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Abstract

We present a bound on the generalisation error of linear classifiers
in terms of a refined margin quantity on the training set. The
result is obtained in a PAC–Bayesian framework and is based on
geometrical arguments in the space of linear classifiers. The new
bound constitutes an exponential improvement of the so far tightest
margin bound by Shawe-Taylor et al. [8] and scales logarithmically
in the inverse margin. Even in the case of less training examples
than input dimensions sufficiently large margins lead to non-trivial
bound values and — for maximum margins — to a vanishing com-
plexity term. Furthermore, the classical margin is too coarse a
measure for the essential quantity that controls the generalisation
error: the volume ratio between the whole hypothesis space and
the subset of consistent hypotheses. The practical relevance of the
result lies in the fact that the well-known support vector machine
is optimal w.r.t. the new bound only if the feature vectors are all of
the same length. As a consequence we recommend to use SVMs on
normalised feature vectors only — a recommendation that is well
supported by our numerical experiments on two benchmark data
sets.

1 Introduction

Linear classifiers are exceedingly popular in the machine learning community due
to their straight-forward applicability and high flexibility which has recently been
boosted by the so-called kernel methods [13]. A natural and popular framework
for the theoretical analysis of classifiers is the PAC (probably approximately cor-
rect) framework [11] which is closely related to Vapnik’s work on the generalisation
error [12]. For binary classifiers it turned out that the growth function is an ap-
propriate measure of “complexity” and can tightly be upper bounded by the VC
(Vapnik-Chervonenkis) dimension [14]. Later, structural risk minimisation [12] was
suggested for directly minimising the VC dimension based on a training set and an
a priori structuring of the hypothesis space.

In practice, e.g. in the case of linear classifiers, often a thresholded real-valued func-



tion is used for classification. In 1993, Kearns [4] demonstrated that considerably
tighter bounds can be obtained by considering a scale-sensitive complexity measure
known as the fat shattering dimension. Further results [1] provided bounds on the
Growth function similar to those proved by Vapnik and others [14, 6]. The popular-
ity of the theory was boosted by the invention of the support vector machine (SVM)
[13] which aims at directly minimising the complexity as suggested by theory.

Until recently, however, the success of the SVM remained somewhat obscure because
in PAC/VC theory the structuring of the hypothesis space must be independent of
the training data — in contrast to the data-dependence of the canonical hyperplane.
As a consequence Shawe-Taylor et.al. [8] developed the luckiness framework, where
luckiness refers to a complexity measure that is a function of both hypothesis and
training sample.

Recently, David McAllester presented some PAC-Bayesian theorems [5] that bound
the generalisation error of Bayesian classifiers independently of the correctness of the
prior and regardless of the underlying data distribution — thus fulfilling the basic
desiderata of PAC theory. In [3] McAllester’s bounds on the Gibbs classifier were
extended to the Bayes (optimal) classifier. The PAC-Bayesian framework provides
a posteriori bounds and is thus closely related in spirit to the luckiness framework1.

In this paper we give a tight margin bound for linear classifiers in the PAC-Bayesian
framework. The main idea is to identify the generalisation error of the classifier h
of interest with that of the Bayes (optimal) classifier of a (point-symmetric) subset
Q that is summarised by h . We show that for a uniform prior the normalised
margin of h is directly related to the volume of a large subset Q summarised by h
. In particular, the result suggests that a learning algorithm for linear classifiers
should aim at maximising the normalised margin instead of the classical margin. In
Section 2 and 3 we review the basic PAC-Bayesian theorem and show how it can
be applied to single classifiers. In Section 4 we give our main result and outline its
proof. In Section 5 we discuss the consequences of the new result for the application
of SVMs and demonstrate experimentally that in fact a normalisation of the feature
vectors leads to considerably superior generalisation performance.

