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I. INTRODUCTION

Recent advances in radio and embedded systems have
enabled the proliferation of wireless sensor networks
(WSNs). These networks are composed of a large number
of low-cost, low-power, multifunctional sensor nodes that
are small in size and spatially distributed, and can
exchange data [1]. Nowadays, WSNs are being widely
implemented in many different scenarios to perform a
number of tasks, ranging from home monitoring [2] to,
e.g., environmental monitoring [3], covering industrial
monitoring [4], battlefield surveillance [5], and medical
applications [6]. In most applications, the data collected
by the sensors are only meaningful if they are coupled
with the correct locations of the corresponding sensors.
Therefore, sensor localization has become a fundamental
issue, especially in WSNs, where sensors lack a fixed
infrastructure and are able to move in an uncontrollable
manner. A direct way to locate the nodes is the use of
Global Positioning System (GPS) devices. However, this
solution is not practical because of the high energy
consumption of GPS receivers and their limited
performance in indoor environments. An alternative
solution is to develop localization algorithms that estimate
the unknown sensors locations with respect to others
having fixed known locations. Two types of sensors are
thus defined: those with known positions, called anchors,
and the others having unknown locations, called nodes.
Anchors positions can be obtained, for instance, by setting
them at fixed locations with known coordinates, whereas
nodes are localized by exchanging information with
anchors.

Many localization algorithms using anchors have been
proposed. They are mainly based on estimating the
distances between the anchors and the nodes. Such
methods are either time based using the time-of-arrival
(ToA) or time-difference-of-arrival (TDoA) techniques
[7], or by using the angle-of-arrival (AoA) technique [8]
or received signal strength indicator (RSSI)-based
methods [9]. Distance estimates are then combined using,
e.g., triangulation [10] or trilateration [11] to find nodes
positions. Compared to ToA, TDoA, and AoA,
RSSI-based methods are being widely used due to their
low-power consumption and cost competitiveness because
no extra devices are needed. However, methods that
estimate exact distances using RSSI are not efficient
because the measurements of signals’ powers could be
significantly altered by the presence of additive noise,
multipath fading, shadowing, and other interferences.
Alternative RSSI-based methods for sensors localization
employ connectivity measurements [12]. Instead of
estimating exact distances, these techniques compare the
RSSIs of a considered node to fixed power thresholds in
order to detect all its neighboring anchors. Such an
approach assumes that all anchors have circular
transmission ranges with known radii and that signals
powers decrease monotonically with the increase of the
nodes traveled distances. Localizing a given sensor
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consists then on computing the intersection of the
communication disks of its neighboring anchors using,
e.g., a particle filter [13], interval analysis [14, 15],
polar-interval analysis [16], and a variational filter [17].
For instance, in [14], the authors use intervals to perform
an outer approximation of the solution areas, leading to
boxes guaranteed to include the actual locations of the
nodes.

Other more reliable techniques for RSSI-based
localization are based on fingerprinting [18]. Compared to
connectivity-based methods, these techniques do not make
any assumption on the communications in the network.
However, they need a preconfiguration phase where a
collection of fingerprints is performed. Indeed, a typical
fingerprinting location-sensing system consists of two
phases: an offline phase and an online phase. In the offline
phase, a set of reference locations is generated within the
surveillance area, and the RSSIs of the signals sent by the
anchors and received at these reference positions are
collected. A database of fingerprints is then obtained; it is
composed of the set of reference positions with their
associated RSSIs. In the online phase, nodes move and
collect RSSI information, which is then combined with the
collected fingerprints database to compute their locations.
The advantage of location fingerprinting technique is that
it takes into account the stationary characteristics of the
environment, such as multipath propagation and wall
attenuation. A well-known algorithm based on location
fingerprinting is the weighted K-nearest neighbor
(WKNN) algorithm [19]. In this algorithm, the RSSI
values collected by the nodes are compared to the samples
in the database, and the nodes positions are given by
weighted combinations of the K nearest neighboring
positions; the nearness indicator for this method is based
on the Euclidean distance between RSSIs. Motivated by
the complexity of the RSSI patterns, the authors of [20]
propose a kernelized combination algorithm that compares
the RSSI values collected by the nodes with the samples in
the database. Moreover, they provide a new method for
choosing the training samples to be used in the weighting
process instead of using the K nearest neighboring
positions as in traditional WKNN. Another fingerprinting
localization method is proposed in [21], where the authors
consider location estimation as a machine-learning
problem and use support vector regression (SVR) for
localization. However, instead of using the RSSIs of the
signals exchanged in a WSN to construct a database of
fingerprints, the authors use signals from the Global
System for Mobile communication (GSM) network. Such
methods can only be used in areas where GSM coverage is
available, and a GSM receiver is then necessary, limiting
thus the possible range of applications of the method.

