Int. J. Autonomous and Adaptive Communications Systems, Vol. 4, No. 1, 2011 61

Autonomous and scalable failure detection in
distributed systems

Benjamin Satzger*, Andreas Pietzowski and
Theo Ungerer

Department of Computer Science,

University of Augsburg,

D-86135 Augsburg, Germany

E-mail: satzger@informatik.uni-augsburg.de
E-mail: pietzowski@informatik.uni-augsburg.de
E-mail: ungerer@informatik.uni-augsburg.de
*Corresponding author

Abstract: The growing complexity of distributed systems makes it more and
more difficult to manage them. Therefore, it is necessary that such systems will
be able to adapt autonomously to their environment. They should be
characterised by so-called self-x properties such as self-configuration or
self-healing. The autonomous detection of failures in distributed environments
is a crucial part for developing self-healing systems. In this paper, we introduce
algorithms to form monitoring relations and propose to utilise these for a
scalable autonomous failure detection. The evaluation of the developed
algorithms indicates that they are suitable for complex, large scale and
distributed systems.

Keywords: autonomous; scalable; adaptive; failure detection; distributed
systems; grouping; monitoring; self-healing.

Reference to this paper should be made as follows: Satzger, B., Pietzowski, A.
and Ungerer, T. (2011) ‘Autonomous and scalable failure detection in
distributed systems’, Int. J. Autonomous and Adaptive Communications
Systems, Vol. 4, No. 1, pp.61-77.

Biographical notes: Benjamin Satzger is a Researcher in the Department of
Computer Science, University of Augsburg. Currently, he is working on
techniques for self-organising and self-healing systems.

Andreas Pietzowski was a Researcher at the University of Augsburg and is now
working in a software company.

Theo Ungerer is Chair of Systems and Networking at the University of
Augsburg. Since 2003, he is also a Scientific Director of the Computing Center
of the University of Augsburg. His current research interests are in the areas of
embedded processor architectures, embedded real-time systems, ubiquitous
systems and organic computing.

Copyright © 2011 Inderscience Enterprises Ltd.

62 B. Satzger, A. Pietzowski and T. Ungerer
1 Introduction

The complexity of computer systems is steadily rising and especially distributed systems
interconnect growing numbers of more and more complex heterogeneous devices. IBM
has identified this trend as one of the major obstacles for the progress in the IT industry
(Horn, 2001). The initiatives organic computing (OC) (Schmeck, 2005) and autonomic
computing (AC) (Horn, 2001; Kephart, 2005) postulate so-called self-x properties for
these systems to keep them manageable. To achieve these goals both the OC (Richter
et al., 2006) and the AC community (Kephart, 2005) regard monitoring information as a
basis for organic or autonomic systems.

In this paper, we propose algorithms to establish monitoring relations within a
distributed system that enable them to monitor themselves in a scalable way. Amongst
others, such monitoring relations can be used for a scalable failure detection. This paper
is organised in seven sections. Section 2 introduces the concepts of failure detectors and
it is discussed that such algorithms are usually reduced to one node monitoring another.
Therefore, a further component is needed that determines who will monitor whom.
Related work is highlighted in Section 3. In Section 4, we introduce the generic, novel
concept of a monitoring network and based on that we state the problem of establishing
monitoring relations. Then, Section 5 describes three algorithms we have developed to
solve this problem. Section 6 presents the results of the evaluations we have conducted to
compare the algorithms and finally, Section 7 concludes this paper.

2 Failure detectors

Failure detectors generally provide information on failures of components of distributed
systems. This represents a crucial but non-trivial problem. Several impossibility studies
(Chandra etal., 1996; Fischer etal., 1985; Lynch, 1989) show that perfect failure
detectors cannot exist in asynchronous distributed systems. The major reason is the
impossibility to distinct with certainty whether a process has failed or the communication
network is just slow. Adaptive failure detectors (Chen et al., 2000; Fetzer et al., 2001;
Hayashibara et al., 2004) are able to adjust changing network conditions. The behaviour
of a network can be significantly different during high traffic times as during low traffic
times regarding the probability of message loss, the expected delay for message arrivals
and the variance of this delay.

Typically, distributed systems consisting of a finite set of processes or nodes are
considered with a local failure detector attached to each process (see for example
Chandra and Toueg (1996). Failure detectors identify processes they are suspecting to
have crashed. For a better insight, in the following one specific failure detection
algorithm (Satzger et al., 2007a,b) is presented.

As system model two processes p and g are considered, which are connected by a
communication channel. They can only communicate by sending and receiving messages.
Suppose that process p is monitoring ¢ and g sends heartbeat messages to p for every
A;=1sec. Process p manages a sampling window S with information about the
inter-arrival times of the last 1,000 heartbeats it has received. At a certain point during
runtime S could have the form: [1.083s, 0.968s, 1.062s, 0.861s, ...].

