training points of class y by +1 and the remaining training points by −1 . On
an Ultra Sparc 10 each learning trial took approximately 20 − 30 minutes. For
the classification of a test image x we calculated the real-valued output of all 100
different classifiers5 by

fi (x) =
〈x,wi〉K
‖wi‖K ‖x‖K

=

m∑
j=1

(αi)j k (xj , x)√
m∑
j=1

m∑
l=1

(αi)j (αi)l k (xj , xl)
√
k (x, x)

,

where we used the kernel k given by (5). (αi)j refers to the expansion coefficient
corresponding to the i –th classifier and the j –th data point. Now, for each of the

3available at http://www.research.att.com/~yann/ocr/mnist/.
4We decided to use this kernel because it showed excellent generalisation performance

when using the support vector machine.
5For notational simplicity we assume that the first N classifiers are classifiers for the

class “0”, the next N for class “1” and so on.

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

2
0.

00
6

0.
01

0
0.

01
4

rejection rate

ge
ne

ra
lis

at
io

n
er

ro
r

rejection rate generalisation error
0% 1.46%
1% 1.10%
2% 0.87%
3% 0.67%
4% 0.49%
5% 0.37%
6% 0.32%
7% 0.26%
8% 0.21%
9% 0.14%
10% 0.11%

Figure 2: Generalisation error as a function of the rejection rate for the MNIST data
set. The SVM achieved 1.4% without rejection as compared to 1.46% for the BPM.
Note that by rejection based on the real-valued output the generalisation error
could be reduced to 0.1% indicating that this measure is related to the probability
of misclassification of single test points.

ten classes we calculated the real-valued decision of the Bayes point wy by

fbp,y (x) =
1

N

N∑
i=1

fi+yN (x) .

In a Bayesian spirit, the final decision was carried out by

hbp (x) = argmaxy∈{0,...,9} fbp,y (x) .

Note that fbp,y (x) [6] can be interpreted as an (unnormalised) approximation of
the posterior probability that x is of class y when restricted to the function class
(1). In order to test the dependence of the generalisation error on the magnitude
maxy fbp,y (x) we fixed a certain rejection rate r ∈ [0, 1] and rejected the set of
r · 10 000 test points with the smallest value of maxy fbp,y (x) . The resulting plot
is depicted in Figure 2.

As can be seen from this plot, even without rejection the Bayes point has excellent
generalisation performance6. Furthermore, rejection based on the real-valued out-
put fbp (x) turns out to be excellent thus reducing the generalisation error to 0.1
%. One should also bear in mind that the learning time for this simple algorithm
was comparable to that of SVMs.

A very advantageous feature of our approach as compared to SVMs are its adjustable
time and memory requirements and the “anytime” availability of a solution due to
sampling. If the training set grows further and we are not able to spend more time
with learning, we can adjust the number N of samples used at the price of slightly
worse generalisation error.

5 Conclusion

In this paper we have presented an algorithm for approximating the Bayes point by
rerunning the classical perceptron algorithm with a permuted training set. Here we

6Note that the best know result on this data set if 1.1 achieved with a polynomial
kernel of degree four. Nonetheless, for reason of fairness we compared the results of both
algorithms using the same kernel.

particularly exploited the sparseness of the solution which must exist whenever the
success of the SVM is theoretically justified. The restriction to the zero training
error case can be overcome by modifying the kernel as

kλ (x, x′) = k (x, x′) + λ · Ix=x′ .

This technique is well known and was already suggested by Vapnik in 1995 (see [1]).
Another interesting question raised by our experimental findings is the following:
By how much is the distribution of generalisation errors over random samples from
version space related to the distribution of generalisation errors of the up to m!
different classifiers found by the classical perceptron algorithm?

Acknowledgements We would like to thank Bob Williamson for helpful dis-
cussions and suggestions on earlier drafts. Parts of this work were done during a
research stay of both authors at the ANU Canberra.

References
[1] C. Cortes and V. Vapnik. Support Vector Networks. Machine Learning, 20:273–297,

1995.
[2] D. A. McAllester. Some PAC Bayesian theorems. In Proceedings of the Eleventh An-

nual Conference on Computational Learning Theory, pages 230–234, Madison, Wis-
consin, 1998.

[3] R. M. Neal. Markov chain monte carlo method based on ’slicing’ the density function.
Technical report, Department of Statistics, University of Toronto, 1997. TR–9722.

[4] A. Novikoff. On convergence proofs for perceptrons. In Report of the Symposium on
Mathematical Theory of Automata, pages 24–26, Polytechnical Institute Brooklyn,
1962.

[5] M. Opper and O. Winther. Gaussian processes for classification: Mean field algo-
rithms. Neural Computation, 12(11):2655–2684, 2000.

[6] J. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 2000.

[7] P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In Advances in
Large Margin Classifiers, pages 329–348. MIT Press, 2000.

[8] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data–dependent hierarchies. IEEE Transactions on Information
Theory, 44(5):1926–1940, 1998.

[9] A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998.
[10] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
[11] T. Watkin. Optimal learning with a neural network. Europhysics Letters, 21:871–877,

1993.
[12] C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear

prediction and beyond. In M. Jordan, editor, Learning and Inference in Graphical
Models, pages 599–621. MIT Press, 1999.

