

Code Cognitive Complexity: A New Measure

Jitender Kumar Chhabra

Abstract- There are different facets of software complexity,
some of which have been computed using widely accepted
metrics like cyclomatic complexity, data/information flow
metrics, but very less attempts have been made to measure the
cognitive aspect of the complexity. The human mind's efforts
needed for the comprehension of the source code reflect a
different dimension of complexity, which is being measured in
this paper. There are two aspects of the readability of the
source code. One of these is spatial aspect and the other is
architectural aspect. This paper is an attempt to measure the
cognitive complexity of the source code, by integrating the
spatial distances, impact of control statements, and effect of
input & output parameters. The proposed metric is evaluated
against 5 different programs and also compared with
standalone metrics to prove its usefulness.

Index Terms-: Code cognitive complexity, code
spatial complexity, understandability,
psychological complexity, cognitive weights,
software metrics.

1. INTRODUCTION
 Since the inception of software engineering, complexity
measurement has been always a point of focus for the
researchers. Starting from well-addressed control flow based
McCabe’s cyclomatic complexity [1] and operator/operand
based Halstead’s science measures [2], researchers have
targeted to measure complexity using design aspects,
entropy[3], code’s comprehension, live members and
program weakness [4], [5] etc. and recently some
researchers have started exploring the cognitive aspect of
complexity.
 Concept of spatial complexity was initiated by Douce et
al [6], which was based on the theory of working memory
and was reported to affect understandability of source code
[7]. Spatial ability is a term that is used to refer to an
individual’s cognitive abilities relating to orientation, the
location of objects in space, and the processing of location
related visual information. Spatial ability has been
correlated with the selection of problem solving strategy,
and has played an important role in the formulation of an
influential model of working memory. Program
comprehension and software maintenance are considered to
substantially use programmers’ spatial abilities and proper
understanding of source code helps in effective debugging
and maintenance of the software. This concept of spatial
ability was further extended and strengthened by the authors
in [8] in form of code and data spatial complexity, and both
of these measures were found to be strongly correlated with
the perfective maintenance activities.

Dr Jitender Kumar Chhabra is associate professor with Department
of Computer Engineering at National Institute of Technology,
Kurukshetra-136119 (Institution of National Importance) INDIA (
email: jitenderchhabra@gmail.com)

Another measure of cognitive complexity was proposed
by Shao & Wang as Code Functional Size (CFS) in terms of
cognitive weights [9]. This measure was based on the
internal structure of the source code and assigned different
weights to Basic Control Structures (BCS) depending on
their psychological complexity. This idea was further
extended by also incorporating the effect of operators and
operands [10]. Both of these proposed metrics were based
on architectural aspect of genitive informatics.

Thus, there are two different dimensions of cognitive
complexity reported in the literature: spatial complexity and
cognitive-weight-based complexity. Each of these two
metrics is measuring a different cognitive aspect of the
software. Spatial complexity is based on the theory of
working memory and cognitive weights are based on the
architectural structure of the source code. Spatial complexity
treats equally all types of statements whether sequential or
iterative or recursive calls, which is not acceptable from
cognitive viewpoint [11]. Similarly cognitive weights
neither consider at all the individual’s spatial abilities of
orientation, location and processing of objects in the
working memory, and nor differentiate between
complex/structured data types from elementary data types.
So none of these two metric is alone sufficient to measure
the cognitive complexity in totality. Obviously it is desirable
to have a new metric of cognitive complexity, which should
reflect spatial as well architectural complexity of the source
code. This paper proposes a new metric named as Code
Cognitive Complexity (CCC) which is an attempt to
combine code's spatial complexity with the architectural
complexity of control statements as well as data types.