Autonomous and scalable failure detection in distributed systems 63

Furthermore, p stores the time of the last received heartbeat called freshness point f.
Based on the sampled inter-arrival times and f, the algorithm estimates the probability
that ¢ has failed. On the left hand, Figure 1 shows the values of S as a histogram. The
shape of the histogram depends mainly on A; and the communication channel connecting
q and p. In this particular example, A; is one second and the communication channel has a
message loss rate of 10% and a certain fluctuating message sending delay. The peak at
two seconds arises from one lost heartbeat message, the peak at three seconds arises from
two consecutive lost heartbeat messages, and so forth.

This histogram can be seen as an approximation of the probability density function of
the distribution of the inter-arrival times. Based on this histogram, the cumulative
frequencies of the values in S are easily computable. The cumulative frequencies in turn
can be seen as an approximation of the corresponding cumulative distribution function.
A cumulative distribution function (CDF) completely describes the probability
distribution of a real-valued random variable, in our case the inter-arrival times of
the heartbeat messages. The CDF F(#y) = P(X<t,) represents the probability that an
inter-arrival time takes on a value less than or equal to #,. The values of the CDF are also
a reasonable indicator for the crash of ¢g. Assume p is waiting since time ¢ for the next
heartbeat from q. F(¢4) =x means ‘p is waiting for the next heartbeat message since #,
seconds and the probability that no further heartbeat message arrives is x’. The longer p is
waiting for the next heartbeat the higher the values of F will be.

On the right side, Figure 1 shows the cumulative frequencies of the values in S that is
used as an estimation of the real CDF of the inter-arrival times and to compute a
suspicion value for the failure of ¢. Like many other algorithms, the discussed failure
detector only deals with one process/node monitoring another. To allow the nodes of a
distributed system to monitor themselves, a strategy is needed to determine who is
monitoring whom. The simplest way would be to let any two nodes monitor each other.
Obviously, within complex distributed systems, this is not practicable due to scalability
reasons. In this work, strategies are proposed to install monitoring relations among the
components of a distributed system in a way to maintain scalability. In the following
section, a survey of approaches for scalable failure detection is given.

Figure 1 A failure detection algorithm

o - =
=
- o
=3
o =
i
%" b3
w
i :
HES
a
3
- il
L2
N I.A“I o
N T

ime in zaconds time in seconds

64 B. Satzger, A. Pietzowski and T. Ungerer
3 Related work

To supply adequate support for large scale systems, hierarchical failure detectors define
some hierarchical organisation. Bertier etal. (2003) introduce a hierarchy with two
levels: a local and a global one, based on the underlying network topology. The local
groups are LANs, bound together by a global group. Every local group elects one leader
that is member in the global group. Within each group any member monitors all other
members. Different from Bertier et al. (2003), in this work the existence of some
classifying concept like a LAN is not required. Monitoring relations can also be built
within a network of equal nodes.

Gossiping is a method of information dissemination within a distributed system by
information exchange with randomly chosen communication partners. Baker and Shostak
(1972) discussed a gossiping system with ladies and telephones. They investigated the
problem of n ladies, each of them knows some item of gossip not known to the others.
They use telephones to communicate, whereas the ladies tell everything they know at that
time whenever one lady calls another. The problem statement was ‘How many calls are
required before each lady knows everything?’. Demers et al. (1987) pioneered gossiping
in computer science as a way to update and ensure consistent replicas for distributed
databases.

Van Renesse et al. (1998) have been the first using gossiping for failure detection to
cope with the problem of scalability. In their basic algorithm, each process maintains a
list with a heartbeat counter for each known process. At certain intervals every process
increments its own counter and selects a random process to send its list to. Upon receipt
of a gossip message the received list is merged with its own list. Each process also
maintains the last time the heartbeat counter has increased for any node. If this counter is
increased for a certain time then the process is considered to have failed. In addition to
this basic gossiping, the authors specify a multi-level gossiping algorithm that does not
choose the communication partners completely random but dependent on the underlying
network. Basically, they try to concentrate the traffic within subnets and to decrease it
across them. Thus, the scalability can be further improved. A disadvantage is that the size
of gossip messages grows with the size of processes that causes a relatively high network
traffic. Furthermore, the timeout to prevent false detections has to be rather high and
since every process checks failures of processes by its own, false detections cause
inconsistent information.

The SWIM protocol, based on the work of Gupta et al. (2001) and described in a
paper of Das et al. (2002), faces the mentioned drawbacks as it uses a separate failure
detector and failure dissemination component. The failure detector component detects
failures while the dissemination component distributes information about processes that
have recently either left, or joined, or failed. Each process periodically sends a ping
message to some randomly chosen process and waits for it to request. In this way,
failures can be detected and are then disseminated by a separate gossip protocol. The
separation of failure detection and further components as proposed in Das et al. (2002) is
taken up in this work. While in the previous section a failure detection component is
introduced, here it is dealt with the dissemination component.

