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Abstract Many of today’s most successful planners

perform a forward heuristic search. The accuracy of the

heuristic estimates and the cost of their computation

determine the performance of the planner. Thanks to the

efforts of researchers in the area of heuristic search plan-

ning, modern algorithms are able to generate high-quality

estimates. In this paper we propose to learn heuristic

functions using artificial neural networks and support

vector machines. This approach can be used to learn

standalone heuristic functions but also to improve standard

planning heuristics. One of the most famous and successful

variants for heuristic search planning is used by the Fast-

Forward (FF) planner. We analyze the performance of

standalone learned heuristics based on nature-inspired

machine learning techniques and employ a comparison to

the standard FF heuristic and other heuristic learning

approaches. In the conducted experiments artificial neural

networks and support vector machines were able to pro-

duce standalone heuristics of superior accuracy. Also, the

resulting heuristics are computationally much more per-

formant than related ones.

Keywords Planning � Artificial neural network � Support

vector machine � Search heuristic � Regression

1 Introduction

Planning is a concept to enable computer systems to reason

about actions. It can be used to build intelligent goal-driven

computer systems. In such a way one can specify what is

expected from the system, while it is able to autonomously

determine how this can be achieved. Due to the progress in

defining heuristics which estimate the goal distance of

planning states, forward search within the space of planning

states is one of the most successful and prominent planning

approaches. Heuristics are used to guide search in state-

space. A common approach for heuristic estimation is to

construct an easier to solve relaxation of a planning problem

and to use the solution to the relaxed problem as heuristic for

the original problem. One of the best performing planners,

Fast-Forward (FF) (Hoffmann 2001), is based on this idea. It

does not guarantee to always find the shortest solution and

thus belongs to the category of non-optimal planners.

This work aims at learning goal distance estimates based

on methods from natural computing, such as artificial

neural networks (ANNs) (Rumelhart et al. 1988) and sup-

port vector machines (SVMs) (Cortes and Vapnik 1995),

with solved problem instances as training data. In contrast

to the FF heuristic that relies on solving relaxed planning

problems, the learned heuristics are able to extract relevant

knowledge about a domain during the training phase and

allow for a fast retrieval of estimates subsequently. ANNs

are biologically inspired and SVMs are closely related to

ANNs (Swiercz et al. 2008). A SVM model using a sig-

moid kernel function is equivalent to a two-layer percep-

tron neural network. Both are well-known machine

learning techniques. To the best of our knowledge, there is

no approach for automated planning goal distance estima-

tion using ANNs and SVMs. Also, other researchers have

not investigated purely learned standalone heuristics. The
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most related approach by Yoon et al. (2006, 2008), which

also applies learning to generate search heuristics, is based

on augmenting the FF heuristic. Our experiments show that

the standalone heuristics based on ANNs and SVMs out-

perform both FF’s heuristic and the heuristic presented by

Yoon et al. in terms of accuracy and computational over-

head for generating heuristic estimates. Also, the training

needs orders of magnitudes less time compared to the

Obtuse Wedge1 (OW) planner that implements the

approaches describe in Yoon et al. (2006, 2008).

However, in contrast to most research in the area of

learning-assisted planning (including OW), in which the

planning problems comprising the training data may be of

different size from the planning problems that can be handled

by the learned heuristics, in this work the learned heuristics

are only applicable if the characteristics of the test and

training problems are the same. There are many practical

scenarios in which this limitation does not affect the useful-

ness of our approach. In fact, the application scenario that led

to this work is to use intelligent agents for controlling com-

plex computer systems. Agents use automated planning to

figure out, which actions need to be executed in order to keep

the system well configured. The agent is committed to goals

established by the administrator of the computer system.

Planning actions are defined by the abilities of the agent to

influence and reconfigure the system. Monitoring and sensing

gathers the current state of the system. An advantage of this

use-case is that humans only need to define high-level goals,

while the agent is responsible for complying with them. This

can be used for shifting management responsibilities from

humans and to create systems with self-management capa-

bilities, as described in Satzger et al. (2008). In such sce-

narios the managing agent would have to deal with planning

problems of the same size, for which the goals do not change

(at least over a longer period of time). Motivated by the

introduced use-case the heuristic learning approach presented

in this paper is based on the assumption that problem sizes

and goals do not change. In this use-case, the agent in charge

of controlling the computer system could initially be based on

a traditional planner, which would be used to figure out

necessary management actions by solving planning prob-

lems. The solutions can be reused as training input for the

heuristics proposed in this work; when the agent has gathered

enough experience the planning can be based on learned

heuristics, providing a significant performance benefit. In the

conclusion section we discuss approaches to support gener-

alization and changing goals.

In previous publications (Satzger et al. 2010; Satzger

and Kramer 2010) we have introduced the general idea of

using machine learning for generating search heuristics for

planning. However, this work uses different machine

learning approaches and a different evaluation methodol-

ogy. In particular, SVMs, one of the most popular and

powerful machine learning approaches, have not been

considered. Also, previous work does not investigate the

scalability of the heuristics with respect to problem size nor

the training times. The evaluation presented in the paper is

based on comparing results with an oracle, an approach not

used in previous work. Finally, it includes a comparison to

the learning-augmented heuristics implemented in OW.

