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Abstract

In contrast to standard statistical learning theory which studies
uniform bounds on the expected error we present a framework that
exploits the specific learning algorithm used. Motivated by the
luckiness framework [7] we are also able to exploit the serendipity
of the training sample. The main difference to previous approaches
lies in the complexity measure; rather than covering all hypotheses
in a given hypothesis space it is only necessary to cover the func-
tions which could have been learned using the fixed learning al-
gorithm. We show how the resulting framework relates to the VC,
luckiness and compression frameworks. Finally, we present an ap-
plication of this framework to the maximum margin algorithm for
linear classifiers which results in a bound that exploits both the
margin and the distribution of the data in feature space.

1 Introduction

Statistical learning theory is mainly concerned with the study of uniform bounds
on the expected error of hypotheses from a given hypothesis space [8, 1]. Such
bounds have the appealing feature that they provide performance guarantees for
classifiers found by any learning algorithm. However, it has been observed that
these bounds tend to be overly pessimistic. One explanation is that only in the
case of learning algorithms which minimise the training error it has been proven
that uniformity of the bounds is equivalent to studying the learning algorithm’s
generalisation performance directly.

In this paper we present a theoretical framework which aims at directly studying the
generalisation error of a learning algorithm rather than taking the detour via the
uniform convergence of training errors to expected errors in a given hypothesis space.
In addition, our new model of learning allows the exploitation of the fact that we
serendipitously observe a training sample which is easy to learn by a given learning
algorithm. In that sense, our framework is a descendant of the luckiness framework
of Shawe-Taylor et al. [7]. In the present case, the luckiness is a function of a given
learning algorithm and a given training sample and characterises the diversity of
the algorithms solutions. The notion of luckiness allows us to study given learning
algorithms at many different perspectives. For example, the maximum margin
algorithm [8] can either been studied via the number of dimensions in feature space,



the margin of the classifier learned or the sparsity of the resulting classifier. Our
main results are two generalisation error bounds for learning algorithms: one for
the zero training error scenario and one agnostic bound (Section 2). We shall
demonstrate the usefulness of our new framework by studying its relation to the
VC framework, the original luckiness framework and the compression framework of
Littlestone and Warmuth [5] (Section 3). Finally, we present an application of the
new framework to the maximum margin algorithm for linear classifiers (Section 4).
The detailed proofs of our main results can be found in [?].

We denote vectors using bold face, e.g. x = (x1, . . . , xm) and the length of this
vector by |x| , i.e. |x| = m . In order to unburden notation we use the shorthand
notation z[i:j] := (zi, . . . , zj) for i ≤ j . Random variables are typeset in sans-serif
font. The symbols PX , EX [f (X)] and I denote a probability measure over X ,
the expectation of f (·) over the random draw of its argument x and the indicator
function, respectively. The shorthand notation Z(∞) := ∪∞m=1Zm denotes the union
of all m –fold Cartesian products of the set Z . For any m ∈ N we define Im ⊂
{1, . . . ,m}m as the set of all permutations of the numbers 1, . . . ,m ,

Im := {(i1, . . . , im) ∈ {1, . . . ,m}m | ∀j 6= k : ij 6= ik } .

Given a 2m –vector i ∈ I2m and a sample z ∈ Z2m we define πi : {1, . . . , 2m} →
{1, . . . , 2m} by πi (j) := ij and Πi (z) by Πi (z) :=

(
zπi(1), . . . , zπi(2m)

)
.

2 Algorithmic Luckiness

Suppose we are given a training sample z = (x,y) ∈ (X × Y)
m

= Zm of size
m ∈ N independently drawn (iid) from some unknown but fixed distribution PXY =
PZ together with a learning algorithm A : Z(∞) → YX . For a predefined loss
l : Y × Y → [0, 1] we would like to investigate the generalisation error Gl [A, z] :=
Rl [A (z)]− infh∈YX Rl [h] of the algorithm where the expected error Rl [h] of h is
defined by

Rl [h] := EXY [l (h (X) ,Y)] .