Autonomous and scalable failure detection in distributed systems 65

Horita etal. (2005) present a scalable failure detector that creates dispersed
monitoring relations among participating processes. Each process is intended to be
monitored by a small number of other processes. In almost the same manner as in
systems mentioned above, a separate failure detection and information propagation are
used. Their protocol tries to maintain each process being monitored by k other processes.
As a typical number for k they declare 4 or 5. When a process crashes, one of the
monitoring processes will detect the failure and propagate this information across the
whole system. In addition to the description of their failure detector, Horita et al. compare
the overheads of different failure detection organisations in their paper. The grouping
mechanism of Horita etal. (2005) is based on a random construction of monitoring
relations. Each node selects a certain amount of randomly chosen nodes, which then
serve as its surveillants. Hence, it is not taken into account how well a node is suited to
monitor another. One motivation for this work is to take such an optimality criterion into
account.

In the following, monitoring networks and algorithms to form monitoring relations
are introduced and evaluated. This approach is independent from the used monitoring
component but can be used together with a failure detector as introduced above. The
separation of the monitoring itself and the formation of monitoring relations allows to
create generic services. As clarified above, the separation of information propagation and
monitoring has been identified as an important characteristic by many researchers. In the
area of scalable failure detectors, the consideration of the suitability of monitoring
relations has been neglected so far. For instance, the work of Horita et al. (2005) proposes
to choose surveillants randomly. To take suitability information into account can improve
the performance and reduce the overhead of monitoring components like failure
detectors.

4 Monitoring networks

A monitoring network Net, a network of monitoring relations, is represented as a triple
(N, M, s), where N is the set of nodes/processes of a network, M c N x N is the
monitoring relation and s is a function from N x N to a real value within [0, 1]. For each
tuple (u, v) € N x N, s(u, v) is the suitability of node u to monitor node v. This suitability
can depend on different aspects such as the latency of a connection, the reliability of a
node, its load and so on. If a node u is not able to monitor another node v at all, s(u, v)
should output 0. The monitoring relation defines which monitoring relations are
established, that is (#, v) € M means node u is currently monitoring node v. (u, v) € M is
also denoted with u — v. The relation M is irreflexive, that is it is not allowed that a node

*

is monitoring itself. The term —o is defined as all nodes monitoring v, that is

—v={ueN|u—v}. Similar, u— outputs all nodes u is monitoring, that is

u—)::{ueN|u—>u}.

66 B. Satzger, A. Pietzowski and T. Ungerer

Figure 2 Types of monitoring relations

! IX3 XS

4> >

@ —>

44—
<+

-

RANTRE 1K 1%

<+« —>

The task of a grouping algorithm is basically, given a monitoring network Net = (N, M, s)
and a positive integer m < ||, to establish monitoring relations such that every node of
the network is monitored by at least m nodes. In this work, two flavours of this problem
are distinguished, namely, individual monitoring relations also called dispersed
monitoring relations and closed monitoring groups. In the former, monitoring relations
can be set for each node individually while in the latter nodes form groups with mutual
monitoring relations. The number m of surveillants for each node can be defined by the
user. Typically, a higher number of surveillants not only provide a higher reliability but
also cause a higher overhead. In Figure 2 (left), an instance of individual monitoring
relations of a monitoring network is illustrated with m = 3. Thereby, the illustration of the
suitability information has been omitted. Figure 2 (right) shows a corresponding partition
of a network into monitoring groups. In the following, problem definitions of establishing
individual monitoring relations and monitoring groups are given.

4.1 Individual monitoring relations

A positive integer m, where m < |N|, establishes monitoring relations M such that Vn € N

holds | —n|=m . This means each node is monitored by m other nodes. Furthermore, the

algorithm should maximise the suitability of the grouping to establish adequate
monitoring relations. Therefore, the term

Z Z s(u,v)
veN "

UE—V

should be maximised by the grouping algorithm. The optimisation of the suitability is a
quality criterion for grouping algorithms, but it is not postulated that the algorithms
output an optimal solution as it is more important to find solutions in all cases as fast as
possible. The term monitoring group or simply group in the context of individual
monitoring relations can be understood as all nodes monitoring one particular node,
whereas the latter is the leader of the group. Thus, in a network of # nodes there are also

*

n groups: each node v € N is the leader of the group {v}U—v.