II. CONCEPT OF SPATIAL COMPLEXITY AND
COGNITIVE WEIGHTS

 The concept of the Code spatial complexity (CSC) was
introduced for the first time in the literature by the authors in
[8]. This type of cognitive complexity was based on the
spatial distance between the call of various modules from
their respective definitions. The basis of this measurement
was that the working of source code can be understood by
comprehending the purpose of every module, which needs
to recall its definition during its every use. The greater the
distance in lines of code between the definition and use of
the module, more is the cognitive effort required to
comprehend the connections of those modules in the
software [8]. The understanding will be easy for the module-
calls which are made immediately after its definition,
because the reader’s working memory contains the details
about the definition, and the call can be easily correlated
with its definition. On the other hand, if a module is called
after 500 lines of its definition, lot of searching/thinking has
to be done, as many modules details appearing in those 500
lines will get their place in the working memory of the
human mind, and recalling the details of a module read 500
lines earlier may not be easy. Based on these observations,
concept of code-spatial complexity of a module (MCSC)

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

was defined by [8] as average of distances (in terms of lines
of code) between the use and definition of the module i.e.

n

cetanDis
 MCSC

n

1i
i∑

== (1)

where n represents count of calls/uses of that module and
Distancei is equal to the absolute difference in number of
lines between the module definition and the corresponding
call/use.
Total code-spatial complexity of a software was defined as
average of code-spatial complexity of all modules, as shown
below

m
 CSC

m

1i
MCSCi∑

==
 (2)

where m is count of number of modules in the software.

Another dimension of cognitive complexity is the kind of
control structure as well as data [9]-[12]. The architectural
aspect of the control statements was reflected in cognitive
complexity with help of using weights of various types of
Basic Control Structures (BCS) (architectural differences of
data were not addressed at all). The modules’ calls were
used as a multiplying factor for the number of inputs and
outputs. But it is well established fact that code plays more
important role than data in complexity of procedure-oriented
software. Hence the computation needs to be code oriented
and data members’ impact needs to be integrated it with
that. This paper attempts to compute such code cognitive
complexity using the spatial complexity of the module
integrated with the cognitive weights of data as well as code.

III. CODE COGNITIVE COMPLEXITY
 Impact of call of a module on the working logic of
program can be understood through the parameters passed to
the module, then understanding the processing being done
on these passed data (inside the definition of module) and
then identifying the value(s) being returned by the module,
if any. Hence the cognitive complexity of the source code
depends on the type of control statements, various modules
& their parameters and return values. So a new measure of
cognitive complexity is proposed here for the first time in
literature which takes into consideration all of these defined
aspects. The cognitive weights are defined now not only for
the control statements, but also for the type of parameters. It
is obvious that a parameter passed through pointer require
more efforts for comprehension than a simple integer
variable. Similarly arrays and structures based
parameters/return-value are more complex than atomic data.
Hence a new refined and expanded table is given below
which consists of a more comprehensive list of all members
whose cognitive weights need to be considered while
measuring the cognitive complexity. The table covers all
different constructs used in programming such as iteration,
selection, sequence and different types of data such as
atomic variables, arrays, structures, points and more
complex combinations of these.

TABLE 1: Cognitive Weights of All Members needing
Integration with Spatial Distance

Category BCS Weight

Sequence Sequence 1
if then else 2 Branch
case 3
for – do, while, do-while 3

Iteration nested control statements 4
Constant Values 1 Constant

Data Enumerations &
defined constants

1

atomic & elementary 1
array (1-d)& structure 2

3 multi-dimensional
array & pointer based
indirection(single)

Variables

multiple indirection, pointer to
structure, etc.

4

In order to compute the code cognitive complexity,
cognitive complexity of every module call needs to be
computed. Corresponding to a module-call, the Module
Cognitive Complexity MCC is now defined as:

ip op

i

N +N

c
i=1

W *Distance+ WPMCC = ∑ (3)

Where Wc represents the cognitive weight of the control
statement from which the module call has been made.
Distance represents the spatial distance of module call from
its definition as defined in equation (1) above in section 2.
Nip & Nop represent number of input and output parameters
respectively of the module. WPi

 represents the cognitive
weight of parameter Pi. The formula of equation (3) is
proposed to integrate the effect of spatial ability as well as
cognitive weights. MCC is being computed as addition of
two components- first component represents the cognitive
complexity due to spatial distance and second component is
impact of input and output parameters of the module. The
basis of the computation of first component is that the
sequential call of a module is most easy to understand, and
hence uses the multiplying factor of 1 (cognitive weight of
sequence is 1). On the other hand, if a module is being
called from inside of nested loops & other control
statements, this call is likely to be largely influenced by
various conditions and computations done during each
iteration. Hence comprehension of such module calls needs
to contribute much more towards computation of cognitive
complexity as compared to a simple call. This is ensured by
use of multiplying factor as 4 (cognitive weight of nested
control structures is 4). Calculation of second component of
MCC is to reflect the impact of type of the parameter being
passed to the module and returned by the module. If the
input/output parameter is of primitive data type (int, char,
float, etc.) or a constant, then it is relatively easier to be
understood than a variable of type pointer to pointer or
pointer to structure and accordingly cognitive weights have
been defined in Table 1 above.