In this paper, we propose a new localization technique
that combines location fingerprinting and learning
methods. Being a fingerprinting-based method, the
proposed technique is composed of offline and online
phases. In addition to fingerprints collection, the offline
phase consists of a training phase where a model is

TABLE I
List of the Used Variables Along with Their Respective Sizes

Variable Size

ai, x, p�, ψ(·), P� ,∗, α� ,∗, b 1-by-D
ρ, ρ� Na-by-1
P, α Np-by-D
P∗,d, α∗,d, β, v Np-by-1
K, G Np-by-Np

defined, associating to the RSSIs of the database the exact
reference positions where they are collected. In the online
phase, the RSSI measures collected by the nodes while
moving are used with the computed model to estimate
node positions. The definition of the model is done using
several kernel-based machine-learning algorithms [22],
such as ridge regression or least-squares support vector
machine (LS SVM) [23], SVR [24], and vector-output
regularized least squares (vo-RLS) [25]. This paper
provides a framework for all these machine-learning
techniques and thus extends naturally our previous work
[26], where the bias-free ridge regression was only
considered. We then develop new theoretical results, using
all the above techniques and provide a thorough
comparison between them in terms of accuracy and time
complexity with many new experimental scenarios and
results.

The rest of the paper is organized as follows. Section II
outlines the proposed localization technique. Section III
describes the use of kernel methods and introduces the
different machine-learning algorithms that can be used. In
Section IV, we study the effectiveness of these algorithms.
Finally, Section V concludes the paper.

II. DESCRIPTION OF THE LOCALIZATION METHOD

We consider an environment of D dimensions, with D
= 2 for a two-dimensional environment or D = 3 for a
three-dimensional environment. Also, two types of sensors
are considered: anchors and mobile nodes. Anchors have
known fixed locations, denoted by ai, i ∈ {1, . . . , Na},
whereas mobile nodes are moving with unknown
positions, denoted by xj, j ∈ {1, . . . , Nx}, and hence they
need to be regularly localized. To avoid confusion, it is
worth noting that all coordinates are D-dimension row
vectors. Without loss of generality, because nodes are
localized independently from each other, using only
anchors information, we will withdraw the j index in the
sequel. Therefore, only one mobile node with the
unknown position x is considered, knowing that the
proposed method could be applied to all nodes to be
localized similarly. In Table I, all the variables that will be
used in the following are listed, along with their respective
sizes. Note that Np will be defined in the following, and 0
and 1 are row vectors of, respectively, zeros and ones of
appropriate sizes. Note also that � and d are indices taking
values, respectively, in {1, . . . , Np} and {1, . . . , D}.
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A. Problem Statement

The proposed algorithm is based on fingerprinting, and
hence it consists of two phases: offline and online phases.
In the offline phase, Np offline positions, denoted by p�, �

∈ {1, . . . , Np}, are generated uniformly or randomly in the
studied region. Then, anchors broadcast signals in the
network at a fixed initial power. Meanwhile, a sensor is
temporarily placed at each offline position p� to detect the
anchors signals and to measure their RSSIs. All anchors
signals are assumed to be received at all offline positions.
Let ρ� = (ρa1,P�

. . . ρaNa ,P�
)� be the column vector of

RSSIs sent by all Na anchors and received at the position
p�. This way, a database of Np pairs (ρ�, p�) is obtained,
where � ∈ {1, . . . , Np}. Based on the information from the
database, the objective is now to define a function

ψ(·) : R
Na �→ R

D

that associates to each RSSI vector ρ� the corresponding
position p�. Kernel methods [22, 23] provide an elegant
framework to find the model ψ(·), where “ · ” is the
model’s input as will be shown in the following paragraph.
In the online phase, the defined model ψ(·) is used to
estimate the node’s position. Indeed, the node receives
signals from the Na anchors, at a given time, measures
their RSSI values, and stores them into a vector ρ. Its
estimated coordinates are then given by:

x̂ = ψ(ρ).

Note that the database construction and the computation of
the model ψ(·) are performed only once at a computation
center, in the offline phase. The model is then
communicated to the moving node that performs all
subsequent computations in the phase.

B. Definition of ψ(·) Using Kernel Methods

Univariate regression has been one of the biggest
concerns of researchers in the field of system modeling.
Regression analysis divides up into linear regression and
nonlinear regression. It is used to predict a continuous
dependent variable or response from a number of
independent variables or input variables. Here, the
objective is to find the model ψ(·) that associates to each
entry ρ� the corresponding output p�. Consider a set
{(ρ�, p�,d )}Np

�=1, where d ∈ {1, . . . , D}, and p�,d is an
element of p� = (p�,1 . . . p�,D). Let ψ(·) = (ψ1(·) . . .

ψD(·)), where ψd (·) : R
Na �→ R estimates the dth

coordinate in p� = (p�,1 . . . p�,D), for an input ρ�. The
functions ψd(·) to be determined are now univariate.

This section takes advantage of the kernel-based
machine learning to determine the functions ψd(·).
Consider a reproducing kernel (i.e., positive definite)
κ : R

Na × R
Na �→ R, and denote by H its reproducing

kernel Hilbert space (RKHS) with inner product 〈·, ·〉H.
From the reproducing property [22], every ψd(·) of H can
be evaluated at any ρ� ∈ R

Na by ψd (ρ�) = 〈ψd (·) ,

κ(·, ρ�)〉H. Table II shows some of the most commonly
used kernel functions.