Autonomous and scalable failure detection in distributed systems 67

4.2 Closed monitoring groups

Different from the dispersed individual monitoring relations, a closed monitoring group is
a group of nodes in which all members monitor each other. In addition to the individual
monitoring relations, constraints regarding the monitoring relations M are holding: M
must be symmetric and transitive in order to produce closed monitoring groups. In
another point, the problem of finding monitoring groups is relaxed, compared to
individual monitoring relations, as it is not always possible to find groups of the size
m + 1 resulting in m surveillants per node in the group. If for instance a network has three
nodes and monitoring groups of size 2 need to be established, this leads to an unsolvable
problem. For such cases, also closed monitoring groups of bigger sizes are allowed. In

detail, the problem V n € N holds | >n|=m is relaxed to V n € N holds | »>n|>m. A
very simple solution to this problem is to combine the whole network into one group.

This is a valid solution as just |—»n|>m is postulated. However, the number of
surveillants per node should be as close as possible to m. This represents a soft constraint
similar to the maximisation of the suitability criterion.

Two nodes are in the same closed monitoring group if they are monitoring each other.
An additional requirement for such monitoring groups is that each group has one node,
which is declared as leader. Such a role is needed by many possible applications based
upon grouped nodes, for example to have one coordinator or contact for each group. An
instance where one leader per group is necessary is the formation of hierarchical groups.
Whether individual monitoring relations or monitoring groups are more adequate depends
on the environment and the monitoring task.

5 Grouping algorithms

Three grouping algorithms are introduced in this section, one to establish individual
monitoring relations, two to form closed monitoring groups. The algorithms are tailored
to solve these problems in a distributed manner. Furthermore, it is not assumed that all
nodes have information about all other nodes what would simplify the problem
significantly. The nodes of a self-monitoring network Net = (N, M, s) do not know about
the suitability s, that is how suitable other nodes are to monitor it, until they receive a
message from a node with information about that. The suitability also might change over
time. In the following, the usage and relevance of suitability metrics for monitoring
relations are discussed. Then, three algorithms are presented that provide the desired
grouping capabilities. To be able to establish suitable monitoring relations, the nodes of a
network need information about each other. Such information might be the quality of the
network connection of two nodes, the reliability of a node, and so on. Each node is
holding relevant information about a number of other nodes to allow the computation of
suitability information.

The establishment of monitoring relations within a network Net= (N, M, s) can be
based on different aspects. Therefore, the suitability function s has to be defined
accordingly. Note that the suitability information typically is not computable before
nodes receive information from other nodes. If it is, for instance, desired that nodes
should be monitored by nodes with a similar hardware equipment and a fast network

68 B. Satzger, A. Pietzowski and T. Ungerer

connection, the suitability function could be set to s(u,v) =[A(u,0) + n(u,v)]/ 2, where

(u, v) returns a value within [0, 1], indicating the similarity of the hardware equipment of
u and v, and n(u, v) returns a value within [0, 1], indicating the performance of the
network connection. Such a scenario would make sense if a fast network connection
improves the monitoring quality and in the case of an outage of a node, another node with
similar hardware equipment is likely to have the ability to inherit the tasks of the failed
node. Thus, the setting of the suitability function influences the establishment of
monitoring relations. The definition of a suitability function should reflect the
requirements of a monitoring system. All relevant factors should be included and
weighted according to its importance.

Now, three algorithms to establish monitoring relations in an autonomous distributed
way are presented: INDIVIDUAL, which constructs individual monitoring relations,
MERGE and SPECIES, which install monitoring groups. The idea of INDIVIDUAL is
very simple: each node tries to identify the m most suitable nodes and asks them to
monitor it. In the initial state of the algorithm MERGE, each node forms a group
consisting of one node which it is leader of. Groups merge successively until they reach
a size greater than m. SPECIES distinguishes between the two species leader and
non-leader. The specificity of a node is random-driven. Non-leaders try to join a group
whereas each group is controlled by one leader. In the case of an inadequate ratio of
leaders to non-leaders, nodes can change its specificity. This paper presents the basic
functionality of the algorithms. For a formal listing, it is referred to (Satzger and Ungerer,
2008) where you can find the pseudocode of all three algorithms.

5.1 Individual

Individual monitoring relations denote monitoring responsibilities set individually for
each node. Using the suitability function, nodes can identify suitable surveillants. The
most suitable ones are asked to monitor it. Therefore, nodes send monitoring requests to
other nodes and wait for their acknowledgement. This process is repeated until the node
has established m acknowledged monitoring relations.

A further requirement for individual grouping algorithms, which is omitted here could
be that each node u monitoring a node v needs to know all other nodes also monitoring v,

*

that is if # — o then u needs to know the set —v. This might be necessary as in the case
of a failure of v, all monitoring nodes could for example, have to hold some kind of vote
to gather a consistent view and to plan repairing actions, respectively. This feature of
closed monitoring groups could easily be integrated into INDIVIDUAL. This has not
been done in order to investigate the more general algorithm as stated here.