While computing the distance between the module

call and definition, the authors of [8] did not take into

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

consideration the possibility of searching from multiple-files
for the module's definition. The distance for a particular call
can be easily computed, if definition was present in the same
file, where call was made. But for module-calls made from
file not containing the definition, distance will depend on
many other files which reader needs to search, if he has no
idea about where it is present. The distance for such usage
can be defined as

Thus, the distance for that particular call of the
module can be computed as:
Distance = (Distance of call of the module from top of
current file)

+ (Distance of definition of the module from top of
file containing definition)

+ (0.1 * (total lines of code of remaining files)/2)

This formula is on basis of our experience that in more than
90 percent of the cases, the definition of the module is found
in either the file, where it is being used, or in the next file,
which the programmers looks into. But in remaining cases,
the programmer has to keep on searching in the other source
files, till he/she does not get the definition. For those cases,
we have taken the average distance of remaining files and
that has been multiplied by the worst-case probability i.e.
0.1 corresponding to remaining 10 percent cases [13].

The value of code cognitive complexity can be now
computed by averaging the MCC values for all calls. So
CCC is proposed as

ip op

i

()

j 1

N +N

c j
j 1 i=1

CCC (4)

(W *Distance(MC) + W ())

j

m
MCC MC

m

P j

m

MC

m

=

=

=

=

∑

∑ ∑

where m is count of all module calls in the software and
MCj represents the jth call.

IV. COMPUTATION OF CCC

In order to demonstrate the usefulness of CCC over CSC
and CFS, author has computed the value of CCC on some
programs of reasonable bigger size, having a mix of various
control statements and different data structures. The initial
study clearly indicates supremacy of this new proposed
metric over CSC and CCC. The following figure 1 shows
the value of CCC for 5 programs having increasing order of
complexity as judged by experienced programmers.

The program 1 was judged as easiest and program 5 as most
difficult to understand. The figure also shows the values of
lines of code (LOC) for these 5 programs. It can be observed
from the figure that the CCC values show a consistent
increase for more difficult programs, but LOC does not.

0

50

100

150

200

250

300

350

1 2 3 4 5Difficulty Level of understanding

Lines of Code CCC

Fig 1: LOC & CCC for 5 programs (programs in order of
increasing complexity)

The correlation of CCC with difficulty level of
understandability comes out to be 0.87, but correlation of
LOC is quite low (0.68). The following bar chart shows a
comparison of LOC with CCC, from which it can be
concluded, that CCC does not vary with LOC, but it
definitely varies according to difficulty level of
understandability.

0

50

100

150

200

250

300

350

1 2 3 4 5
Difficulty Level of Understanding

Lines of Code CCC

Fig 2: Correlation of CCC with LOC and Understanding

Level

V. COMPARISON OF CCC WITH CSC & CFS
The values of CCC metric do not differ significantly from
CSC and CFS for trivial programs like factorial, average etc.
But that is easily understandable as those programs have
very less cognitive complexity, and definition of new
proposed metric is supposed to handle higher levels of
cognitive complexity especially when cognitive weights and
spatial distance values will be higher. Showing those
experiments are beyond the scope of this paper, due to page
limits. Hence a sample program is written below, which uses
some of the constructs affecting the cognitive complexity
and this program is used to demonstrate the effectiveness of
proposed metric over the existing ones.

#include<stdio.h>
float div2int(int a, int b)
{

/* 5 lines of this modules having one if*/
}
char *insert_dll(struct node **start,float input[][30])
{

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

/* 10 sequential lines of having one if */
}
void main()
{
 .../*say 5 lines of initialization*/
 s=div2int(m1,m2);
 for (i=1;i<=m;i++)
 { ...