TABLE II
Some Commonly Used Reproducing Kernels with Parameters c,σ > 0,

and q ∈ N+

Type General Form

Polynomial κ(ρs , ρs′ ) = (
c + ρ�

s ρs′
)q

Exponential κ(ρs , ρs′ ) = exp
( 1

σ
ρ�

s ρs′
)

Gaussian κ(ρs , ρs′ ) = exp
(
− 1

2σ 2

∥∥ρs − ρs′
∥∥2

)

The function ψd(·) is obtained by minimizing the error
between the model’s outputs ψd(ρ�) and the desired
outputs p�,d, namely, by minimizing the following
regularized empirical risk:

C ((p1,d , ψd (ρ1)), . . . , (pNp,d , ψd (ρNp
))) + ηR(‖ψd‖2

H),
(1)

where C is an arbitrary cost function, such as the mean
squared error, R is a strictly monotonically increasing
real-valued function on [0, ∞), and ‖·‖H is the norm in the
RKHS. Here, the second term is a regularization term,
with η a positive tunable parameter that controls the
trade-off between the fitness error and the complexity of
the solution as measured by the norm in the RKHS.

All machine-learning algorithms share the same
fundamental foundation: the representer theorem [23, 27].
It is a key property that underlines the success of the
kernel methods by allowing one to conduct all
optimization in a space whose dimension does not exceed
the size of the training set. According to this theorem, it
turns out that the problem can be reduced, without loss of
generality, to an optimization problem that is much more
computation friendly. Hence, the minimizer of the
regularized empirical risk (1) is of the following form:

ψd (·) =
Np∑
�=1

α�,dκ(ρ�, ·). (2)

In this way, the problem is described in a simpler form
such as to determine the α�,d, changing it into a finite
dimensional one, and the minimizer ψd(·) is expressed as
a finite linear combination of the kernels centered at the
training samples. In the following section, we show how
the weights in the defined models can be computed using
several forms of the cost function C and the regularization
term R.

For the sake of clarity, we introduce the notations used
in the following section. Let P = ( p�

1 . . . p�
Np

)�. The
matrix P is then of size Np-by-D having p�,d for the (�,d)th
entry and p� for the �th row. In the following, we denote p�

by P�,∗ and the dth column of P by P∗,d. The vector P∗,d

holds now all Np points for a fixed coordinate d. In a
similar manner, we define the matrix α whose (�,d)th
entry is α�,d. The dth column of α is now denoted by α∗,d

and the �th row of α by α�,∗.

III. LEARNING ALGORITHMS

As mentioned in the previous section, the objective is
to find a set of functions ψd(·), where d ∈ {1, . . . , D}, that
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associate to each RSSI vector ρ� the corresponding
coordinate p�,d. According to the representer theorem, this
function should have the form given in (2) in order to
minimize (1). The fitness term C and the regularization
term R of the general problem (1) can be written in
different forms, thus, leading to different optimization
problems and different solutions, as it will be shown in the
following. In the first two subsections, we consider two
different cases of the ridge regression in which the cost
function is based on mean squared loss. SVR is discussed
in the third subsection, where the cost function is taken
using hinge loss. Finally, a multitasking approach is
considered in the fourth subsection with the vo-RLS
algorithm.

A. Ridge Regression or LS SVM

The solution is first defined using the original form of
the optimization problem given in [23], i.e., the ridge
regression. In its original form, the fitness term of (1) is
taken using the mean squared loss, namely,

C ((p1,d , ψd (ρ1)), . . . , (pNp,d , ψd (ρNp
)))

= 1

Np

Np∑
�=1

(p�,d − ψd (ρ�))2.

This way, the function ψd(·) minimizes the mean
quadratic error between the model’s outputs ψd(ρ�) and
the desired outputs p�,d. As for the regularization term
R(‖ψd‖2

H), it is taken in its simplest form as ‖ψd‖2
H . Now

that we have defined the optimization problem, we can
write it as follows:

min
ψd∈H

1

Np

Np∑
�=1

((p�,d − ψd (ρ�))2 + η ‖ψd‖2
H . (3)

By injecting (2) in (3), we get the following dual
optimization problem in terms of α∗,d:

min
α∗,d

(
P∗,d − Kα∗,d

)� (
P∗,d − Kα∗,d

) + ηNpα�
∗,d Kα∗,d ,

where K is the Np-by-Np matrix whose (i, j)th entry is
κ(ρ i, ρ j), for i, j ∈ {1, . . . , Np}. This is a classical
quadratic regression problem, whose solution is given by
taking its derivative with respect to α∗,d and setting it to
zero:

−K P∗,d + K 2α∗,d + ηNp Kα∗,d = 0�.

One can easily find the following form of the solution:

α∗,d = (K + ηNpI)−1 P∗,d , (4)

where I is the Np-by-Np identity matrix. For an appropriate
value of the regularization parameter η, the matrix
between the parentheses is always nonsingular.

Equation (4) shows that the same matrix (K + η NpI)
needs to be inverted in order to estimate each coordinate.
Nevertheless, it is reasonable to collect all D estimations
(D being the space’s dimension) in a single matrix
inversion problem to reduce the computational complexity

to O(N3
p), by writing:

α = (K + ηNpI)−1 P . (5)

Using (2) and the definition of the vector of functions
ψ(·), we now define a model that allows us to estimate all
D coordinates at once, as follows:

ψ(·) =
Np∑
�=1

α�,∗κ(ρ�, ·). (6)

Now that we have considered a bias-free model, we
may also consider an offset in the model as in [28], with

ψ(·) =
Np∑
�=1

α�,∗κ(ρ�, ·) + b, (7)

where b is the bias parameter of size 1-by-D. We obtain
the following linear equations, with α and b being the
unknown variables:(

0
1�

1
K + ηNpI

)
×

(
b
α

)
=

(
0
P

)
.