Since infh∈YX Rl [h] (which is also known as the Bayes error) is independent of A
it suffices to bound Rl [A (z)] . Although we know that for any fixed hypothesis h
the training error

R̂l [h, z] :=
1

|z|
∑

(xi,yi)∈z

l (h (xi) , yi)

is with high probability (over the random draw of the training sample z ∈ Z(∞)

) close to Rl [h] , this might no longer be true for the random hypothesis A (z)
. Hence we would like to state that with only small probability (at most δ ), the
expected error Rl [A (z)] is larger than the training error R̂l [A (z) , z] plus some
sample and algorithm dependent complexity ε (A, z, δ) ,

PZm

(
Rl [A (Z)] > R̂l [A (Z) ,Z] + ε (A,Z, δ)

)
< δ . (1)

In order to derive such a bound we utilise a modified version of the basic lemma of
Vapnik and Chervonenkis [9].

Lemma 1. For all loss functions l : Y × Y → [0, 1] , all probability measures PZ ,
all algorithms A and all measurable formulas Υ : Zm → {true, false} , if mε2 > 2



then

PZm

((
Rl [A (Z)] > R̂l [A (Z) ,Z] + ε

)
∧Υ (Z)

)
<

2PZ2m

((
R̂l
[
A
(
Z[1:m]

)
,Z[(m+1):2m]

]
> R̂l

[
A
(
Z[1:m]

)
,Z[1:m]

]
+
ε

2

)
∧Υ

(
Z[1:m]

))
︸ ︷︷ ︸

J(Z)

.

Proof (Sketch). The probability on the r.h.s. is lower bounded by the probab-
ility of the conjunction of event on the l.h.s. and Q (z) ≡ Rl

[
A
(
z[1:m]

)]
−

R̂l
[
A
(
z[1:m]

)
, z(m+1):2m

]
< ε

2 . Note that this probability is over z ∈ Z2m .
If we now condition on the first m examples, A

(
z[1:m]

)
is fixed and therefore by an

application of Hoeffding’s inequality (see, e.g. [1]) and since mε2 > 2 the additional
event Q has probability of at least 1

2 over the random draw of (zm+1, . . . , z2m) .

Use of Lemma 1 — which is similar to the approach of classical VC analysis —
reduces the original problem (1) to the problem of studying the deviation of the
training errors on the first and second half of a double sample z ∈ Z2m of size
2m . It is of utmost importance that the hypothesis A

(
z[1:m]

)
is always learned

from the first m examples. Now, in order to fully exploit our assumptions of the
mutual independence of the double sample z ∈ Z2m we use a technique known
as symmetrisation by permutation: since PZ2m is a product measure, it has the
property that PZ2m (J (Z)) = PZ2m (J (Πi (Z))) for any i ∈ I2m . Hence, it suffices
to bound the probability of permutations πi such that J (Πi (z)) is true for a given
and fixed double sample z . As a consequence thereof, we only need to count the
number of different hypotheses that can be learned by A from the first m examples
when permuting the double sample.
Definition 1 (Algorithmic luckiness). Any function L that maps an algorithm A :
Z(∞) → YX and a training sample z ∈ Z(∞) to a real value is called an algorithmic
luckiness. For all m ∈ N , for any z ∈ Z2m , the lucky set HA (L, z) ⊆ YX is the
set of all hypotheses that are learned from the first m examples

(
zπi(1), . . . , zπi(m)

)
when permuting the whole sample z whilst not decreasing the luckiness, i.e.

HA (L, z) :=
{
A
(
zπi(1), . . . , zπi(m)

)
| i ∈ IA (L, z)

}
, (2)

where

IA (L, z) :=
{
i ∈ I2m

∣∣ L (A, (zπi(1), . . . , zπi(m)

))
≥ L (A, (z1, . . . , zm))

}
. (3)

Given a fixed loss function l : Y × Y → [0, 1] the induced loss function set
Ll (HA (L, z)) is defined by

Ll (HA (L, z)) := {(x, y) 7→ l (h (x) , y) | h ∈ HA (L,z)} .