We denote n –tuples by italic bold letters (e.g. x = (x1, . . . , xn) ), vectors by roman
bold letters (e.g. x ), random variables by sans serif font (e.g. X ) and vector spaces
by calligraphic capitalised letters (e.g. X ). The symbols P,E, I and ℓn2 denote a
probability measure, the expectation of a random variable, the indicator function
and the normed space (2 –norm) of sequences of length n , respectively.

2 A PAC Margin Bound

We consider learning in the PAC framework. Let X be the input space, and let Y =
{−1,+1} . Let a labelled training sample z = (x,y) ∈ (X × Y)

m
= Zm be drawn

iid according to some unknown probability measure PZ = PY|XPX . Furthermore
for a given hypothesis space H ⊆ YX we assume the existence of a “true” hypothesis
h∗ ∈ H that labelled the data

PY|X=x (y) = Iy=h∗(x) . (1)

We consider linear hypotheses

H = {hw : x 7→ sign (⟨w,ϕ (x)⟩K) | w ∈ W } , W = {w ∈ K | ∥w∥K = 1} , (2)
1In fact, even Shawe-Taylor et.al. concede that “... a Bayesian might say that luckiness

is just a complicated way of encoding a prior. The sole justification for our particular way
of encoding is that it allows us to get the PAC like results we sought...” [9, p. 4].



where the mapping ϕ : X → K ⊆ ℓn2 maps2 the input data to some feature space
K and ∥w∥K = 1 leads to a one-to-one correspondence of hypotheses hw to their
parameters w . From the existence of h∗ we know that there exists a version space
V (z) ⊆ W ,

V (z) = {w ∈ W | ∀ (x, y) ∈ z : hw (x) = y } .

Our analysis aims at bounding the true risk R [w] of consistent hypotheses hw ,
R [w] = PXY (hw (X) ̸= Y) .

Since all classifiers w ∈ V (z) are indistinguishable in terms of number of errors
committed on the given training set z let us introduce the concept of the margin
γz (w) of a classifier w , i.e.

γz (w) = min
(xi,yi)∈z

yi ⟨w,xi⟩K
∥w∥K

. (3)

The following theorem due to Shawe-Taylor et al. [8] bounds the generalisation
errors R [w] of all classifier w ∈ V (z) in terms of the margin γz (w) .
Theorem 1 (PAC margin bound). For all probability measures PZ such that
PX (∥ϕ (X)∥K ≤ ς) = 1 , for any δ > 0 with probability at least 1 − δ over the
random draw of the training set z , if we succeed in correctly classifying m samples
z with a linear classifier w achieving a positive margin γz (w) >

√
32ς2/m then

the generalisation R [w] of w is bounded from above by

2

m

(
κ (w) log2

(
8em

κ (w)

)
log2 (32m) + ln

(
m2

δ

))
, κ (w) =

⌈(
8ς

γz (w)

)2
⌉
. (4)

As the bound on R [w] depends linearly on γ−2
z (w) we see that Theorem 1 provides

a theoretical foundation of all algorithms that aim at maximising γz (w) , e.g. SVMs
and Boosting [13, 7].

3 PAC-Bayesian Analysis

We first present a result [5] that bounds the risk of the generalised Gibbs clas-
sification strategy GibbsW (z) by the measure PW (W (z)) on a consistent subset
W (z) ⊆ V (z) . This average risk is then related via the Bayes-Gibbs lemma to
the risk of the Bayes classification strategy BayesW (z) on W (z) . For a single con-
sistent hypothesis w ∈ W it is then necessary to identify a consistent subset Q (w)
such that the Bayes strategy BayesQ(w) on Q (w) always agrees with w . Let us
define the Gibbs classification strategy GibbsW (z) w.r.t. the subset W (z) ⊆ V (z)
by

GibbsW (z) (x) = hw (x) , w ∼ PW|W∈W (z) . (5)
Then the following theorem [5] holds for the risk of GibbsW (z) .
Theorem 2 (PAC-Bayesian bound for subsets of classifiers). For any measure PW

and any measure PZ , for any δ > 0 with probability at least 1− δ over the random
draw of the training set z for all subsets W (z) ⊆ V (z) such that PW (W (z)) > 0
the generalisation error of the associated Gibbs classification strategy GibbsW (z) is
bounded from above by

R
[
GibbsW (z)

]
≤ 1

m

(
ln

(
1

PW (W (z))

)
+ 2 ln (m) + ln

(
1

δ

)
+ 1

)
. (6)

2For notational simplicity we sometimes abbreviate ϕ (x) by x which should not be
confused with the sample x of training objects.