while (x->val<=y->val)
{ ...
 t1=insert_dll(st1,inpmatrix);
}

 }
}
This program uses two modules namely div2int() and

insert_dll(). The first module div2int() is very simple
module and has two integers as input and one output
parameter. On the other hand insert_dll() module is passed
two parameters including of double indirection, and returns
one value of pointer type. It is evident without any doubt
that comprehension of module insert_dll() is much more
than div2int() module. Hence the contribution of insert_dll()
should be more towards overall cognitive complexity of the
program. Further the calling of insert_dll() is from a nested
loop, which further increases the complexity of main().
When we compute the MCC of both of these modules using
equation (3), it will be

MCC (div2int)=1*20+3=23
MCC (insert_dll)=4*12+10=58

Based on these two values, the CCC will be as per equation
(4)
CCC=(23+58)/2=40.5
On contrary to the proposed metric, if the already existing
metrics are computed for the above program, then CSC will
reflect only spatial aspect, and CFS will reflect the
architectural aspect only. Let us have a look.
MCSC(div2int)=20
MCSC(insert_dll)=12 /*lesser than div2int*/
CSC=(20+12)/2=16
Similarly CFS is calculated as per [9], [14]. Here the source
code has assumed that internal structure of both modules use
one if statement. So
CFS(div2int)= (2+1)*2=5
CFS(insert_dll)=(2+1)*2=5 /*same as of div2int*/
CFS(main)=depends on number of i/p and o/ps (but
structure & type of input/output does not make any
difference)

The above sample code has already highlighted the
usefulness of proposed CCC metric. The CCC metric also
takes into account the cognitive complexity due to the
language. The CFS measure proposed by Shao et al. [9],
[14] has been reported to be same for the three different
languages (Pascal, C, Java). These results are contradictory
to the earlier studies of many researchers where all of them
have clearly mentioned that different languages have
different levels and language level has been reported to
affect cognitive efforts of understanding [2], [15]-[17].
Implementation of one algorithm in different languages can
have same algorithmic complexity, but not cognitive
complexity. Human comprehension level of the algorithm is
definitely dependent on type of the language as well as the
source code. Similarly the CSC measure is also not
appropriate, as it comes out to be lesser for a complex
module. Although CSC discriminates between different

languages, but its values computed for div2int() and
insert_dll() are not acceptable. But the proposed CCC
measure is a better indicator of the cognitive complexity as
it differentiates between complex and simple modules, and
also takes care of language level.

VI. FUTURE WORKS
The future work of this measure requires a detailed

empirical evaluation over large programs to find its
suitability. The cognitive weights defined here in this paper
are on basis of logical thinking and intuition of developers.
However it will be better to compute these weights using a
more scientific and statistical methods. There is also a
possibility of proposing a suite of metrics for cognitive
complexity instead of single measure and then conducting a
comparative study among these two approaches.

VII. CONCLUSION
 An attempt to measure source code's cognitive
complexity has been done in this paper. The proposed CCC
metric has been computed in a way that it takes into the
consideration of the spatial aspect of modules, architectural
differences of control statements and structural differences
of data. The theory of working of human memory towards
orientation and processing of data has been used to measure
the spatial complexity of the modules. The structural
complexity of various input/output parameters passed to
modules as well as the architectural complexity of control
statements originating the module-calls, have been
accounted using cognitive weights as proposed in Table 1
above. While defining the metric, possibility of developing
software using multiple source code files has also been
taken into consideration. The proposed measure has been
found to be closely related to the difficulty of understanding
of the 5 programs considered by the author. The paper also
demonstrates the better performance of CCC metric over
CSC and CFS metrics.

REFERENCES
[1] McCabe TJ 1976, A Complexity Measure, IEEE Transactions

on Software Engineering, vol SE-2, no 4, pp. 308-319.
[2] Halstead MH 1977, Elements of Software Science, North Holland,

New York.
[3] Harrison W 1992, An Entropy based Measure of Software

Complexity, IEEE Transactions on Software Engineering, vol 18, no
11, pp. 1025-29.

[4] Conte SD, Dunsmore HE, Shen VY 1986, Software Engineering
Metrics and Models, Cummings Pub. Coi. Inc. USA.

[5] Aggarwal KK, Singh Y, Chhabra JK 2002, Computing Program
Weakness using Module Coupling, ACM SIGSOFT, vol 27, no. 1, pp.
63-66.

[6] Douce CR, Layzell PJ, Buckley J 1999, Spatial Measures of Software
Complexity, Technical Report, Information Technology Research
Institute, University of Brighton, UK.