For any luckiness function L and any learning algorithm A , the complexity of
the double sample z is the minimal number N1 (τ,Ll (HA (L, z)) , z) of hypotheses
ĥ ∈ YX needed to cover Ll (HA (L, z)) at some predefined scale τ , i.e. for any
hypothesis h ∈ HA (L, z) there exists a ĥ ∈ YX such that

1

2m

2m∑
i=1

∣∣∣l (h (xi) , yi)− l
(
ĥ (xi) , yi

)∣∣∣ ≤ τ . (4)

To see this note that whenever J (Πi (z)) is true (over the random draw of permuta-
tions) then there exists a function ĥ which has a difference in the training errors



on the double sample of at least ε
2 + 2τ . By an application of the union bound we

see that the number N1 (τ,Ll (HA (L, z)) , z) is of central importance. Hence, if we
are able to bound this number over the random draw of the double sample z only
using the luckiness on the first m examples we can use this bound in place of the
worst case complexity supz∈Z2m N1 (τ,Ll (HA (L, z)) , z) as usually done in the VC
framework (see [8]).

Definition 2 (ω –smallness of L ). Given an algorithm A : Z(∞) → YX and a loss
l : Y × Y → [0, 1] the algorithmic luckiness function L is ω –small at scale τ ∈ R+

if for all m ∈ N , all δ ∈ (0, 1] and all PZ

PZ2m

(
N1 (τ,Ll (HA (L,Z)) ,Z) > ω

(
L
(
A,Z[1:m]

)
, l,m, δ, τ

))︸ ︷︷ ︸
S(Z)

< δ .

Note that if the range of l is {0, 1} then N1

(
1

2m ,Ll (HA (L, z)) , z
)
equals the num-

ber of dichotomies on z incurred by Ll (HA (L, z)) .

Theorem 1 (Algorithmic luckiness bounds). Suppose we have a learning al-
gorithm A : Z(∞) → YX and an algorithmic luckiness L that is ω –small at
scale τ for a loss function l : Y × Y → [0, 1] . For any probability measure PZ

, any d ∈ N and any δ ∈ (0, 1] , with probability at least 1− δ over the random
draw of the training sample z ∈ Zm of size m , if ω (L (A, z) , l,m, δ/4, τ) ≤ 2d

then

Rl [A (z)] ≤ R̂l [A (z) , z] +

√
8

m

(
d+ log2

(
4

δ

))
+ 4τ . (5)

Furthermore, under the above conditions if the algorithmic luckiness L is ω –
small at scale 1

2m for a binary loss function l (·, ·) ∈ {0, 1} and R̂l [A (z) , z] = 0
then

Rl [A (z)] ≤ 2

m

(
d+ log2

(
4

δ

))
. (6)

Proof (Compressed Sketch). We will only sketch the proof of equation (5); the proof
of (6) is similar and can be found in [?]. First, we apply Lemma 1 with Υ (z) ≡
ω (L (A, z) , l,m, δ/4, τ) ≤ 2d . We now exploit the fact that

PZ2m (J (Z)) = PZ2m (J (Z) ∧ S (Z))︸ ︷︷ ︸
≤PZ2m (S(Z))

+PZ2m (J (Z) ∧ ¬S (Z))

<
δ

4
+ PZ2m (J (Z) ∧ ¬S (Z)) ,

which follows from Definition 2. Following the above-mentioned argument it suf-
fices to bound the probability of a random permutation ΠI (z) that J (ΠI (z)) ∧
¬S (ΠI (z)) is true for a fixed double sample z . Noticing that Υ (z) ∧ ¬S (z) ⇒
N1 (τ,Ll (HA (L, z)) , z) ≤ 2d we see that we only consider swappings πi for which
N1 (τ,Ll (HA (L,Πi (z))) ,Πi (z)) ≤ 2d . Thus let us consider such a cover of
size not more than 2d . By (4) we know that whenever J (Πi (z)) ∧ ¬S (Πi (z))

is true for a swapping i then there exists a hypothesis ĥ ∈ YX in the cover
such that R̂l

[
ĥ, (ΠI (z))[(m+1):2m]

]
− R̂l

[
ĥ, (ΠI (z))[1:m]

]
> ε

2 + 2τ . Using the
union bound and Hoeffding’s inequality for a particular choice of PI shows that
PI (J (ΠI (z)) ∧ ¬S (ΠI (z))) ≤ δ

4 which finalises the proof.



