Stepwise and Asynchronous Runtime
Optimization of Web Service Compositions*

Philipp Leitner, Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040, Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract. Existing research work considers runtime adaptation of ser-
vice compositions as a viable tool to prevent violations of service level
agreements. In previous work we have formalized the optimization prob-
lem of identifying the most suitable adaptations to prevent a predicted
set of violations, and presented suitable algorithms to solve this problem.
Here, we introduce the idea of stepwise optimization as a solution to the
problem of how to deal with situations when the optimization result is
not available in time, i.e., when decisions need to be taken before the
optimization problem can be fully solved.

1 Introduction

In information systems based on the concept of Service-Oriented Architecture
(SOA), business processes are implemented as higher-level compositions of Web
services (service compositions [1]). Providers of service compositions often guar-
antee certain quality characteristics using service level agreements (SLAs). Ba-
sically, SLAs are collections of target qualities (service level objectives, SLOs)
and monetary penalties that go into effect if the promised target quality can-
not be achieved. Hence, providers of service compositions have strong incentives
to prevent cases of SLA violation. One promising approach to achieve this is
predicting violations at runtime, before they have actually occurred, and using
adaptation to prevent these violations [2,[3]. Evidently, an important part of
runtime adaptation is deciding which adaptations to apply. We argue that this
decision should be based on both, the costs of violation (the penalties associ-
ated with SLOs), and the costs of adaptation. We have presented a formaliza-
tion of this decision process as an optimization problem as part of our work
on the PREVENT (Event-Based Prediction and Prevention of SLA Violations)
project [4]. However, a limitation of the PREVENT approach so far is that it is
inherently assumed that the optimization problem can be solved in time, before
the first adaptation has to be applied. Even using fast meta-heuristics this is not
guaranteed, especially so for shorter service compositions.

* The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
215483 (S-Cube) and grant agreement 257483 (Indenica).

A. Bouguettaya, M. Hauswirth, and L. Liu (Eds.): WISE 2011, LNCS 6997, pp. 290-97, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Stepwise and Asynchronous Runtime Optimization 291

In this paper, we improve on this by proposing an asynchronous and step-
wise optimization model, in which we do not generate a decision for all adap-
tations at once. Instead, we run the optimization in parallel to the execution of
the composition. At so-called decision points we make a decision for only those
adaptations that absolutely need to be decided at that moment, update the op-
timization problem according to the made decisions, and continue optimizing for
all remaining possibilities for adaptation. Note that the contribution presented
here is not specific to the approach presented in [4]. Much more, the same ideas
are applicable for other runtime adaptation approaches facing similar problems
as well, e.g., [3].

2 Runtime Optimization of Service Compositions

The decision which combination of runtime adaptations is best suited to prevent
one or more predicted SLA violations in an instance of a service composition can
be formulated as an optimization problem. For this paper the concrete structure
of this optimization problem is not essential. However, for ease of understanding
we briefly summarize the formalization used in PREVENT, which is the basis of
the remaining discussions. This model has originally been presented in [4].

We assume the following inputs to the optimization. Let I be the set of all
possible instances of the service composition, and let i € I be one instance that
we need to optimize. Furthermore, let the relevant SLA be given as a set of SLOs
S ={s1,82,...5r}. Every SLO s has an associated penalty function, which gov-
erns the payment that the composite service provider has to pay based on a
measured SLO value ms. Penalty functions are defined as ps : R — R, s € S. We
refer to the collection of all penalty functions as P = {ps1, Ps2, - - - Psk }- Moreover,
let A ={a1,aq,...a;} be the set of all possible adaptations, and A* € P(A) one
concrete subset of adaptations. Applying adaptations transforms composition in-
stances, which we capture with the o operator (o : I x P(A) — I). For simplicity,
we assume that all adaptations have constant costs, defined as ¢ : A — R. How-
ever, adaptations are not necessarily independent, i.e., there can be constraints
on which adaptations can be selected at the same time. We use a simple penalty
term to express that two adaptations are mutually exclusive (v(A*) = oo if A*
contains at least one constraint violation, v(A*) = 0 otherwise).

With these definitions, we can can describe the total costs (T'C) of a composite
service provider for one instance of the business process as TC(A*) = v(A4*) +
Y s esPs(10A")+ >, 4. c(az) — min! In this definition, the first term is the
potential penalty for constraint violations in A*. The second term represents the
costs accrued via penalty payments for SLA violations. Finally, the third term
represents the costs of adaptation. Naturally, the goal of the provider is to select
A* so that T'C' is minimal for a given i.