The main contributions of this paper are:

1. application of ANNs and SVMs to goal distance

estimation in automated planning,

2. comparison of purely learned standalone heuristics to a

standard heuristic (i.e., the FF heuristic) and learning-

augmented heuristics (e.g., OW), and

3. experimental evaluation of all considered techniques.

The remainder of the paper is structured as follows.

Section 2 gives a rough overview of automated planning

approaches and introduces heuristic search planning.

Related work in the area of learning and planning is pre-

sented in Sect. 3. Section 4 describes our approach for

learning heuristic functions. In Sect. 5, results of conducted

experiments comparing different learned heuristics to the

FF heuristic are presented. Finally, in Sect. 6, the paper is

concluded and opportunities for future work are described.

2 Automated planning

The conceptual model of a planning environment can be

represented as state transition system of the form

R ¼ ðS;O; cÞ, where

– S ¼ fs1; . . .; sng is a set of states,

– O ¼ fo1; . . .; omg is a set of actions (also called

operators), and

– c : S� O! S is a partially defined state transition

function.

Using this notation, a planning problem can be described as

follows. Given a description of c, an initial state si 2 S, and

a set of goal states Sg � S, find a sequence of actions

transforming the system from si to a state sg 2 Sg.

The widely used STanford Research Institute Problem

Solver (STRIPS) (Fikes and Nilsson 1971; Ghallab et al.

1998) representation of planning problems introduces

restrictions resulting in a more practical and compact model.

A STRIPS problem is a quadruple P = (A, O, I, G). A finite

set of atoms A forms the basis for describing states, goals,

and actions. States are subsets of A, with an atom a con-

sidered being true in a state s iff a 2 s. The initial state I � A

is given by the set of initially true atoms. The goal repre-

sentation G � A contains all atoms that must be true in a1 http://www2.parc.com/isl/members/syoon/obtusewedge.html.
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state in order to satisfy the goal, i.e., sG � A is a goal state iff

G � sG. The finite set O contains STRIPS actions o of the

form

o ¼ ðpreðoÞ; delðoÞ; addðoÞÞ ð1Þ

which consist of three sets

preðoÞ; delðoÞ; addðoÞ � A; with delðoÞ \ addðoÞ ¼£:

ð2Þ

The precondition pre(o) contains atoms that need to be true

for the corresponding action to be executable. The delete

list del(o) and the add list add(o) describe the action’s

effects on a state, i.e., action o applied to state s � A results

in a state

s0 ¼ ðs n delðoÞÞ [ addðoÞ: ð3Þ

A planning problem can be solved by searching the space of

planning states, starting from the initial state. This results in a

search tree or graph, where nodes correspond to planning

states and edges to planning actions. Plans are paths within the

graph. A path from the initial state I to a state conforming to

the goal representation G is a solution to the planning problem.

It is possible that multiple paths lead from the initial to a goal

state. The shortest path corresponds to the optimal solution.

The most trivial planning algorithm would simply use a

breadth-first search to find a solution. Heuristics try to guide

the search in order to find a goal state faster by avoiding

unpromising states. One way to achieve this is to develop

heuristic functions that take a state as input and output the

estimated distance to a goal state. A perfect heuristic would

assign the shortest distance to a goal for each state, which

could be used to implement a perfect planner. However, the

computation of such a perfect heuristic is similarly hard to

the planning problem itself. Therefore, in order to compute a

heuristic value for an intermediate state s, many heuristics

construct a relaxed planning problem P0 ¼ ðA0;O0; s0;G0Þ of

the original planning problem P = (A, O, I, G), where s

(which may be slightly altered to s0 due to the relaxation

process) is used as initial state. The length of the solution

plan to the relaxed problem or approximations thereof are

used as heuristic value for state s. The following two well

known planning algorithms use such an approach. In par-

ticular the second one is interesting, because it is used as

benchmark for the adaptive heuristics based on machine

learning, which are presented later.

(i) HSP (Bonet and Geffner 2000, 2001) is a planner based

on the ideas of heuristic search. It generates a relaxed problem

P0 by ignoring all actions’ delete lists. Hence, actions in P0

only add but do not delete atoms. Let h? be a function which

outputs the minimum cost from a state to a goal state in P0.
This function would suit well as heuristic for states of the

original planning problem P. It would be an admissible

heuristic for P. An admissible heuristic guarantees to find an

optimal solution when used in combination with certain

search algorithms like A*. However, as the computation of h?

is still NP-hard (Bylander 1994), the actual heuristic h of HSP

is an estimate of h?. As further simplification, all subgoals

p 2 G are assumed to be independent and the costs to achieve

them from the initial state s are computed separately. The

function gs(p) estimates the number of actions to achieve

subgoal p from state s:

gsðpÞ ¼
0 if p 2 s;

minop2OðpÞ½1þ gsðPrecðopÞ� otherwise

�
ð4Þ

The expression O(p) stands for actions op that add p, i.e.,

p 2 addðopÞ. The actual heuristic h is defined by adding up

these estimations for all subgoals

hðsÞ ¼
X
p2G

gsðpÞ: ð5Þ

The resulting heuristic is not admissible and can overesti-

mate the costs, as each subgoal is assumed to be inde-

pendent. There exists an admissible flavor of the HSP

heuristic based on using the max of the subgoal cost esti-

mates instead of the sum. However, the max heuristic is

often less informative and proved less useful in planning.