A closer look at (5) and (6) reveals that the essential difference to uniform bounds
on the expected error is within the definition of the covering number: rather than
covering all hypotheses h in a given hypothesis space H ⊆ YX for a given double
sample it suffices to cover all hypotheses that can be learned by a given learning
algorithm from the first half when permuting the double sample. Note that the
usage of permutations in the definition of (2) is not only a technical matter; it
fully exploits all the assumptions made for the training sample, namely the training
sample is drawn iid.

3 Relationship to Other Learning Frameworks

In this section we present the relationship of algorithmic luckiness to other learning
frameworks (see [8, 7, 5] for further details of these frameworks).

VC Framework If we consider a binary loss function l (·, ·) ∈ {0, 1} and assume
that the algorithm A selects functions from a given hypothesis space H ⊆ YX then
L (A, z) = −VCDim (H) is a ω –small luckiness function where

ω

(
L0, l,m, δ,

1

2m

)
≤
(

2em

−L0

)−L0

. (7)

This can easily be seen by noticing that the latter term is an upper bound on
maxz∈Z2m |{(l (h (x1) , y1) , . . . , l (h (x2m) , y2m)) : h ∈ H}| (see also [8]). Note that
this luckiness function neither exploits the particular training sample observed nor
the learning algorithm used.

Luckiness Framework Firstly, the luckiness framework of Shawe-Taylor et al. [7]
only considered binary loss functions l and the zero training error case. In this work,
the luckiness L̃ is a function of hypothesis and training samples and is called ω̃ –
small if the probability over the random draw of a 2m sample z that there exists a
hypothesis h with ω̃(L̃(h, (z1, . . . , zm)), δ) < N1( 1

2m , {(x, y) 7→ l (g (x) , y) |L̃ (g,z) ≥
L̃ (h, z)}, z) , is smaller than δ . Although similar in spirit, the classical luckiness
framework does not allow exploitation of the learning algorithm used to the same
extent as our new luckiness. In fact, in this framework not only the covering number
must be estimable but also the variation of the luckiness L̃ itself. These differences
make it very difficult to formally relate the two frameworks.

Compression Framework In the compression framework of Littlestone and
Warmuth [5] one considers learning algorithms A which are compression schemes,
i.e. A (z) = R (C (z)) where C (z) selects a subsample z ⊆ z and R : Z(∞) → YX
is a permutation invariant reconstruction function. For this class of learning al-
gorithms, the luckiness L (A, z) = − |C (z)| is ω –small where ω is given by (7). In
order to see this we note that (3) ensures that we only consider permutations πi
where C (Πi (z)) ≤ |C (z)| , i.e. we use not more than −L training examples from
z ∈ Z2m . As there are exactly

(
2m
d

)
distinct choices of d training examples from

2m examples the result follows by application of Sauer’s lemma [8]. Disregarding
constants, Theorem 1 gives exactly the same bound as in [5].

4 A New Margin Bound For Support Vector Machines

In this section we study the maximum margin algorithm for linear classifiers, i.e. A :
Z(∞) → Hφ where Hφ := {x 7→ 〈φ (x) ,w〉 |w ∈ K} and φ : X → K ⊆ `n2 is known



as the feature mapping. Let us assume that l (h (x) , y) = l0−1 (h (x) , y) := Iyh(x)≤0
. Classical VC generalisation error bounds exploit the fact that VCDim (Hφ) = n
and (7). In the luckiness framework of Shawe-Taylor et al. [7] it has been shown
that we can use fatHφ (γz (w)) ≤ (γz (w))

−2 (at the price of an extra log2 (32m)
factor) in place of VCDim (Hφ) where γz (w) = min(xi,yi)∈z yi 〈φ (xi) ,w〉 / ‖w‖
is known as the margin. Now, the maximum margin algorithm finds the weight
vector wMM that maximises γz (w) . It is known that wMM can be written as a
linear combination of the φ (xi) . For notational convenience, we shall assume that
A : Z(∞) → R(∞) maps to the expansion coefficients α such that ‖wα‖ = 1 where
wα :=

∑|z|
i=1 αiφ (xi) . Our new margin bound follows from the following theorem

together with (6).