Evidently, the exact penalties that have to be paid (ps, (i 0 A*)) are unknown
at runtime for any combination of adaptations (even if we do not apply any
adaptations, we still do not know for sure which SLOs are going to be violated).
However, we assume that it is possible to predict the penalty before and after

292 P. Leitner et al.

adaptation with a reasonably small estimation error, using a set of estimation
functions eg : I — R, s € S. We can then replace the penalty payments with their
estimation, leading to the following estimation: TC(A*) &~ v(A*)+>_ es, (io
A*) + 22, e a- clag) — min!

In practice, estimation can be implemented for instance use machine learning
based regression, as presented in [5l6]. Using this technique one can estimate
monitorable SLO values mg in advance, and use these estimated values to cal-
culate what the penalty will be after applying a given set of adaptations. This is
the approach that we have chosen to follow in the PREVENT framework, but in
principle our model is not restricted to these machine learning based estimation
functions.

M

3 Stepwise Service Composition Optimization

The problem presented in Section [2] can be solved at runtime, however, gener-
ating a good solution may be time-consuming. One promising approach that we
have utilized in PREVENT with good results are genetic algorithms [7] (GA).
In the remainder of the paper, we assume that the runtime optimization of A*
is implemented using GA, however, the general principles presented here still
apply if other means are used. However, even using GA, optimization is still
time-consuming. Therefore, in order not to delay the execution of the composi-
tion, it is desirable to execute the optimization asynchronously, i.e., in parallel
to the service composition. However, in this case we need to keep timing aspects
of the optimization and the composition in mind.

Before explaining optimization timing, we need to concretize what adaptation
actually means in the scope of this paper. In general, we assume that adaptation
can either be implemented via service rebinding, i.e., exchanging a service in
the composition for another, or via structural adaptation of the composition,
i.e., freely adding, removing or modifying activities in the composition. Figure[Il
exemplifies these types of adaptation. This adaptation model is in line with
related work, as other approaches to self-adapting compositions usually assume
similar possibilities for adaptation [8,[9]. The excerpt in Figure [I] is a small
part of an assembling case study presented in [4]. We will use this example in
the remainder of the paper. Note that even though we present our work on a
simple sequential process for simplicity, the same ideas can be used for arbitrarily
complex composition graphs, as long as they are circle-free.

For any adaptation of the types discussed above we can identify the affected
region in the service composition, i.e., the activities in the composition which
are affected by the adaptation. For rebinding, this is exactly one activity. For
structural adaptation the affected region may be arbitrarily large, but is still
always clearly defined. In the remainder of this paper, we use the term “begin-
ning of the affected region” (t¥) as the time that the first activity affected by
adaptation z starts to execute. In Figure[I] the beginning of the affected region
is indicated by X.

Stepwise and Asynchronous Runtime Optimization 293

Service Rebinding (Structural Adaptation)
Receive Receive Receive @ Receive @
RFQ RFQ RFQ RFQ
Invoke > Invoke Invoke ——p Invoke
Planning Fallback Planning 0 Planning e
Planning
Check Parts Check Parts Check Parts © ©
Check Parts Generate
o s Offer
enerate enerate Generate
Offer @ Offer Offer @
\ J L

Fig. 1. Types of Adaptation

3.1 Timely Optimization and Stale Results

Figure 2l showcases the timing of asynchronous optimization. For an instance of
the composition, an optimization is triggered at time ¢y (e.g., because SLO es-
timation mechanisms have predicted that this instance is going to violate its
SLA). A meta-heuristic optimization algorithm starts searching the solution
space. Meanwhile, the service composition continues executing. Firstly, assume
that at time t; the optimization has converged and delivers the result that two
adaptations have to be applied. For both actions the affected region has not yet
been reached, i.e., the optimization was timely and the result is useful. However,
if we assume now that the algorithm takes more time and delivers its result at
time to. Now, the activity “Invoke Planning” (P) has already been executed, and
part of the result (the decision to adapt P) came too late.

Intuitively, for every adaptation x with a defined affected region there is also
a decision point ¢3, the latest time in the execution of the composition when a
decision needs to be made. Assuming that we know ¢, and the time that the
application of the adaptation technically takes (d;), we can define the decision

TIMELINE
SERVICE trigger optimization
COMPOSITION
0+ HeRc:ge ®/ LT OPTIMIZATION
. decision: A
(T \& | adapt P, adapt C
tp Invoke e
aP Planning) P S Result:
- S Adapt P
ty T decision:
2 adapt P, adapt C Adapt C
tae —+— Check Parts C)
N
Generate
Offer @
_

Fig. 2. Optimization Timing

294 P. Leitner et al.

point of an adaptation as t% = t¥ — d,. We refer to an optimization result A*
produced at time ¢ as stale if 3a € A* : t§ < t. Stale optimization results cannot
be applied in full anymore when they are available, and evidently should be
avoided.