The HSP planner uses a hill-climbing search together

with the heuristic described above. Since this search

strategy is incomplete, i.e., does not guarantee to find a

solution to solvable problems, the successor HSP2 uses a

best-first search. It weights states by an evaluation function

f(s) = g(s) ? W h(s), where g(n) is the accumulated cost,

h(s) is the estimated cost to the goal, an W C 1 is a con-

stant. For W = 1, HSP2 performs an A* search (Nilsson

1982), a weighted A* search (Ebendt and Drechsler 2009)

for W [ 1. Higher values for W usually lead to the goal

more quickly but with solutions of lower quality.

(ii) FF (Hoffmann 2001) is a successful planner inspired

by HSP. For generating heuristic estimates it also relaxes P

to P0 by ignoring delete lists of all operators. However, FF

extracts an explicit solution to P0 rather than estimating the

solution length. This extraction is based on the GRAPHPLAN

(Blum and Furst 1995) planner. The FF heuristic counts the

number of actions of the extracted plan. These estimations

are usually lower than the HSP heuristic as it is accounted

for actions which help to achieve more than only one atom.

A relaxed planning graph is built until a layer is reached

that contains all goals. Then, the plan is extracted from the

graph. Starting from the last layer, at each step some

actions from layer i - 1 are selected which are needed to

achieve subgoals and preconditions from formerly added

actions. As search algorithm, FF uses an enforced version

of hill-climbing. Given a state s, enforced hill-climbing

(EHC) uses a full breadth-first search until a state s0 is

found with better heuristic value than s. The actions lead-

ing from s to s0 are added to the plan and the search
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continues to evaluate the successors of s0. This is done until

a solution is found. To further improve planning perfor-

mance, FF only considers helpful actions during search.

These are actions which seem most promising in the cur-

rent state and are also computed using the planning graph.

The set H(s) of helpful actions of a state s is extracted as

follows:

HðsÞ ¼ fojpreðoÞ � s; addðoÞ \ g1 6¼ ;g:

The set g1 represents the set of goals constructed by relaxed

plan extraction at level 1. Actions are considered helpful if

they achieve at least one goal at the lowest layer of the

relaxed solution. While usage of helpful actions improves

planning performance it destroys the completeness of the

search. Therefore, if EHC fails a complete search consid-

ering all actions is employed. Since the FF heuristic is a

non-admissible heuristic like the HSP heuristic, FF is a

non-optimal planner as well.

3 Related work

This section discusses some selected recent approaches

aiming at using machine learning techniques to improve

planning. For a more extensive overview we refer to

Zimmerman and Kambhampati (2003), Frank (2007), and

Fern et al. (2011). One way to use experience gathered

during the solution of planning problems is to identify

useful macro-actions consisting of an ordered sequence of

actions. The idea is to group actions that often occur

together in one macro-action. While many older approa-

ches are based on domain analysis, more recent work

considers learning of macro-actions from solution plans.

Macro-FF (Botea et al. 2005) extends FF by generating

macro-actions. It first analyzes a domain and extracts

structural information, then it generates macro-operators.

The most useful macro-operators are selected by a filtering

process. Macro-FF implements two methods for producing

macro-operators. The first produces macro-operators from

problem formulations and training problems. The gener-

ated macro-operators are added to the initial domain, and

can be used as input to any planner understanding the

planning domain definition language PDDL (Ghallab et al.

1998). The second approach extracts macros from solutions

of training problems. These can be used by planners with

capabilities to handle macros. Marvin (Coles and Smith

2007) extends the search behavior of FF amongst others by

applying a new search strategy called least-bad-first for

exploring plateaus and uses plateau-escaping macro-

actions. The latter are learned from previous searches of

similar plateaus and can be applied in the same way as

atomic actions to traverse plateaus in one step. Xu et al.

(2009) use weighted rules to make rule-based control of

planning more robust. They attempt to learn sets of

weighted action-selection rules that are used to assign

numeric scores to potential state transitions. These scores

are used to guide the search whereby information from

multiple rules may be combined. The learning approach

itself is based on a combination of a heuristic rule learning

and a boosting algorithm called RankBoost.

The probably most similar approach to the one proposed

in this work is described by Yoon et al. (2006, 2008) and

implemented in the OW planner. In addition to heuristic

function learning OW also learns reactive policies. Both

learning approaches are based on a relaxed-plan feature

space represented in taxonomic syntax, which provides a

language for describing sets of objects with common

properties. For each search node encountered a database

consisting of taxonomic syntax expressions is constructed

that includes, amongst others, information about goals,

current state and relaxed plan features, e.g., add/delete lists.