Now consider the Bayes classifier BayesW (z) ,

BayesW (z) (x) = sign
(
EW|W∈W (z) [hW (x)]

)
,

where the expectation EW|W∈W (z) is taken over a cut-off posterior given by com-
bining the PAC-likelihood (1) and the prior PW .

Lemma 1 (Bayes-Gibbs Lemma). For any two measures PW and PXY and any set
W ⊆ W

PXY (BayesW (X) ̸= Y) ≤ 2 · PXY (GibbsW (X) ̸= Y) . (7)

Proof. (Sketch) Consider only the simple PAC setting we need. At all those points
x ∈ X at which BayesW is wrong by definition at least half of the classifiers w ∈ W
under consideration make a mistake as well.

The combination of Lemma 1 with Theorem 2 yields a bound on the risk of
BayesW (z) . For a single hypothesis w ∈ W let us find a (Bayes-admissible) subset
Q (w) of version space V (z) such that BayesQ(w) on Q (w) agrees with w on every
point in X .

Definition 1 (Bayes-admissibility). Given the hypothesis space in (2) and a prior
measure PW over W we call a subset Q (w) ⊆ W Bayes admissible w.r.t. w and
PW if and only if

∀x ∈ X : hw (x) = BayesQ(w) (x) .

Although difficult to achieve in general the following geometrically plausible lemma
establishes Bayes-admissibility for the case of interest.

Lemma 2 (Bayes-admissibility for linear classifiers). For uniform measure PW over
W each ball Q (w) = {v ∈ W | ∥w − v∥K ≤ r} is Bayes admissible w.r.t. its centre
w .

Please note that by considering a ball Q (w) rather than just w we make use of the
fact that w summarises all its neighbouring classifiers v ∈ Q (w) . Now using a
uniform prior PW the normalised margin

Γz (w) = min
(xi,yi)∈z

yi ⟨w,xi⟩K
∥w∥K ∥xi∥K

, (8)

quantifies the relative volume of classifiers summarised by w and thus allows us
to bound its risk. Note that in contrast to the classical margin γz (see 3) this
normalised margin is a dimensionless quantity and constitutes a measure for the
relative size of the version space invariant under rescaling of both weight vectors w
and feature vectors xi .

4 A PAC-Bayesian Margin Bound

Combining the ideas outlined in the previous section allows us to derive a gener-
alisation error bound for linear classifiers w ∈ V (z) in terms of their normalised
margin Γz (w) .



Figure 1: Illustration of the volume ratio for the classifier at the north pole. Four
training points shown as grand circles make up version space — the polyhedron
on top of the sphere. The radius of the “cap” of the sphere is proportional to the
margin Γz , which only for constant ∥xi∥K is maximised by the SVM.

Theorem 3 (PAC-Bayesian margin bound). Suppose K ⊆ ℓn2 is a given feature
space of dimensionality n . For all probability measures PZ , for any δ > 0
with probability at least 1 − δ over the random draw of the training set z ,
if we succeed in correctly classifying m samples z with a linear classifier w
achieving a positive margin Γz (w) > 0 then the generalisation error R [w] of
w is bounded from above by

2

m

(
d ln

(
1

1−
√
1− Γ2

z (w)

)
+ 2 ln (m) + ln

(
1

δ

)
+ 2

)
. (9)

where d = min (m,n) .