3.2 Stepwise Optimization

Two approaches can be used to handle the problem of stale results. Firstly,
one can decide not to deal with the problem at all, ignoring stale adaptations
and applying only what is still possible when the result becomes available. This
approach is very simple, and even in the worst case this is at least never worse
than not doing optimization to begin with, even if the result may be suboptimal
in the presence of stale results. Secondly, one can drop the idea of asynchronous
optimization and halt the service composition while the optimization is running.
This trivially prevents stale results, but severely degrades the performance of
the service composition. It is well possible (if the optimization takes more time
than what can be gained using adaptation) that using this approach is actually
worse than not doing any optimization at all. It is easy to see that both of these
ideas are not optimal.

TIMELINE

SERVICE trigger optimization
COMPOSITION

OPTIMIZATION
. 4 Receive ~
0 RFQ decide on P
® '
Result:
Adapt P
Adapt C . /

Invoke adapt P

Planning

<®—(D<

decide on C

g et |

Check Parts B,
adapt C L

Generate
Offer @

o
I
I
X

_
Fig. 3. Stepwise Asynchronous Optimization

Hence, we now introduce stepwise asynchronous optimization as an alternative
principle to prevent stale results. The general approach is sketched in Figure Bl
First of all, we order all adaptations according to their decision points. Ac-
tions with identical decision points (t3 = t¥) are collected in decision sets (D;).
Let t¥ be the decision point of a decision set D,, defined as the decision point of
all adaptations contained in the set (Va € D; : t4 = t%). In the figure, two deci-
sion sets with decision points £ and t¢ exist. The first decision set contains only
the action “Invoke Planning” (P), the second contains only the action “Check
Parts” (C).

As before, an optimization is triggered at to. However, results are now deliv-
ered differently as in the nalve approach sketched before. Instead of waiting for

Stepwise and Asynchronous Runtime Optimization 295

N
J

apply adaptation (a)
adapt target function(a, decision, opt)

1 decide(DecisionSet ds, Optimization opt):
2

3 suspend process ()

4

5 foreach(Adaptation a in ds):

6 decision = decide on adaptation(a, opt)
7 if (decision == true)

8

9

0

1

resume process ()

M=
k

Fig. 4. Decision Procedure for Stepwise Optimization

the optimization to converge, we now trigger the decision procedure sketched in
the algorithm in Figure @ when ¢¥ and ¢¢ are passed.

For every decision point associated with a decision set, we briefly halt the com-
position and decide on all adaptations associated with this set. If it is decided
to apply one or more adaptations, we do so. Finally, we resume the composi-
tion. This way, instead of producing the solution for the optimization problem
in one big bang (and risking that the result arrives too late), we use a stepwise,
constructive approach which defers all decisions about adaptations to the latest
possible time, but never later. Hence, results are never stale, and the service com-
position needs to be halted only briefly. Note that it is generally advantageous
to wait as long as possible before making a decision (per definition, that means
waiting until ¢3), under the assumption that the quality of a decision is monoton-
ically increasing with optimization time. This is true for most implementations
of optimization algorithms, including GA (if elitism is used).

The decision algorithm in Figure [contains three separate challenges. Firstly,
one needs to be able to apply adaptations at runtime (Line 8). We do not discuss
solutions for this problem here, and refer the reader to existing work instead [4].
Secondly, we need to be able to actually make a decision on a single adapta-
tion based on a still ongoing optimization (Line 6). One simple, yet promising,
strategy is to base the decision on the best currently known intermediary re-
sult, i.e., decide to apply an adaptation if and only if the currently best known
solution applies the adaptation. We refer to this strategy as current-optimum
based decision. Thirdly, after deciding on an adaptation, the target function of
the optimization problem needs to be modified. This is to reflect the fact that
whenever a decision is made (and a given adaptation is applied or rejected) the
underlying problem of the ongoing optimization has in fact changed. If the adap-
tation has been applied, all solutions that do not use this adaptation are invalid.
Similarly, if the adaptation has not been applied, all solutions using the adap-
tation are invalid. This change is easily represented using an additional penalty
term v, in the target function. For instance, if a, is applied, a new penalty term
vy defined as v, (A4*) = 00 if a, & A*, and v, (A*) = 0 otherwise, is added to the

296 P. Leitner et al.

target function. Hence, in Line 9 of the algorithm, we pause the optimization
algorithm, add an additional constraint for each adaptation in the decision set
and resume optimizing.