B. Ridge Regression by Regularizing the α∗,d

In this subsection, we define the function ψd (·) ∈ H in
such a way to minimize the following regularized risk:

min
ψd∈H

1

Np

Np∑
�=1

(
(p�,d − ψd (ρ�)

)2 + η
∥∥α∗,d

∥∥2
. (8)

The relationship between the ridge regression using
the optimization problem in (3) and the optimization
problem in (8) will be shown in the following remark.
Substituting (2) into (8), the problem can be written in
terms of α∗,d as follows:

min
α∗,d

(
P∗,d − Kα∗,d

)� (
P∗,d − Kα∗,d

) + ηNpα�
∗,dα∗,d .

The solution is obtained by taking the derivative with
respect to α∗,d and setting it to zero, namely:

−K P∗,d + K 2α∗,d + ηNpα∗,d = 0�.

This leads to the following form of α∗,d :

α∗,d = (K 2 + ηNpI)−1 K P∗,d .

By collecting the D estimations into one problem as in
the previous subsection, we avoid inverting D times the
matrix (K2 + η NpI). We then get:

α = (K 2 + ηNpI)−1 K P .

Here, we may also consider an offset in the model as in
(7). We obtain the following linear system:(

0
1�

1
K 2 + ηNpI

)
×

(
b
α

)
=

(
0

K P

)
.

REMARK 1 In this paragraph, we show how the two
optimization problems in (3) and (8) are connected.
In fact, both problems have the form given in (1), the first
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term being identical; the difference then resides in the
second term, i.e., the regularization. From (3), we have:

R(‖ψd‖2
H) = ‖ψd‖2

H
= α�

∗,d Kα∗,d .

Using Rayleigh’s inequalities, we write:

λminα
�
∗,dα∗,d ≤ α�

∗,d Kα∗,d ≤ λmaxα
�
∗,dα∗,d ,

where λmin and λmax are, respectively, the smallest and the
largest eigenvalues of K. Therefore, we have:

λmin‖α∗,d‖2 ≤ ‖ψd‖2
H ≤ λmax‖α∗,d‖2.

By considering these inequalities, one can see that
minimizing ‖α∗,d‖2 results in minimizing ‖ψd‖2

H and vice
versa. In fact, on the one hand, the optimization problem
in (8) constrains the norm ‖α∗,d‖2 which leads to an upper
bound on ‖ψd‖2

H because ‖ψd‖2
H ≤ λmax‖α∗,d‖2. On the

other hand, in (3), the norm ‖ψd‖2
H is constrained,

providing an upper bound on ‖α∗,d‖2 as well because
λmin‖α∗,d‖2 ≤ ‖ψd‖2

H.

C. SVR

In this subsection, SVR and the ε-insensitive loss
function, introduced by Vapnik in [24], are used to find the
model ψd(·). In ε-support vector regression (ε-SVR), the
goal is to find ψd(ρ) that has at most ε deviation from the
target p�,d for all the training data, and that is, at the same
time, as flat as possible. In other words, errors are
accepted as long as they are less than ε. For this reason,
the optimization problem is taken as in (1), with the cost
term given by:

C ((p1,d , ψd (ρ1)), . . . , (pNp,d , ψd (ρNp
)))

= 1

2Np

Np∑
�=1

max(0, |p�,d − ψd (ρ�)| − ε).

As for the regularization term, it is set to
R(‖ψd‖2

H) = ‖ψd‖2
H . The two quantities η > 0 and ε ≥ 0

are tunable parameters that determine the trade-off
between the regularization and the fit to the training set.

The optimization problem can be solved more easily in
its dual formulation; for details, refer to [29, 30]. We get
the following dual optimization problem in terms of the
Lagrange multipliers α∗,d and α̃∗,d :

max
α∗,d , α̃∗,d

Np∑
�=1

α̃�,d (p�,d − ε) − α�,d (p�,d + ε)

−1

2

Np∑
�=1

Np∑
j=1

(α̃�,d − α�,d )(α̃j,d − αj,d )κ(ρ�, ρj ),

with the following constraints

0 ≤ α�,d, α̃�,d ≤ 1

2ηNp

, � ∈ 1, . . . , Np

Np∑
�=1

(α�,d − α̃�,d ) = 0. (9)

Solving the dual optimization problem with the
constraints (9) determines the Lagrange multipliers, and
therefore the regression function is given by:

ψd (·) =
Np∑
�=1

(α�,d − α̃�,d )κ(ρ�, ·) + b. (10)

The offset term b in (10) is obtained after solving the
optimization problem by exploiting the so-called
Karush-Kuhn-Tucker conditions [31, 32]. See [29] for
methods to compute the offset b.

Finally, the dual problem with the constraints in (9)
can be written as,

max
α∗,d ,α̃∗,d

2

(−ε1� + P∗,d

−ε1� − P∗,d

)� (
α∗,d

α̃∗,d

)

−
(

α∗,d

α̃∗,d

)� (
K −K

−K K

) (
α∗,d

α̃∗,d

)
subject to

(
1 −1

) (
α∗,d

α̃∗,d

)
= 0

α∗,d , α̃∗,d ∈
[
0, 1

2ηNp

]Np

.

We now have a quadratic programming problem,
whose solution is found using an off-the-shelf
optimization technique. For instance, one can use the
Matlab function quadprog.