Taxonomic syntax allows to model more complex features

based on these database information. This defines the

feature space heuristic functions and reactive policies are

learned upon. Heuristic function learning is based on linear

regression and aims at augmenting the FF heuristic. The

learned heuristic function is represented as weighted linear

combination of complex features as described above. The

aggregation of the FF heuristic and the regression function

is used as heuristic. The training task is to learn a linear

function that compensates for misestimations of the FF

heuristic. Yoon et al. apply a feature selection procedure

trying to identify informative relaxed plan properties. The

second approach implemented by OW for incorporating

control knowledge into planning are policies or rules that

represent a mapping of planning states to actions. Such

rules help to reactively select actions during planning as

they map states to actions. They have the potential to

greatly improve planning performance because if directly

applied no search is necessary. However, as such rules tend

to be imperfect, their application to the greedy selection of

actions may cause planning failures. To overcome this

issue Yoon et al. combine learned policies with heuristic

search. At each node expansion, in addition to the suc-

cessors of the currently expanded node, the states

encountered by following the policy for some horizon are

additionally added to the search queue.

4 Adaptive search heuristics

In contrast to the approach of Yoon et al. that uses a

trained least squares linear regression model in combi-

nation with the FF heuristic for computation of estimates,

in this work we investigate ANN and SVM not only to

augment the FF heuristic but in particular to generate
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heuristics that can be used independently from the FF

heuristic. Purely learned heuristics have the potential to

absorb relevant information and to provide heuristic

estimates efficiently, without solving relaxed planning

problems. In particular, given a planning problem P, the

FF heuristic computes an estimate in time polynomial to

the length of the longest add list of any action, to the

number of actions, and to the number of atoms contained

in the initial state; all with respect to P0, the relaxed

problem of P. The heuristics proposed in this work

compute an estimate in time linear to the number of

atoms. The number of actions in planning is often orders

of magnitude larger than the number of atoms.

4.1 Learning task

For the case of building standalone goal-distance estima-

tors which are independent from the FF heuristic, the

heuristic function h is set to a function f which is to be

learned:

hðsÞ 7! f ðsÞ: ð6Þ

Learning is based on training data of the form {si,di}i=1
n ,

mapping states si 2 S to their goal distance di 2 N0 for a

given domain. Such training data can be extracted from a

plan. Consider a planning problem of the form

P = (A, O, I, G) and a plan p of length l solving this

problem. This can be easily transformed into a represen-

tation {si,di}i=1
n that maps states si 2 S to their goal state

distance di 2 N0. A specific tuple (I, p) maps to

ðI; lÞ; ðs1; l� 1Þ. . .; ðsG; 0Þ, where sG is a state conforming

to G.

For the case of augmenting FF, the heuristic function h

is set to the output of the FF heuristic, aggregated with a

function D that has to be learned:

hðsÞ 7! FFðsÞ þ DðsÞ: ð7Þ

For the task of learning a function D to compensate for

misestimations of FF, training data of the same form is

used. But a specific planning problem and solution plan as

above is transformed to the training instances ðI; l�
FFðIÞÞ; ðs1; ðl� 1Þ � FFðs1ÞÞ. . .; ðsG; 0� FFðsGÞÞ: Hence,

the training data consists of states mapped to the error of

the FF heuristic.

4.2 Regression algorithms

In the following, the algorithms we have considered for

heuristic function learning are reviewed. We assume a set

of training instances {si,di}i=1
n . Any state s of a domain

based on atoms A can be described as a binary vector s ¼
ða1; . . .; apÞ where p is the size of set A.

4.2.1 Multi-layer perceptron

The ANN method we use is a multi-layer perceptron

(MLP) (Rumelhart et al. 1988). A neuron takes a real-

valued vector as input, calculates a linear combination, and

puts the output through some activation function u.

y ¼ u
Xm

i¼1

ðxixiÞ þ w0

 !
ð8Þ

A MLP uses multiple layers of neurons (nodes) and is able

to distinguish data that is not linearly separable. In par-

ticular, we use a feed-forward network consisting of three

fully connected layers: one input layer, one hidden layer

and one output layer. The input layer consists of p nodes,

and each node represents one atom. The hidden layer

contains p
2

� �
nodes, the output layer contains a single node.

Nodes of the input layer are passive and simply relay the

inputs to the outputs. A sigmoid function rðxÞ ¼ 1
1þe�x is

used as activation function for the hidden layer’s nodes.

Last, the single node of the output layer outputs the pre-

dicted distance and no function is used to further change

the weighted sum of the inputs, i.e., the activation function

is set to the identity function f(x) = x. Figure 1 shows an

exemplary MLP network for a domain based on an atom

set A = {a1, a2, a3, a4, a5}.

The MLP learning is based on the WEKA (Hall et al.

2009) tool, which uses the well-known BACKPROPAGATION

algorithm (Rumelhart et al. 1988; Widrow and Hoff

1960). This algorithm adjusts the weights of neurons by

propagating training instances through the network,

comparing the network’s output of a particular instance to

its label, and back-propagation of the resulting error.