Theorem 2. Let εi (x) be the smallest ε > 0 such that {φ (x1) , . . . ,φ (xm)}
can be covered by at most i balls of radius less than or equal ε . Let Γz (w) be
defined by Γz (w) := min(xi,yi)∈z

yi〈φ(xi),w〉
‖φ(xi)‖·‖w‖ . For the zero-one loss l0−1 and

the maximum margin algorithm A , the luckiness function

L (A, z) = −min

i ∈ N

∣∣∣∣∣∣ i ≥
(
εi (x)

∑m
j=1 |A (z)j |

Γz
(
wA(z)

) )2
 , (8)

is ω -small at scale 1/2m w.r.t. the function

ω

(
L0, l,m, δ,

1

2m

)
=

(
2em

−L0

)−2L0

. (9)

Proof (Sketch). First we note that by a slight refinement of a theorem of Makovoz
[6] we know that for any z ∈ Zm there exists a weight vector w̃ =

∑m
i=1 α̃iφ (xi)

such that ∥∥w̃ −wA(z)

∥∥2 ≤ Γ2
z

(
wA(z)

)
(10)

and α̃ ∈ Rm has no more than −L (A, z) non-zero components. Although only
wA(z) is of unit length, one can show that (10) implies that〈

wA(z), w̃/ ‖w̃‖
〉
≥
√

1− Γ2
z

(
wA(z)

)
.

Using equation (10) of [4] this implies that w̃ correctly classifies z ∈ Zm . Consider
a fixed double sample z ∈ Z2m and let k0 := L (A, (z1, . . . , zm)) . By virtue of (3)
and the aforementioned argument we only need to consider permutations πi such
that there exists a weight vector w̃ =

∑m
j=1 α̃jφ (xj) with no more than k0 non-zero

α̃j . As there are exactly
(
2m
d

)
distinct choices of d ∈ {1, . . . , k0} training examples

from the 2m examples z there are no more than (2em/k0)
k0 different subsamples

to be used in w̃ . For each particular subsample z ⊆ z the weight vector w̃ is a
member of the class of linear classifiers in a k0 (or less) dimensional space. Thus,
from (7) it follows that for the given subsample z there are no more (2em/k0)

k0

different dichotomies induced on the double sample z ∈ Z2m . As this holds for
any double sample, the theorem is proven.

There are several interesting features about this margin bound. Firstly, observe
that

∑m
j=1 |A (z)j | is a measure of sparsity of the solution found by the maximum

margin algorithm which, in the present case, is combined with margin. Note that
for normalised data, i.e. ‖φ (·)‖ = constant , the two notion of margins coincide,



i.e. Γz (w) = γz (w) . Secondly, the quantity εi (x) can be considered as a measure
of the distribution of the mapped data points in feature space. Note that for all
i ∈ N , εi (x) ≤ ε1 (x) ≤ maxj∈{1,...,m} ‖φ (xj)‖ . Supposing that the two class-
conditional probabilities PX|Y=y are highly clustered, ε2 (x) will be very small. An
extension of this reasoning is useful in the multi-class case; binary maximum margin
classifiers are often used to solve multi-class problems [8]. There appears to be also
a close relationship of εi (x) with the notion of kernel alignment recently introduced
in [3]. Finally, one can use standard entropy number techniques to bound εi (x) in
terms of eigenvalues of the inner product matrix or its centred variants. It is worth
mentioning that although our aim was to study the maximum margin algorithm the
above theorem actually holds for any algorithm whose solution can be represented
as a linear combination of the data points.

5 Conclusions

In this paper we have introduced a new theoretical framework to study the gen-
eralisation error of learning algorithms. In contrast to previous approaches, we
considered specific learning algorithms rather than specific hypothesis spaces. We
introduced the notion of algorithmic luckiness which allowed us to devise data de-
pendent generalisation error bounds. Thus we were able to relate the compression
framework of Littlestone and Warmuth with the VC framework. Furthermore, we
presented a new bound for the maximum margin algorithm which not only exploits
the margin but also the distribution of the actual training data in feature space.
Perhaps the most appealing feature of our margin based bound is that it natur-
ally combines the three factors considered important for generalisation with linear
classifiers: margin, sparsity and the distribution of the data. Further research is
concentrated on studying Bayesian algorithms and the relation of algorithmic luck-
iness to the recent findings for stable learning algorithms [2].
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