D. vo-RLS

In the previous algorithms, D optimization problems
are set separately to define D univariate models ψd(·), one
per coordinate. In this subsection, a single optimization
problem is considered to estimate simultaneously all D
coordinates. To this end, a vector-output model ψ(·) is
determined by exploring multitask learning. Recently,
such learning has become essential for solving a variety of
practical problems that necessitate the estimation of
vector-output functions. For instance, in [33, 34],
Micchelli et al. presented a framework to study the
problem of learning vector-output functions, and the goal
was to extend the single-task kernel methods, which have
been successfully used in recent years, to multitask
learning. In [35], the authors showed that the representer
theorem could still be used in the case of multitask
learning. In this subsection, we take advantage of
multitask learning by using the vo-RLS algorithm [25] to
estimate all D coordinates at once. Therefore, we now
determine the function ψ(·), whose output is a position
vector of dimension D, without having to determine the
set of functions ψd(·).
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In multitask learning, ψ(·) takes the form:

ψ(·) =
Np∑
�=1

β� P�,∗κ(ρ�, ·),

where β�, � ∈ {1, . . . , Np}, are parameters to be defined.
We then consider the following optimization problem:

min
ψ

1

Np

Np∑
�=1

∥∥P�,∗ − ψ(ρ�)
∥∥2 + η ‖β‖2 , (11)

where β = (
β1 . . . βNp

)�
. By substituting the expression

of ψ(·) in the above optimization problem, we get, in
matrix form, the following problem formulation:

min
β

tr(P P�) − 2v�β + β�Gβ + ηNpβ�β, (12)

where tr(·) is the matrix trace operator, G is the Np-by-Np

matrix whose (j, k)th entry is

P j,∗ P�
k,∗

Np∑
i=1

κ(ρj , ρi)κ(ρk, ρi),

and v is the Np-by-1 vector whose jth entry is

Np∑
k=1

Pj,∗ P�
k,∗κ(ρj , ρk).

By taking the gradient of the objective function in (12)
with respect to β, namely, –v + Gβ + η Npβ, and
setting it to zero, we obtain the final solution:

β = (G + ηNpI)−1v.

Having calculated the vector β, it is now possible to
determine the needed model ψ(·). It is worth noting that
Np unknown variables need to be computed in this
algorithm, while Np × D unknown variables need to be
found for the previous algorithms.

IV. PRACTICAL SIMULATIONS AND RESULTS

In this section, we highlight the performance of our
method applied for different learning algorithms. To this
end, we show the results obtained when using each of the
learning algorithms described in this paper for different
scenarios. In the first subsection, the proposed method is
tested on simulated data, and the results are compared for
different machine-learning techniques. In the second
subsection, we test the performance of our method using
real data gathered in a 10 m × 10 m real indoor
environment [36]. In the final subsection, the results
obtained with the proposed method are compared to the
ones obtained when performing localization using
connectivity information as well as the WKNN algorithm
and the method that uses kernelized calculation proposed
in [20].

It is important to mention that in all of the following
sections, the choice of the regularization parameter η and
the kernel parameters are performed using the
cross-validation technique. This approach is a statistical

method that consists of dividing data into two segments:
one for training the model and the other one for validating
it [37]. The k-fold cross-validation, which is the basic
form of cross-validation, is used here; it consists of
partitioning the data into k roughly equally sized folds.
Subsequently, k iterations of training and validation are
performed such that, within each iteration, k – 1 folds are
used for learning and the remaining one for validation. In
each iteration, the error on the validation set is computed
for different values of the tuning parameters. Then, the
values for the parameters that give a minimum error for all
iterations are retained.

A. Evaluation of the Method on Simulated Data

We consider a 100 m × 100 m area and generate 16
static anchors and 100 offline positions uniformly
distributed over the area. The RSSI values needed to
construct the database of Np pairs (ρ�, p�), where � ∈
{1, . . . , Np} (Np = 100), are generated using the
well-known Okumura-Hata model [38] given by:

ρai , p�
= ρ0 − 10nP log10

∥∥ai − p�

∥∥ + εi,�, (13)

where ραi , p�
(in dB m) is the power received from the

anchor ai by the node at position p�, i.e., the ith entry of
the vector ρ�, ρ0 is the initial power (in dB m) set to 150,
nP is the path-loss exponent set to 4, ‖αi − p�‖ is the
Euclidian distance between the position p� of the
considered node and the anchor position ai, and εi,� is the
noise affecting the RSSI measures. We also generate a
trajectory and calculate the RSSI values collected by the
moving node using this RSSI model. In this paper, we
consider the Gaussian kernel given by:

κ(ρs , ρs ′) = exp

(
− ∥∥ρs − ρs ′

∥∥2

2σ 2

)
,

where σ is the bandwidth of the Gaussian kernel. This
quantity together with the regularization parameter η

control the degree of smoothness, noise tolerance, and
generalization of the solution. The cross-validation
technique allows us to find the proper values for the
parameters η and σ , considering ηNp = 2s with s ∈ {–20,
–19, . . . , –1} and σ = 2s ′

with s ′ ∈ {1, 2, · · · , 10}. Fig. 1
shows the generated trajectory and the estimated one using
noiseless RSSIs for different machine-learning algorithms
(in the case of a bias-free model), using a 10-fold
cross-validation to find the optimal σ and η. The
estimation error, measured by the root mean squared
distance between the exact positions and the estimated
ones, as well as the parameters σ and η, are shown in
Table III. We notice that the ridge regression and the
vo-RLS yield close results, and that the best result is
obtained when using the ridge regression from Section
IIIA; we obtain an estimation error of 0.17 m for σ = 27

and ηNp = 2−20. To evaluate the robustness of our method
against noise, we add a zero-mean Gaussian white noise of
standard deviation 1 dB to the RSSI values; the results are
shown in Table IV for the different learning algorithms.
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Fig. 1. Estimation of trajectory in absence of noise: uniform
distribution.