5.2 Merge

In this section, the MERGE algorithm is discussed that establishes closed monitoring
groups. Within these groups all nodes monitor each other. Every group has a group
leader. Typically, the initial situation is a monitoring network Net= (N, S, @) without
monitoring relations and a number m that determines the desired number of surveillants.
During the grouping of the nodes into monitoring groups, existing groups smaller than
m + 1 merge with other groups until the resulting group has enough members. Due to
this mechanism the maximal size can be limited by 2-(m + 1)—1. If there exists, for

Autonomous and scalable failure detection in distributed systems 69

example, a group of size 2-(m + 1), it can be split into two groups of valid size m + 1. The
group leaders that belong to a monitoring group smaller than m + 1, ask suitable other
group leaders to merge their groups. If this request is accepted the groups merge and the
requesting group leader must give off its leadership. The requested group leader is the
leader of the newly formed group. After such a merging process, the group leader informs
all members about the new group. Nodes that have lost the leadership adopt a completely
passive role in the further grouping process and are not allowed to accept merging request
from other leaders anymore.

Let us consider an example where m is 2, that is groups of minimum size 3 are
formed. In Figure 3 (left), two groups are examined, one consisting of Nodes 1 and 2
whereas Node 1 is leader and the other group consisting only of Node 3. Node 3 is
requesting the group of Node 1 to merge. After the merge process, a new group is formed
with exactly 3 members and Node 1 is leader of that group. Merge requests are never
denied by leaders. Thus, as you can see in Figure 3 (middle), it is possible that groups
that emerge have more than the desired m + 1 members.

If groups become greater or equal to 2-(m + 1), as illustrated in Figure 3 (right), a
splitting is performed resulting in two monitoring groups that both have at least m+1
members, what is enough to stop active merging activities. Thus, the resulting group sizes
of the MERGE algorithm are always between m + 1 and 2-(m + 1) — 1.

Figure 3 Functionality of the MERGE algorithm

@@@@
Lo o .o

O—2 Loy

oS0

Like the MERGE algorithm, SPECIES also installs closed monitoring groups. It is based
on the existence of two species: leader and non-leader. Leaders are group manager and
each group contains exactly one leader. Non-leaders contact the most suitable leader
trying to join its group. The specificity of a node is random-driven and dependent on the
value of m. Consider a network consisting of # nodes. The optimal number of leaders is
(n/m+1) as the following example illustrates: Within a small network of 12 nodes,

z;. -

5.3 Species

closed monitoring groups need to be installed with m =2, that is two surveillants per
node or groups of size three. The optimal case for that are four groups of size three.
Thus, (n/m+1)=(12/3)=4 leaders are needed and so non-leaders can join. Therefore,

the SPECIES algorithm selects every node as leader with probability (1/m+1) and
non-leaders otherwise. As it is worse to have too many leaders than too few, the

70 B. Satzger, A. Pietzowski and T. Ungerer

probability of a node to become a leader can be adjusted to, for example (0.8/m+1).

However, the random assignment of species to nodes does not guarantee a valid
distribution into leaders and non-leaders. Thus, if a leader recognises that there are too
many of them, they can toggle their species and transform into a non-leader. Vice versa,
if nodes cannot find leaders to join they transform into a leader with a certain probability.

The network shown in Figure 4 (left) contains too many leaders. In this case, m is 3
that means groups of sizes of at least 4 need to be formed. However, this is not possible
in this example. If no non-leader joins the groups smaller than 4, their leaders try
to contact other leaders in order to find groups with enough members to poach some
non-leaders. If this also fails, leaders then transform to non-leaders with a certain
probability. This happens with Node 7 in this example. After that transformation a valid
grouping is possible.

Figure 4 (right) shows the contrary situation as above; too few leaders are available,
in this case even none. If non-leaders are unable to find any leader, they become leader
with a certain probability. There are two cases how non-leaders join a group. If they do
not belong to a group yet, they themselves care to find a group and join it. Leaders
controlling an undersized group try to find oversized groups and ask their leaders to
handover non-needed members.

Figure 4 Functionality of the SPECIES algorithm

O—> ONO

| X
o @G-6| @9

ouo 3:

KO &L

6 Evaluation

An evaluation for the above introduced algorithms is provided in this section. For the
purpose of evaluating and testing, a toolkit has been implemented, which is able to
simulate distributed algorithms based on message passing. It is written in Java and allows
the construction of networks consisting basically of nodes, channels that connect two
nodes, and algorithms running on nodes. As the simulation runs on one single computer,
a random strategy selects the next node whose algorithm is executed partially. Thus, the
asynchronous behaviour of distributed systems is covered. It is assumed that the
communication channels do not drop messages and deliver them in the correct order.

The nodes of the monitoring network Net= (N, M, s) used for the evaluation are
theoretically arranged as a grid. The distance of two nodes u, » within the grid determines

Autonomous and scalable failure detection in distributed systems 71

their mutual monitoring ability. Thus, the suitability has been set to the reciprocal value
of the Euclidean distance of the nodes within the grid. The nodes have sufficient
information only about a certain number of nodes to compute a suitability value. This
models the concept that in many networks nodes do not know everything but have a
limited view.