Based on the error the perceptrons’ weights are modified.

Important parameters that affect the BACKPROPAGATION

algorithm are the learning rate and the momentum. The

learning rate influences the extent changes are made to the

weights. If the learning rate is set too large, then the

algorithm may easily fail the optimum while a small

learning rate slows down the learning process. We use a

learning rate of 0.3 which is the default of the WEKA

tool. Another important constant is the momentum, which

helps to avoid the negative effects of too large learning

rates by giving stability to the search for the weights

resulting in minimal error. The momentum is set to 0.2,

which is also the WEKA default.

4.2.2 Support vector regression

SVMs (Cortes and Vapnik 1995; Vapnik 1995) find a

hyperplane that separates training instances belonging

to different classes. Hereby, SVMs try to maximize the
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distance of the instances closest to the hyperplane. These

instances are called support vectors. SVMs use the kernel

trick in order to separate data that are not linearly separa-

ble. The basic idea is to map instances into a higher

dimensional space where the data become linearly sepa-

rable. Additionally, slack variables, which allow but

penalize misclassified training instances, are often used to

avoid overfitting. SVMs can also be used for regression.

The basic idea of support vector regression (SVR) (Drucker

et al. 1996) is to find a function that has at most e deviation

from the actually observed values for the training data, and

at the same time is as flat as possible. Similar to classifi-

cation, the introduction of slack variables may loosen the

strict compliance with the maximum deviation defined by

e. SVR learning of a heuristic function h can be expressed

by the following optimization problem:

Maximize
1
2

Pn
i;j¼1ðai � a�i Þðaj � a�j Þkðsi; sjÞ

�e
Pn

i¼1ðai þ a�i Þ þ
Pn

i¼1 diðai � a�i Þ

�
ð9Þ

subject to
Xn

i¼1

ðai � a�i Þ ¼ 0 and ai; a
�
i 2 ½0;C� ð10Þ

where hðsÞ ¼
Xn

i¼1

ðai � a�i Þkðsi; sÞ þ b ð11Þ

with Lagrange multipliers ai and ai*. The SMO algorithm

presented in Shevade et al. (1999) is used for solving the

above optimization problem, and for computing constant

b. The SVR is based on WEKA and the defaults it suggests are

used for setting the parameters C and the kernel function k.

5 Evaluation

The evaluation described in this section provides a com-

parison of standalone adaptive heuristics based on MLP

and SVR to the classical FF heuristic and the learned

heuristic implemented in the OW planner. Furthermore it is

analyzed how the machine learning methods perform when

used to augment the FF heuristic, instead of using them for

generating standalone heuristics. For evaluation, we use

problem domains provided by the learning track of the 6th

International Planning Competition (IPC-6) in 2008:

Matching Blocksworld, Sokoban, Gold Miner, N-Puzzle,

Parking, and Thoughtful. For the first five domains, prob-

lem generators, which allow a random generation of

planning problems, are available. Therefore, only these

domains have been considered. In the following, results for

the Matching Blocksworld, Sokoban, Gold Miner, and

N-Puzzle domains are presented. The Parking domain has

been also omitted, because the oracle we use for evalua-

tion, as explained in the next paragraph, is not able to solve

the problems outputted by the Parking domain generator,

but often exits with the error message ‘‘Initial state is a

dead end. Completely explored state space—no solution!’’,

even though the domain generator claims to produce only

solvable problem instances.

For evaluation of a heuristic’s accuracy we use an

‘‘oracle’’ that is able to tell for any state the true goal

distance. This oracle is based on the Fast Downward

planner (Helmert 2006) with the LM-cut heuristic (Helmert

and Domshlak 2009). During the evaluation phase the

planning heuristics’ output is compared to the output of

the oracle for measuring their accuracy. Figure 2 shows the

environment used for conducting experiments. The gener-

ation of the training data is also based on the oracle. Each

instance of a training data set is generated by creating a

random state using a planning problem generator and

asking the oracle for a label, i.e., the true minimum goal

distance for the state. Every optimal plan of length l can be

used to generate l ? 1 noise-free training instances. The

plans found by non-optimal planners are not guaranteed to

be optimal with respect to plan length. Thus, when using

non-optimal planners for generating training instances,

some degree of noise is added to the training data if the

planner outputs a non-optimal plan. Misestimations during

the planning process, however, do not necessarily add noise

to some of the training data instances. This is only the case

if the misestimations also materialize in a plan that

has non-optimal length. The whole evaluation framework

Fig. 1 Neural network architecture for a domain consisting of five

atoms a1; . . .; a5. We use a fully interconnected feed-forward network

with one hidden layer. The input layer contains one passive node for

each atom. The hidden layer consists of 5
2

� �
¼ 3 nodes with sigmoid

activation function, while the single output node does not postprocess

the weighted sum of the inputs, and outputs the distance estimation.