TABLE III
Estimation Error (in Meters) for Different Techniques: Simulated Data

without Noise

Learning algorithm η Np σ Error

Ridge regression 2−20 27 0.17
Ridge regression with bias 2−20 27 0.17
Ridge regression (α) 2−18 25 0.59
Ridge regression (α) with bias 2−20 25 0.70
0-SVR 2−8 26 2.22
0.1-SVR 2−10 25 1.10
0.25-SVR 2−8 26 1.72
0.5-SVR 2−10 25 3.13
1-SVR 2−18 25 1.37
2-SVR 2−9 26 2.23
vo-RLS 2−13 26 0.45

TABLE IV
Estimation Error (in Meters) for Different Techniques: Simulated Data

with Noise

Learning algorithm ηNp σ Error

Ridge regression 2−7 26 1.88
Ridge regression with bias 2−7 26 1.87
Ridge regression (α) 2−14 26 1.92
Ridge regression (α) with bias 2−16 26 1.95
0-SVR 2−8 26 2.46
0.1-SVR 2−8 26 2.69
0.25-SVR 2−7 26 2.67
0.5-SVR 2−8 26 2.35
1-SVR 2−8 26 2.42
2-SVR 2−9 26 2.36
vo-RLS 2−10 27 2.09

We notice that the best estimations are also obtained when
using the ridge regression and the vo-RLS.

As for the evaluation of the time complexity of our
method when using each of the aforementioned learning
algorithms, we measure the elapsed time for the training
phase for each one of them. Simulations are run on version

Fig. 2. Estimation error as function of number of anchors.

7.10.0.499 of Matlab on a Dell laptop with Windows 7 and
Intel

R©
CoreTM i7 CPU. For all the cases of the ridge

regression, the elapsed time for the training phase is
around 8 ms; it is around 25 ms for the vo-RLS and
around 15 s for the ε-SVR. It is worth noting that finding
the optimal values for the tuning parameters η and σ is the
most complex part in terms of computations and time
because one has to repeat the training phase depending on
the number of folds considered and on the range of the
variables. Indeed, finding the optimal values of η and σ ,
using a 10-fold cross-validation in our case, takes around
16 s for the ridge regression, around 50 s for the vo-RLS,
and more than 5 h for the ε-SVR. Hence, it is easy to see
that the ε-SVR has the worst performance when it comes
to studying time complexity and also estimation error. We
note that, in the online phase, the elapsed time to estimate
a trajectory point is around 0.3 ms when using the ridge
regression, around 1.7 ms with the vo-RLS, and around
1.5 ms with the ε-SVR. As for the evaluation of the
memory consumption of the method, we consider the
number of necessary variables in the online phase. For the
bias-free ridge regression, Np(Na + D) + 1 variables are
needed, whereas Np(Na + D) + D + 1 variables are
needed for the ridge regression with bias. Finally, Np (Na

+ D + 1) + 1 variables are needed for the vo-RLS, and
Np (Na + D) + D + 1 for the ε-SVR. One can see that
the bias-free ridge regression necessitates the smallest
number of variables in the online phase, while the highest
number of variables needed is for the vo-RLS because Np

is always higher than D.
We now study the effect of the number of anchors and

the number of offline positions on the performance of the
method. We consider noiseless data and the same scenario
as the one used in Fig. 1, but we vary the number of
anchors (Na = 12, . . . , 202) while keeping a fixed number
for the offline positions (Np = 100). In this paragraph, we
consider a bias-free model using the ridge regression
problem of Section IIIA with noiseless data because it
yields the best results in this case as shown before. Fig. 2
shows the evolution of the estimation error in terms of the
number of anchors. For the results in Fig. 3, we consider
the same settings, and fix the number of anchors to 16, but
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Fig. 3. Estimation error as function of number of offline positions.

TABLE V
Estimation Error (in Meters) for Different Techniques, Random

Distribution, and Noiseless Simulated Data

Learning algorithm η Np σ σ MSE Error

Ridge regression 2 × 10−8 63.36 0.23 0.33
Ridge regression with bias 2.08 × 10−8 62.72 0.40 0.45
Ridge regression (α) 1.30 × 10−8 39.68 0.61 1.13
Ridge regression (α) with bias 3.57 × 10−8 40.96 0.52 1.14
0.1-SVR 2−16 24 - 2.62
vo-RLS 1.46 × 10−3 72.96 0.27 1.25

vary the number of offline positions, Np = 52, . . . , 252. By
comparing the obtained results, one can notice that the
changes in the number of anchors do not affect the
estimation error as much as the changes in the number of
offline positions do. Indeed, increasing the number of
offline positions allows a better coverage and a better
knowledge of the environment, which explains the
improvement in the results. For instance, for Np = 252 =
625 and Na = 16, we get a low estimation error of
0.0045 m, but with a significant increase in the algorithm’s
complexity. Therefore, depending on the practical system
constraints, a trade-off should be found between the
algorithm’s accuracy and the computational load.