The introduced grouping algorithms are evaluated within different scenarios. The
evaluation focuses on the scalability of the establishment of monitoring relations, the
optimality of the relations regarding the suitability metric, and the failure tolerance of a
system if failure detectors are used together with the grouping approach. The evaluations
have been conducted using different sets of parameters like the values for the desired
number of surveillants m and the amount of information about other nodes. Each
evaluation scenario has been replayed 1,000 times whereas the results have been
averaged.

Recall, a monitoring network Net is represented as (&, M, s), where N is the set of
nodes of a network, M < N x N is the monitoring relation, and s is a function from N x N
to a real value within [0, 1]. The task of a grouping algorithm is, given a positive integer
m <|N], to establish monitoring relations such that every node of the network is
monitored by at least m nodes.

As suitability function s(u, v), the reciprocal value of the Euclidean distance of the
nodes u and v is used. At the beginning the monitoring relation is empty, that is M = ¢.
This means that the network is in a state where no monitoring relations are established
yet. To model the fact that nodes do not have a complete view of the whole network, the
value « describes the part of the network each node is aware of. A value of ¥ = 10 means
that each node has information about 10 randomly chosen nodes. This information is
assumed to have been gathered by past communication processes with these nodes. In the
following, the results of the conducted evaluations are presented.

6.1 Scalability

Messages need to be sent to establish monitoring relations. In the following, this
overhead is evaluated for the proposed grouping algorithms. All experiments have been
conducted according to the description given above. First, the scalability regarding the
network size is evaluated. In this experiment, the number of desired surveillants m is set
to 5 while each node knows 50 other nodes, that is ¥ = 50. Figure 5 shows the results of
this experiment, whereas the values on the x-axis stand for the network size and the
average number of messages sent by each node is depicted on the y-axis.

As m is 5, each node executing the INDIVIDUAL algorithm needs 10 messages, 5
monitoring requests and 5 responses. MERGE needs less than 6 messages and SPECIES
less than 4. The results indicate that all three algorithms can be classified as being
independent from the network size, as the nodes basically do not send more messages
within a bigger network. The algorithm SPECIES performs even better in bigger
networks. The reason for this behaviour is the random-driven determination of the
specificity. The aim of that process is to achieve a division into leaders and non-leaders
of a defined ratio. In general, the bigger the network the better this ratio is met. Thanks to
the independence of the overhead caused by the grouping algorithms from the network
size, all introduced algorithms seem suitable to be applied within complex distributed
systems.

72 B. Satzger, A. Pietzowski and T. Ungerer

Figure 5 Scalability of grouping algorithms regarding network size (x = 50)

! ! : : Indivildual LI

z H H : : H

= ; ; ; ; Species ---#---

oy ; ; : : ; : ; :

e O

3

o

g 8r

&

i

g H H H H H H

— 6 e_-'-—)(---—)&—-a{--——)(""x "":":;::::%_’;:;:_'L;)'!'(:::;:'.".);ﬁ;;;:: oolLaa

o : : : : : :

T . . _ _ . _ . _
g e H H H ' ' '

S : : : : : :

=]

T

@

=

Lo

o i i i i i i i i
200 400 800 800 1000 1200 1400 1600 1800 2000
Netwaork size

The next section examines the monitoring relations with respect to their suitability
according to the suitability function. All following evaluations are conducted with a
network size of 1,000 nodes.

6.2 Suitability

As stated in the specification, the algorithms are supposed to take the suitability of the
nodes into account. This means the term

Z Z s(u,v) (1)

veN "
ue—v

should be maximised. The average suitability within the evaluation network is about
0.09. This means a random grouping produces monitoring relations of about that value.
Figures 6 and 7 show the results of the experiments concerning the suitability of the
algorithms for different values of x (10 and 100). This parameter represents the size of
the nodes’ view on the network. The x-axis represents the number of surveillants per
node, the y-axis depicts the average suitability of the formed groups based on Equation 1.
In all cases, smaller groups tend to result in better suitability values. SPECIES and
especially MERGE handle grouping with limited information very well. In the case of
full information about the network (x = 1,000), INDIVIDUAL would perform optimal.