The values in the input to this MLP are binary vectors that represent

states
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including all heuristics and machine learning techniques is

Java-based and is running on Mac OS X. Since Fast

Downward and OW, could not be easily ported to Mac OS

X they run on a Linux machine and are made accessible

through a REST interface.

The generation of the training set is illustrated in

Algorithm 1. A problem generator GD generating random

problems for domain D and the resulting number of

training instances are given as input to the procedure. The

generation of training data for adaptive heuristics aug-

menting the FF heuristic is slightly different, i.e., in line 5

not {I, d} but {I, d - FF(I)} is added to T. Algorithm 2

shows how the actual evaluation is conducted. The evalu-

ation procedure takes a heuristic function he which is to be

evaluated. Adaptive heuristics are first trained using

training data set T. For evaluation purposes the time it takes

to build the heuristic he is measured. Then, a series of 100

random problems is generated using the random problem

generator GD. The initial state I of this planning problem is

fed to the heuristic he providing a goal distance estimation

and to the oracle which outputs the exact goal distance. For

evaluation purposes, the time it takes to generate the esti-

mation is measured and the estimated goal distance as well

as correct distance are logged for evaluating the accuracy

of the heuristic. Based on the measurements during the

evaluation phase (Algorithm 2, lines 1, 4, and 6) we cal-

culate metrics for accuracy and speed of the heuristics. To

quantify the estimation accuracy of a heuristic he we cal-

culate the root mean square error (RMSE) and the mean

absolute error (MAE) of the estimated goal distances de
i

compared to the true goal distance di for each evaluation

round i (cf. Algorithm 2, line 6):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

X100

i¼1

di
e � di

� �2

vuut ; ð12Þ

MAE ¼ 1

100

X100

i¼1

di
e � di

�� ��: ð13Þ

Since the ordering of states by heuristic functions for

planning is much more important than correct absolute

values we scale the heuristic values in order to avoid taking

such errors into account. Especially FF and OW profit from

this approach because they are both very much out of scale

compared to the actual goal distances. Heuristics based on

ANN and SVM do not profit from that preprocessing at all.

In order to give information about the execution times of

different heuristics we calculate the mean, median, mini-

mum, and maximum of the time the heuristic takes to

generate an estimate in milliseconds (cf. Algorithm 2, line

4). For the adaptive heuristics, we also provide the training

time (cf. Algorithm 2, line 1).

Operating System
Processor

Memory

Mac OS X 10.6.8
2.66 GHz Intel Core 2 Duo
4 GB 

Operating System
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Memory

Ubuntu Linux 2.6.31-21-server
2.327 GHz Intel Xeon
2 GB 
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Fig. 2 The evaluation

environment used for

conducting experiments

Algorithm 1 GenerateTrainingSet(GD, n)

Input: random problem generator GD, number n

1: T = [

2: for i ¼ 1! n do

3: pr ¼ ðA;O; I;GÞ  GD:getNextðÞ
4: d  initial state I’s distance to goal according to oracle

5: T  T [ fI; dg
6: end for

7: return T

Algorithm 2 Evaluate(he, T, GD)

Input: heuristic he, training set T, random problem generator GD

1: he.train(T) {measure time, only applicable for adaptive

heuristics}

2: for i ¼ 1! 100 do

3: pr ¼ ðA;O; I;GÞ  GD:getNextðÞ
4: de = he(I) {measure time}

5: d = distance according to oracle

6: {log de and d}

7: end for

8: return T
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5.1 Matching Blocks World

First, the domain description of the Matching Blocks

World domain from IPC-6 is provided.

This is a simple variant of the blocks world where

each block is either positive or negative and there are

two hands, one positive and one negative. The twist is

that if a block is picked up by a hand of opposite

polarity then it is damaged such that no other block

can be placed on it, which can lead to dead ends. The

interaction between hands and blocks of the same

polarity is just as in the standard blocks world.

The evaluation of the Matching Blocks World domain is

based on worlds of different sizes, i.e., different numbers of

blocks, and the goal is set to a state where the blocks form a

sorted tower. We use domains with 5, 6, 7, and 8 blocks to

give information about the scalability of our approach. The

particular values have been chosen because the oracle is

fast enough to solve problems of that size quickly, while

for problems with 9 blocks it may take the oracle minutes

to solve a single problem. The size of the training data is

adjusted to the size of the problem. By default, we train the

heuristics for the 5 blocks world with 100 instances, the 6

blocks world with 200 instances, the 7 blocks world with

300 instances, and the 8 blocks world with 400 instances.

An instance is not a plan with a solution (containing

multiple state/goal distance pairs), but a single state with its

corresponding goal distance. We also investigate how

modifying the number of training instances affects the

prediction accuracy. However, to start, the results provided

in Table 1 are based on heuristics with the stated training

set sizes. The approach for evaluating the heuristic learning

in OW is slightly different. Since OW is able to generate

heuristics that can be applied to any problem size we only

train it once using 517 training instances.

The values in Table 1 represent the errors of generating

heuristic estimates for the FF heuristic (FF), the heuristic

used by the OW planner (OW), the standalone MLP heu-

ristic (MLP), the FF heuristic augmented with MLP

(FF ? MLP), the standalone SVM heuristic (SVM), and

the FF heuristic augmented with SVM (FF ? SVM),

according to the metrics RMSE (cf. Eq. 12) and MAE (cf.