We now consider a random distribution of the 16
anchors and the 100 offline positions instead of the
uniform distribution. We repeat the experiment 50 times
for the ridge regression algorithms and only once for the
0.1-SVR. The 0.1-SVR is chosen for comparison because
it yields one of the lowest estimation errors in the
noiseless setup (Table III). However, the experiment is
done only one time because of the huge time complexity
of this algorithm. The mean estimation error, as well as the
mean values of σ and η, are shown in Table V in the case
of noiseless data and in Table VI in the case of noisy data
(zero-mean Gaussian white noise with standard deviation
1 dB). In both tables, σ MSE is the standard deviation of the
mean estimation error. Fig. 4 shows the generated
trajectory and the estimated one using noiseless RSSIs and
a random distribution. Compared to the results obtained
when having uniform distributions of the anchors and
offline positions, one can see that the estimation error

TABLE VI
Estimation Error (in Meters) for Different Techniques, Random

Distribution, and Simulated Data With Noise

Learning algorithm η Np σ σ MSE Error

Ridge regression 7.61 × 10−5 89.28 1.09 2.71
Ridge regression with bias 1 × 10−4 72.00 0.82 2.55
Ridge regression (α) 5.40 × 10−6 48.32 1.63 2.87
Ridge regression (α) with bias 2.60 × 10−6 47.36 0.57 2.55
0.1-SVR 2−6 26 – 2.83
vo-RLS 2.09 × 10−2 85.76 0.82 3.46

Fig. 4. Estimation of trajectory in absence of noise: random
distribution.

increases with the use of random distributions. This can be
explained by the fact that a uniform distribution allows a
better coverage of the region of interest, while a random
distribution does not always guarantee a good coverage of
the region. Nevertheless, the results are still satisfactory,
and random distributions can still be used for accurate
localization when uniform distributions are not applicable.

B. Evaluation of the Method on Real Data

In this subsection, we study the performance of the
method in the case of real collected data for different
machine-learning algorithms. The set of collected
measurements used in this study are available from [36].
The measurements are performed in a room of
approximately 10 m × 10 m, where 48 uniformly
distributed EyesIFX nodes are deployed. Furniture and
people in the room cause multipath interferences affecting
the collected RSSI values. Five nodes are chosen to be
anchors, leaving us with 43 nodes to use as offline
positions. However, to get better results, we generate 57
additional offline positions in order to get a total of 100
offline positions. This is done using a weighting function
that relies on the Euclidian distance between the existing
points and the new ones. We generate the trajectory in the
same manner and apply the proposed method to estimate
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Fig. 5. Estimation of trajectory: real data.

TABLE VII
Estimation Error (in Meters) for Different Techniques and Real Data

Learning algorithm η Np σ Error

Ridge regression 2−14 24 0.34
Ridge regression with bias 2−14 24 0.35
Ridge regression (α) 2−14 23 0.42
Ridge regression (α) with bias 2−20 24 0.56
0.1-SVR 2−3 23 0.41
0.25-SVR 2−3 23 0.53
0.5-SVR 2−3 23 0.62
vo-RLS 2−18 23 0.41

the node’s position as shown in Fig. 5. Table VII shows
the estimation error for different learning algorithms. The
lowest estimation error is again obtained with the ridge
regression of Section IIIA. The other results are also
satisfactory. However, the ε-SVR does not allow a rapid
localization because of its high complexity in terms of
computation time as explained previously.

C. Comparison to Other Localization Methods

In this subsection, we provide a comparison of our
localization method with respect to two well-known
localization techniques: localization by connectivity and
localization using the WKNN algorithm. Comparisons are
made toward the results obtained with the ridge regression
of Section IIIA because it yields the best results as shown
previously.

Localization by connectivity [12] is a simple technique
that only uses neighboring anchors information and RSSI
measures. All anchors are considered to have the same
transmission range, which is an ideal disk with an equal
transmission radius. A node’s position is given by finding
the intersection of all the range disks of the anchors
detected by this node. However, this technique can only
provide a coarse-grained estimate of each node’s location.
In addition, the localization error is highly dependent on
the node density of the network, the number of anchors,

TABLE VIII
Comparison of the Estimation Error of the Proposed Method to the

Connectivity-Based One With Noiseless Data

No. of anchors (Na)

16 64 81 100 196

Connectivity 7.44 3.20 3.02 2.61 1.92
Proposed method 0.17 0.51 0.61 0.65 0.22

and the network topology [39]. The results in Table VIII
shows the strong influence of the number of anchors on
the connectivity-based method, while our proposed
method yields good results in all cases. Moreover, our
method outperforms the connectivity-based method in all
cases, with a decrease of the estimation error of more than
75%. In terms of computation time, the connectivity-based
method does not need offline computations. However, if
we compare the online computation time in the case of 16
anchors, finding the position of a trajectory point with the
ridge regression takes about 0.3 ms as we already stated in
Subsection IVA, whereas the connectivity algorithm takes
around 3.8 ms. Furthermore, when estimating the whole
trajectory, that is 100 positions, the time needed for the
connectivity is even higher than the total complexity of the
online and offline phases together, using the ridge
regression or the vo-RLS. For all these reasons, the ridge
regression method seems to be the most convenient one to
the considered context because it globally presents the
best performance with the lowest overall complexity.
Moreover, when 196 anchors are deployed, the
connectivity algorithm takes about 150 ms to estimate a
point of the trajectory, while the ridge regression only
needs 0.5 ms. Therefore, we conclude that the ridge
regression method takes less time for the trajectory
estimation, compared to connectivity, once the model has
been defined.