Autonomous and scalable failure detection in distributed systems 73

Figure 6 Suitability of grouping algorithms (x = 10)

=
=
=
£
>
®
o
>
o
2
=]
[
o
©
i
@
>
<L
0

04

03 e

:' Individual —+—
Merge ---x---
Species ---%---

10 15 20 25 30 35

Average number of surveillants per node

Figure 7 Suitability of grouping algorithms (x = 100)

06
z 05
z
% 04
n
j=3
3
5 03
@

o
©
e 02
a
0.1
o]

6.3 Failure tolerance

I Individuall —
Merge ---¢--- 7
Species ---%---

5

i i
10 15 20 25 30
Average number of surveillants per node

In this section, the gain of applying the proposed grouping techniques with respect to
failure tolerance is investigated. To evaluate the failure tolerance of the monitoring
relations, the following methodology is used. It is assumed that a certain percentage of
randomly chosen nodes within the network fail simultaneously, that is they crash and do
not recover. Using failure detectors, nodes monitor each other according to the installed

74 B. Satzger, A. Pietzowski and T. Ungerer

monitoring relations by a grouping algorithm. It is assumed that failure detectors
eventually detect the failure of a node. An undetected failure means the failure of a node
that remains undetected. In this setting, this is only possible if a node and all its
surveillants fail simultaneously.

The detection of a failure is the prerequisite of a subsequent repair or self-healing,
respectively. If a node has no surveillant, its failure equals to an undetected failure. If in a
network any node monitors all other nodes, only the complete failure of the whole
network results in undetected failures. However, for more complex systems, the latter
monitoring strategy typically introduces an excessive overhead. Before the evaluation
results are presented, a short view on failure tolerance motivated by probability theory is
given.

Let X be the number of elements within a set, Y <X the number of elements within
this set possessing a feature F, and x <X the number of elements that are randomly
chosen from the set. The probability of & elements with feature F being in the randomly
chosen set is then

Y\[X-Y
()
X b
according to the hypergeometric distribution (Feller, 1970). Considering a network
Net = (N, M, s) and a number of surveillants per node of m < |N|. If ¢ random nodes of
the network fail, where m + 1 < ¢ <|N|, the probability for the undetected failure of a
certain node is
m+1 N|-m+1 N|-m+1
(mil)(‘¢—‘m+1r) (‘qﬁ—‘erIr)

N T
R
If ¢ is lower than m + 1, the probability for an undetected failure is obviously 0. If for
instance ¢= 10% of the nodes of a network Net = (N, M, s) consisting of 100 nodes fail,
whereas each node is monitored by m = 3 nodes, then the probability for a certain node
n € N to fail undetectably is:
N|-m+1 100-4
(‘gﬁ—‘m-#;r) (10—4)zS.IO_S.

) ()

The following simulations have been conducted as before with a network Net = (N, M, s)
of 1,000 nodes. Monitoring relations are established with all three proposed grouping
algorithms and different values for m. It is measured how many undetected failures occur
if a certain percentage ¢ of random nodes fail. All three algorithms show the same basic
behaviour while INDIVIDUAL performs slightly better than the other two algorithms.
The algorithm INDIVIDUAL performs best because it has no variance in the number of
surveillants. The parameter m exactly determines the resulting group size, that is the
number of surveillants. For closed monitoring groups this number varies. Figure 8
presents the result using the example of Individual. The x-axis shows the average number
of surveillants per node, the y-axis stands for the percentage of failed nodes and the
z-axis the number of undetected failures.

Autonomous and scalable failure detection in distributed systems 75

Figure 8 Failure tolerance of grouping algorithm INDIVIDUAL

700
700 S0
600 | 20
500

Z 400 |- 300
300 |- 200
200 |- 100
100 |- 0

0 (—

In all cases, the number of undetected node failures decrease with a higher number of
surveillants and a percentage of node failures. As you can see, undetected node failures
only occur with a low number of surveillants and many node failures. These results can
be used as a utility to choose an adequate value for the number of surveillants, which is a
balancing act between overhead and failure tolerance.

7 Conclusions

In this work, an approach for an autonomous, scalable failure detection in distributed
systems has been presented. In order to develop generic and flexible failure detection
services, the separation of the mutual failure detection task and the installation of
monitoring relations are preferable. We have formulated a novel precise problem
statement for the installation of monitoring relations, which takes suitability information
into account. Three algorithms have been devised, which solve this problem and have
been compared regarding their scalability, suitability, and the failure tolerance they are
providing. The evaluation shows that the overhead of all proposed algorithms is
independent from the network size. Therefore, they are suitable for complex, large scale
and distributed systems. Each algorithm needs only a very limited number of messages
per node in order to fully install monitoring relations. Existing algorithms dealing with
similar problems are either too complex for self-healing systems or unable to consider the
suitability of monitoring relations. The conducted evaluations and theoretical
considerations regarding the failure tolerance can be used to determine the necessary
number of monitoring nodes. The formation of hierarchical groups could further improve
the monitoring relations and could be a starting point for future work.

76 B. Satzger, A. Pietzowski and T. Ungerer

References

Baker, B.S. and Shostak, R. (1972) ‘Gossips and telephones’, Discrete Math, Vol. 2, No. 3,
pp-191-193.