Eq. 13). Lower values represent better values and the best

values are highlighted in bold. The accuracy of adaptive

heuristics is superior to the FF heuristic and the OW heu-

ristic in all cases. OW tends to perform slightly better than

FF. The combination of FF with the adaptive heuristics

does not provide significantly better results than the

standalone heuristics; it rather decreases accuracy in many

cases. The MLP based heuristics work slightly better for

small Matching Blocks Worlds while the heuristics based

on SVMs have an edge on the larger worlds. However, the

differences between MLP and SVM are small and may be

partly caused by random effects.

Table 2 shows the execution times of the heuristics in

milliseconds. Mean, median, min, max stand for the

respective values of the execution time for a single call of

the heuristic, i.e., how long it takes to generate a heuristic

estimate. OW, FF ? MLP and FF ? SVM are excluded

because they generate a heuristic value based on FF. For

MLP ? FF and SVM ? FF the execution time is basically

exactly the sum of the FF heuristic and the MLP and SVM

heuristic, respectively. For OW there was no simple way to

measure the runtime of the single steps that contribute to the

overall execution time. Also, since it runs on another hard-

ware the running times would not be directly comparable.

The table shows that the adaptive heuristics are able to

generate estimates a magnitude faster than the FF heuris-

tic—the SVM heuristic is the fastest one. However, during

initialization the adaptive heuristics have to be trained and

the respective training times are shown in the Training row.

Table 1 Errors of heuristic

estimates for random states of

the Matching Blocks World

The size of the world varies

from 5 to 8 blocks. Lower

values represent a better

estimation accuracy. The best

values are highlighted in bold

FF OW MLP FF ? MLP SVM FF ? SVM

5

RMSE 2.25 1.92 0.56 0.71 -0.97 0.97

MAE 1.77 1.50 0.34 0.42 0.38 0.57

6

RMSE 2.48 2.39 0.82 1.25 1.23 1.36

MAE 1.97 1.96 0.51 0.94 0.88 1.06

7

RMSE 2.50 2.63 1.37 1.51 1.50 1.32

MAE 1.97 2.21 0.97 1.20 1.09 0.95

8

RMSE 2.90 2.80 1.85 2.05 1.72 1.73

MAE 2.30 2.32 1.34 1.44 1.23 1.27
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The training time increases with the size of the domain and

the size of the training instances. For the world with 5 blocks

we use 100 training instances, 200 for the 6 blocks world,

300 for the 7 blocks world, and 400 for the 8 blocks world.

The SVM heuristic has shorter training times than the MLP

heuristic; the relative difference seems to decrease for larger

problem instances. The training time for the OW planner is

extremely long compared to the heuristics based on ANNs

and SVMs. It takes almost 32 h to train the planner using

517 instances. For OW the number of instances used for

training cannot be exactly defined; we have used a target

training instance number of 500 for OW for Matching

Blocks World and all subsequent domains.

Figure 3 illustrates the influence of the training set size

on the estimation error, i.e., the RMSE. The FF heuristic

does not depend on the training set size and for OW we have

only used one training sample size of 517. For the adaptive

heuristics the experiments are based on different training set

sizes of 25, 50, 75, and 100 % regarding the initial training

set sizes (i.e., 100 for 5 blocks world, 200 for 6 blocks

world, 300 for 7 blocks world, and 400 for 8 blocks world).

The figures show that already with few training instances the

adaptive heuristics provide better results than the FF heu-

ristic and the OW heuristic. The MLP heuristics benefit

more clearly from additional training data.

5.2 Sokoban

The domain description of Sokoban provided by IPC-6 reads

as follows: ‘‘This domain is inspired by the popular Sokoban

puzzle game where an agent has the goal of pushing a set of

boxes into specified goal locations in a grid with walls.’’

Table 2 Mean/median/min/max values for the time it takes to gen-

erate a single heuristic estimate for states of the Matching Blocks

World

FF MLP SVM

5

Mean/median 7.98/7.99 0.26/0.24 0.16/0.15

Min/Max 2.30/15.99 0.18/0.70 0.10/0.55

Training 9 217.00 31.00

6

Mean/median 15.40/16.11 0.27/0.27 0.18/0.17

Min/max 6.39/22.84 0.24/0.82 0.14/0.64

Training 9 2353.00 161.00

7

Mean/median 25.74/26.36 0.32/0.31 0.18/0.17

Min/max 9.20/47.42 0.29/0.86 0.13/0.88

Training 9 3376.00 591.00

8

Mean/median 39.55/41.50 0.39/0.32 0.27/0.18

Min/max 19.68/51.90 0.28/3.81 0.15/3.27

Training 9 3594.00 1917.00

Training refers to the time it takes to train the corresponding adaptive

heuristic, which is performed once during initialization. The size of

the world varies from 5 to 8 blocks. Lower values are better. All

values are milliseconds, except for the training time of OW

OW training: 31.6 h (517 instances)