The WKNN algorithm [19] relies on the Euclidean
distances between the RSSI values received by the node to
be localized and the fingerprints in the database to give an
estimation of the node’s position. Let δ� = ‖ρ − ρ�‖ be
the Euclidean distance between the RSSI vector ρ of the
mobile node and ρ� of the database where � ∈ {1, . . . ,
Np}. Also, let I be the set of indices of ρ� yielding the K
smallest distances (i.e., K nearest neighbors) δ�. Then, the
node’s position is estimated by:

x̂ =
∑
k∈I

wk pk,

where pk is one of the nearest offline positions
neighboring the node and wk is a normalized weight factor
depending on the kth minimal distance. The weight factor
is important in contributing to the position accuracy; in
fact, nearer neighbors should have higher weights, in order
to contribute more to the position coordinates compared to
farther neighbors (i.e. with lower weights). Therefore,
weights should be chosen in a decreasing manner with
respect to the distances. Weight values often considered in
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TABLE IX
List of Selected Weight Factors wk

Type Expression of wk

A 1/K

B 1/δk∑
v∈I 1/δv

C
1/δ2

k∑
v∈I 1/δ2

v

D
1/δ3

k∑
v∈I 1/δ3

v

E exp(−δk )∑
v∈I exp(−δv )

F
1

(
√

2πς)τ
exp(− δ2

k

2ς2 )

∑
v∈S

1
(
√

2πς)τ
exp(− δ2

v

2ς2 )

TABLE X
Estimation Error (in Meters) for Different Weight Models: Simulated

Data Without Noise

WKNN KBP Proposed Method

A B C D E F

4.36 2.74 2.13 2.34 3.61 4.66 0.17

TABLE XI
Estimation Error (in Meters) for Different Weight Models: Simulated

Data With Noise

WKNN KBP Proposed Method

A B C D E F

4.48 2.42 2.39 2.41 3.67 4.98 1.87

TABLE XII
Estimation Error (in Meters) for Different Weight Models: Real Data

WKNN KBP Proposed Method

A B C D E F

0.72 0.64 0.61 0.58 0.62 0.75 0.35

the literature are listed in Table IX and assigned as types
A–E. Table X shows the estimation error using WKNN for
different weight functions and the proposed method using
ridge regression with bias, in the case of noiseless
simulated data. On the other hand, in Table XI, the results
shown are obtained in the case of RSSI with additive
zero-mean Gaussian white noise of standard deviation
1 dB. In Table XII, estimation errors are presented for the
case of real data. Values of K are found using the 10-fold
cross validation for K ∈ 1, 2, . . . , 15. We notice that in all
the presented scenarios, the proposed method outperforms
the WKNN method. Also note that the WKNN algorithm
takes about 0.2 ms to estimate a trajectory point. It
outperforms the ridge regression in terms of time
complexity by little, but with less estimation accuracy.

As for the localization method proposed in [20], it also
uses weighted combinations of a set of fingerprints from
the training database. However, instead of using the K
nearest neighbors, the authors present a new method for

choosing this set of fingerprints. Indeed, they propose a
spatially localized averaging strategy wherein anchors
coverage information is used to retain a subset of spatially
relevant offline positions. This is done based on the
premise that offline positions close to the node at a given
step are covered by a similar set of anchors. They also
propose a real-time anchor selection algorithm, where they
first select the anchors yielding the strongest RSSIs. Then,
the correlation between RSSIs is considered in order to
obtain a representation with minimal redundancy,
reducing again the number of anchors. It is worth noting
that in the method in [20], many samples of RSSI are
collected for each offline position. However, since in our
simulations only one RSSI vector per offline position is
considered, the number of samples becomes equal to 1.
Then, the weight used in [20] is given by F in Table IX,
where S is the set of fingerprints obtained after the spatial
filtering, τ is the number of selected anchors, and δk is the
Euclidean distance between the RSSI vectors of the node
and the considered offline position, while only taking into
account the RSSI components corresponding to the
selected anchors. The parameter ς is chosen according to
the authors’ definition. The anchor selection is performed
on the five strongest anchors, then three of these anchors
are chosen using the redundant information. The smallest
estimation errors obtained for the different proposed
scenarios are given in Table X–Table XII. One can see that
our proposed method clearly outperforms the one in [20].
As for the time complexity of the latter, we found that the
elapsed time for the estimation of a trajectory point is
about 1.9 ms, which is much higher than the ridge
regression execution time.

V. CONCLUSION

In this paper, we proposed a new localization method
using radio-location fingerprinting and kernel-based
machine learning. Different machine-learning algorithms
have been applied, namely, ridge regression or LS SVM,
vo-RLS, and SVR. Simulation results show that the
proposed framework allows accurate localization in both
cases of simulated and real data. Moreover, our method
outperforms other localization techniques such as the
WKNN algorithm, for different weight models, and
localization by connectivity, for different numbers of
anchors. Future work will handle further improvements of
this method by correcting the estimated trajectory using
additional information such as past known location
information and acceleration. Improvements may also
include the introduction of a decentralized version of the
proposed method, making it more robust to failure in
imperfect environments. The use of multiple kernels in the
learning process may also be considered.
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