Bertier, M., Marin, O. and Sens, P. (2003) ‘Performance analysis of a hierarchical failure detector’,
in Proceedings 2003 International Conference on Dependable Systems and Networks
(DSN 2003), pp.635—644, San Francisco, CA, USA, IEEE Computer Society.

Chandra, T.D. and Toueg, S. (1996) ‘Unreliable failure detectors for reliable distributed systems’,
Journal of the ACM, Vol. 43, No. 2, pp.225-267.

Chandra, T.D., Hadzilacos, V. and Toueg, S. (1996) ‘The weakest failure detector for solving
consensus’, Journal of the ACM, Vol. 43, No. 4, pp.685-722.

Chen, W., Toueg, S. and Aguilera, M.K. (2000) ‘On the quality of service of failure detectors’,
in Proceedings of the International Conference on Dependable Systems and Networks
(DSN 2000), New York: IEEE Computer Society Press.

Das, A., Gupta, 1. and Motivala, A. (2002) ‘SWIM: SCALABLE weakly-consistent infection-style
process group membership protocol’, in DSN, pp.303-312, IEEE Computer Society.

Demers, A.J., Greene, D.H., Hauser, C., Irish, W. and Larson, J. (1987) ‘Epidemic algorithms for
replicated database maintenance’, in Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, pp.1-12, Vancouver, British Columbia, Canada.

Feller, W. (1970) An Introduction to Probability Theory and its Application, Vol. 1, New York:
John Wiley and Sons.

Fetzer, C., Raynal, M. and Tronel, F. (2001) ‘An adaptive failure detection protocol’, in PRDC "01:
Proceedings of the 2001 Pacific Rim International Symposium on Dependable Computing,
p.146, Washington, DC, USA. IEEE Computer Society.

Fischer, M.J., Lynch, N.A. and Paterson, M.S. (1985) ‘Impossibility of distributed consensus with
one faulty process’, Journal of the ACM, Vol. 32, No. 2, pp.374-382.

Gupta, 1., Chandra, T.D. and Goldszmidt, G.S. (2001) ‘On scalable and efficient distributed failure
detectors’, in PODC: 20th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing.

Hayashibara, N., Défago, X., Yared, R. and Katayama, T. (2004) ‘The f accrual failure detector’,
SRDS, pp.66—78, IEEE Computer Society.

Horita, Y., Taura, K. and Chikayama, T. (2005) ‘A scalable and efficient self-organizing failure
detector for grid applications’, in SC’05: Proc. The 6th IEEE/ACM International Workshop on
Grid Computing CD, pp.202-210, Seattle, Washington, USA, IEEE/ACM.

Horn, P. (2001) Autonomic Computing: IBM’s Perspective on the State of Information Technology.
Available at: http://www.research.ibm.com/autonomic.

Kephart, J.O. (2005) ‘Research challenges of autonomic computing’, in /CSE '05: Proceedings of
the 27th International Conference on Sofiware engineering, pp.15-22.

Lynch, N. (1989) ‘A hundred impossibility proofs for distributed computing’, in PODC °89:
Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing,
pp-1-28, New York, NY: ACM Press.

Renesse, R.V., Minsky, Y. and Hayden, M. (1998) ‘A gossip-style failure detection service’,
Technical Report TR98-1687, Cornell University, Computer Science.

Richter, U., Mnif, M., Branke, J., Miiller-Schloer, C. and Schmeck, H. (2006) ‘Towards a generic
observer/controller architecture for organic computing’, in C. Hochberger and R. Liskowsky
(Eds), INFORMATIK 2006 — Informatik fiir Menschen, volume P-93 of GI-Edition — Lecture
Notes in Informatics, pp.112—119, Bonn, Germany, Kollen Verlag.

Satzger, B., Pietzowski, A., Trumler, W. and Ungerer, T. (2007a) ‘A new adaptive accrual failure
detector for dependable distributed systems’, in SAC 2007: Proceedings of the 22nd ACM
Symposium on Applied Computing, pp.551-555, New York, NY, USA: ACM.

Autonomous and scalable failure detection in distributed systems 77

Satzger, B., Pietzowski, A., Trumler, W. and Ungerer, T. (2007b) ‘Variations and evaluations of an
adaptive accrual failure detector to enable self-healing properties in distributed systems’, in
ARCS 2007: Proceedings of the 20th International Conference on Architecture of Computing
Systems, volume 4415 of Lecture Notes in Computer Science, pp.171-184, Springer.

Satzger, B. and Ungerer, T. (2008) ‘Grouping algorithms for scalable self-monitoring distributed
systems’, in Autonomics 2008: Proceedings of the 2nd ACM/ICST International Conference
on Autonomic Computing and Communication.

Schmeck, H. (2005) ‘Organic computing’, Kiinstliche Intelligenz, Vol. 5, No. 3, pp.68—69.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