[7] Baddeley A 1997, Human Memory: Theory and Practice, Revised
Edition, Hove Psychology Press.

[8] Chhabra JK, Aggarwal KK, Singh Y 2003, Code & Data Spatial
Complexity: Two Important Software Understandability Measures,
Information and Software Technology, vol 45, no 8, pp. 539-546.

[9] Shao J, Wang J 2003, A New Measure of Software Complexity based
on Cognitive Weights, Canadian Journal of Electrical & Computer
Engineering, vol 28, no 2, pp. 69-74.

[10] Mishra S 2006a, Modified Cognitive Complexity Measure,
Proceedings of 21st ISCIS’06 Lecture Notes in Computer Science,
4263, pp.1050-59.

[11] Gold NE, Layzell PJ 2005, Spatial Complexity Metrics: An
Investigation of Utility, IEEE Transactions on Software Engineering,
vol 3, no 1, pp. 203-212.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

[12] Mishra S 2006b, A Complexity Measure based on Cognitive Weights,
International Journal of Theoretical and Applied Computer Science,
vol 1, no 1, pp. 1-10.

[13] Chhabra JK, Aggarwal KK, Singh Y 2004, Measurement of Object
Oriented Software Spatial Complexity, Information and Software
Technology, vol 46, no 10, pp. 689-99.

[14] Wang Y, Shao J 2003, Measurement of the Cognitive Functional
Complexity of Software, Proceedings of IEEE International
Conference on Cognitive Informatics, ICCI’03, 2003, pp. 67-74.

[15] Singh Y 1995, Metrics and Design Techniques for Reliable Software,
PhD Thesis, Kurukshetra University, Kurukshetra.

[16] Shen VY, Conte SD, Dunsmore HE 1983, Software Science
Revisited: A Critical Analysis of the Theory and its Empirical
Support, IEEE Transactions on Software Engineering, vol SE-9, no 2,
pp. 155-165.

[17] Kari Laitnen, “Estimating Understandability of Software
Documents”, ACM SIGSOFT, vol 21, July 1996, pp 81-92.

Author's Biography

Dr Jitender Kumar Chhabra, Associate Professor, Dept of
Computer Engg, National Institute of Technology,
Kurukshetra, has been always topper throughput his studies.
He did his B Tech Computer Engg from Regional Engg
College Kurukshetra & M Tech in Computer Engg from
Regional Engg College Kurukshetra (now National Institute
of Technology) as GOLD MEDALIST. He did his PhD in
Software Metrics from Delhi.
He has published more than 60 papers in various
International & National Conferences & Journals including
of IEEE, ACM & Elsevier. He worked as Software Engineer
in 1993 in Softek, Delhi, but later joined in R.E.C.
Kurukshetra in 1994. He is coauthor of Byron S Gottfried
for Schaum Series International book from MC Graw Hill
on "Programming With C" and his another book for
Conceptual & Tricky Problems of Programming for IT-
Industry has been published recently from Tata McGraw
Hill. He has also reviewed 5 books on Software Engineering
& Object Oriented Programming from various reputed
International Publishers. He has delivered more than 20
expert Talks and chaired many Technical Sessions in many
national & International Conferences of repute including of
IEEE in USA. He has visited many countries and presented
his research work in USA, Spain, France, Turkey, and
Thailand. His area of interest is Software Engineering, Soft
Computing & object-Oriented Systems.
He is Reviewer of IEEE, Elsevier, Springer & Wiley
Journals. One of his research papers has been published as a
Chapter in an International Book. He has been organizing
Secretary of two International Conferences and member of
steering Committee of many International Conferences. He
has worked in collaboration with multi national IT
companies Hewelett- Packard (HP) and Tata Consultancy
Services (TCS) in the area of Software Engineering. He has
been awarded with many prizes & awards like- International
Educator of year 2005, 2007, International Professional of
the year 2008, International Scientist of 2009, Best
Presenter, Best Project Award, National Scholarship,
President’s Scout etc. He has already guided one PhD
candidate and 3 PhD students are presently continuing their
research work in the area of software engineering.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

	Index Terms-: Code cognitive complexity, code spatial complexity, understandability, psychological complexity, cognitive weights, software metrics.
	1. INTRODUCTION
	II. CONCEPT OF SPATIAL COMPLEXITY AND COGNITIVE WEIGHTS