Proof. Geometrically the hypothesis space W is the unit sphere in Rn (see Figure
1). Let us assume that PW is uniform on the unit sphere as suggested by symmetry.
Given the training set z and a classifier w all classifiers v ∈ Q (w)

Q (w) =
{
v ∈ W

∣∣∣ ⟨w,v⟩K >
√
1− Γ2

z (w)
}

(10)

are within V (z) (For a proof see [2]). Such a set Q (w) is Bayes-admissible by
Lemma 2 and hence we can use PW (Q (w)) to bound the generalisation error of w
. Since PW is uniform, the value − ln (PW (Q (w))) is simply the logarithm of the
volume ratio between the surface of the unit sphere and the surface of all v fulfilling
equation (10). In [2] it is shown that this ratio is exactly given by

ln

 ∫ 2π

0
sinn−2 (θ) dθ∫ arccos

(√
1−Γ2

z(w)
)

0 sinn−2 (θ) dθ

 .

It can be shown that this ratio is tightly bounded from above by

n ln

(
1

1−
√

1− Γ2
z (w)

)
+ ln (2) .
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Figure 2: Generalisation errors of classifiers learned by an SVM with (dashed line)
and without (solid line) normalisation of the feature vectors xi . The error bars
indicate one standard deviation over 100 random splits of the data sets. The two
plots are obtained on the (a) thyroid and (b) sonar data set.

With ln (2) < 1 we obtain the desired result. Note that m points maximally span
an m –dimensional space and thus we can marginalise over the remaining n − m
dimensions of feature space K . This gives d = min (m,n) .

An appealing feature of equation (9) is that for Γz (w) = 1 the bound reduces
to 2

m (2 ln (m)− ln (δ) + 2) with a rapid decay to zero as m increases. In case of
margins Γz (w) > 0.91 the troublesome situation of d = m , which occurs e.g. for
RBF kernels, is compensated for. Furthermore, upper bounding 1/(1−

√
1− Γ) by

2/Γ we see that Theorem 3 is an exponential improvement of Theorem 1 in terms
of the attained margins. It should be noted, however, that the new bound depends
on the dimensionality of the input space via d = min (m,n) .

5 Experimental Study

Theorem 3 suggest the following learning algorithm: given a version space V (z)
(through a given training set z ) find the classifier w that maximises Γz (w) . This
algorithm, however, is given by the SVM only if the training data in feature space
K are normalised. We investigate the influence of such a normalisation on the
generalisation error in the feature space K of all monomials up to the p –th degree
(well-known from handwritten digit recognition, see [13]). Since the SVM learning
algorithm as well as the resulting classifier only refer to inner products in K , it
suffices to use an easy-to-calculate kernel function k : X × X → R such that for all
x, x′ ∈ X , k (x, x′) = ⟨ϕ (x) ,ϕ (x′)⟩K , given in our case by the polynomial kernel

∀p ∈ N : k (x, x′) = (⟨x, x′⟩X + 1)
p
.

Earlier experiment have shown [13] that without normalisation too large values of
p may lead to “overfitting”. We used the UCI [10] data sets thyroid (d = 5 ,
m = 140 , mtest = 75 ) and sonar (d = 60 , m = 124 , mtest = 60 ) and plotted
the generalisation error of SVM solutions (estimated over 100 different splits of the
data set) as a function of p (see Figure 2). As suggested by Theorem 3 in almost all
cases the normalisation improved the performance of the support vector machine
solution at a statistically significant level. As a consequence, we recommend:

When training an SVM, always normalise your data in feature space.



Intuitively, it is only the spatial direction of both weight vector and feature vectors
that determines the classification. Hence the different lengths of feature vectors in
the training set should not enter the SVM optimisation problem.

6 Conclusion

The PAC-Bayesian framework together with simple geometrical arguments yields
the so far tightest margin bound for linear classifiers. The role of the normalised
margin Γz in the new bound suggests that the SVM is theoretically justified only for
input vectors of constant length. We hope that this result is recognised as a useful
bridge between theory and practice in the spirit of Vapnik’s famous statement:

Nothing is more practical than a good theory
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