4 Related Work

The general idea of optimizing running composition instances is related to the
larger research field of QoS-aware service composition. QoS-aware service com-
position is usually a static process, which aims at finding the best instantia-
tion of an abstract composition before or during deployment. The optimization
problem is finding the most suitable combination of concrete services. The sem-
inal work that introduced this idea already dates back to 2004 [10], however,
newer research is still able to provide new insights. For instance, [11] defined a
domain-specific language from which dynamic QoS-optimized compositions are
generated. [12] improved on the methods of optimization that are used in QoS-
aware composition, and proposed to use a combination of local selection and
global optimization. The approach presented in this paper differs from all these
contributions in that we do not consider optimization statically. Indeed, tradi-
tional QoS-aware composition does not face the problem of timeliness at all, as
optimization is done once and is not repeated for every problematic instance,
as it is the case in our approach. The research work most closely related to
this paper is work on runtime adaptation of service compositions. First ideas on
self-adaptive compositions can be found in [13], even if this work is more closely
related to adaptive workflows than service compositions. Recently, work in this
area seems to have gravitated towards using the aspect-oriented programming
(AOP) paradigm to technically implement adaptation, as exemplified by [9L[14].
Other approaches use pure service rebinding [8] or parametrization of composi-
tions [I5]. The PREVENT framework [2] supports adaptation on many different
levels, and forms the basis of the research work presented in this paper. Other re-
search of note in the area of adaptation include [3], which uses machine learning
techniques similar to the mechanisms used in PREVENT to trigger adaptation.
All of these approaches have a similar base premise (optimization of the perfor-
mance of a service composition through monitoring and runtime adaptaption),
but none discusses timing aspects explicitly. We argue that our work is com-
plementary to all these approaches, and similar ideas as discussed here may be
worthwhile to incorporate in any framework that aims at optimizing running
composition instances.

5 Conclusions

In this paper we have introduced the problem of stale results in the optimization
of service compositions, and proposed stepwise optimization as a possible solu-
tion to tackle this issue. As future work, we plan to investigate how appropriate
stepwise optimization is for usage with different optimization algorithms, e.g.,
Ant Colony Optimization or Simulated Annealing, and compare the stepwise
optimization approach with quick construction heuristics.

Stepwise and Asynchronous Runtime Optimization 297

References

10.

11.

12.

13.

14.

15.

. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International

Journal of Web and Grid Services 1, 1-30 (2005)

. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, Prediction and

Prevention of SLA Violations in Composite Services. In: ICWS 2010, pp. 369-376
(2010)

. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.:

Adaptation of Service-Based Applications Based on Process Quality Factor Anal-
ysis. In: MONA+, pp. 395-404 (2009)

. Leitner, P., Hummer, W., Dustdar, S.: Cost-Based Optimization of Service Com-

positions. Technical Report TUV-1841-2011-1, Vienna University of Technology,
Austria (2011)

. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.:

Runtime Prediction of Service Level Agreement Violations for Composite Services.
In: NFPSLAM-SOC 2009, pp. 176-186 (2009)

. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service

Prediction. In: Bouguettaya, A., Krueger, 1., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 147-161. Springer, Heidelberg (2008)

. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley Professional, Reading (1989)

. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework

for Executing Adaptive Web-Service Processes. IEEE Software 24, 39-46 (2007)

. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World

Wide Web 10, 309-344 (2007)

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Soft-
ware Engineering 30, 311-327 (2004)

Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An End-to-
End Approach for QoS-Aware Service Composition. In: EDOC 2009, pp. 151-160
(2009)

Alrifai, M., Risse, T.: Combining Global Optimization With Local Selection for
Efficient QoS-Aware Service Composition. In: Proceedings of the 18th International
Conference on World Wide Web (WWW 2009), pp. 881-890 (2009)

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and Dy-
namic Service Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 13-31. Springer, Heidelberg (2000)

Leitner, P., Wetzstein, B., Karastoyanova, D., Hummer, W., Dustdar, S., Leymann,
F.: Preventing SLA Violations in Service Compositions Using Aspect-Based Frag-
ment Substitution. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 365-380. Springer, Heidelberg (2010)
Karastoyanova, D., Leymann, F., Nitzsche, J., Wetzstein, B., Wutke, D.: Parame-
terized BPEL Processes: Concepts and Implementation. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 471-476. Springer, Hei-
delberg (2006)

	Stepwise and Asynchronous Runtime Optimization of Web Service Compositions
	Introduction
	Runtime Optimization of Service Compositions
	Stepwise Service Composition Optimization
	Timely Optimization and Stale Results
	Stepwise Optimization

	Related Work
	Conclusions
	References