Fig. 3 Root square mean errors of heuristic estimates for different training set sizes of 25, 50, 75, and 100 % for the Matching Blocks world with

5 blocks (top-left), 6 blocks (top-right), 7 blocks (bottom-left), and 8 blocks (bottom-right)
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For evaluation, again four different problem sizes have

been considered: a domain with a 6 9 6 grid and one box,

a domain with a 7 9 7 grid and one box, a domain with a

7 9 7 grid and two boxes, and a domain with an 8 9 8 grid

and two boxes. Each domain has four wall elements. The

size of the training data is again adjusted to the size of the

problem, in the same way as for the Matching Blocks

World: 100 instances for the smallest world and 400

instances for the biggest one. Again the actual dimensions

have been chosen according to the capabilities of the

oracle.

Table 3 presents the errors of heuristic estimates for the

Sokoban domain. As before, the adaptive heuristics always

provide better results than the FF heuristic. The OW heu-

ristic could not be considered because the training based on

500 target instances did not finish within 100 h and was

cancelled. For every experimental setting no heuristic is

able to beat the SVM heuristic in terms of accuracy. This

reflects the theoretical superiority of SVMs over MLP:

SVMs do not suffer from multiple local minima, while

backpropagation usually converges only to locally optimal

solutions. Another advantage of SVMs is that they auto-

matically adjust their model size by selecting a number of

support vectors. The combination of FF with adaptive

policies tends to decrease the goal distance estimation

quality. Also for the execution times, shown in Table 4, the

MLP and SVM heuristics clearly outperform the FF heu-

ristic. Both adaptive heuristics are able to generate esti-

mates two orders of magnitudes faster than the FF

heuristic, while SVM is faster than MLP. Similar to the

previous domain, SVM again needs less time for training

than MLP; the relative training speed difference is again

higher for small problem instances and seems to converge

for larger instances. Figure 4, which illustrates the influ-

ence of the training set size on the estimation error in the

same way as for the Matching Block world, shows that in

most cases, i.e., heuristics based on different numbers of

training instances, the standalone adaptive heuristics out-

perform FF while the heuristics aiming to augment FF

actually tend to deteriorate its accuracy.

5.3 Gold Miner

The following text passage quotes the description of the

Gold Miner domain as provided by IPC-6:

A robot is in a mine and has the goal of reaching a

location that contains gold. The mine is organized as

a grid with each cell either being hard or soft rock.

Table 3 Errors of heuristic

estimates for random states of

the Sokoban domain

The size of the world varies

from a 6 9 6 grid with 1 box to

an 8 9 8 grid with 2 boxes.

Lower values represent a better

estimation accuracy. The best

values are highlighted in bold.

OW could not be considered

because training did not finish in

reasonable amount of time

FF OW MLP FF ? MLP SVM FF ? SVM

6 9 6, 1

RMSE 2.40 9 1.64 2.78 1.24 2.87

MAE 1.95 9 1.22 2.15 0.87 2.20

7 9 7, 1

RMSE 2.23 9 1.97 4.79 1.97 3.34

MAE 1.85 9 1.07 3.99 1.04 2.63

7 9 7, 2

RMSE 3.49 9 3.03 3.81 2.22 3.11

MAE 2.63 9 2.31 2.90 1.49 2.26

8 9 8, 2

RMSE 4.64 9 4.82 4.57 3.05 4.98

MAE 3.32 9 3.88 3.57 2.37 3.60

Table 4 Mean/median/min/max values for the time it takes to gen-

erate a single heuristic estimate for states of Sokoban

FF MLP SVM

6 9 6, 1

Mean/median 35.55/37.79 0.40/0.38 0.20/0.19

Min/max 8.64/63.94 0.31/1.26 0.14/1.07

Training 9 4289.00 97.00

7 9 7, 1

Mean/median 58.59/54.78 0.69/0.52 0.27/0.24

Min/max 28.55/136.84 0.44/8.10 0.17/1.50

Training 9 1185.00 182.00

7 9 7, 2

Mean/median 135.61/127.50 0.73/0.65 0.50/0.36

Min/max 62.99/321.75 0.55/3.84 0.23/3.88

Training 9 21683.00 1651.00

8 9 8, 2

Mean/median 329.00/329.68 1.31/0.95 0.69/0.42

Min/max 120.28/701.66 0.86/5.66 0.35/6.62

Training 9 6897.00 2248.00

Training refers to the time it takes to train the corresponding adaptive

heuristic, which is performed once during initialization. Lower values

are better. All values are milliseconds, except for OW, for which

training did not finish within 100 h and was cancelled

OW training: not finished after 100 h (500 instances)
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Fig. 4 Root square mean errors of heuristic estimates for different

training set sizes of 25, 50, 75, and 100 % for the Sokoban domain

with a 6 9 6 grid and 1 box (top-left), a 7 9 7 grid with 1 box (top-

right), a 7 9 7 grid with 2 boxes (bottom-left), and an 8 9 8 grid with

2 boxes (bottom-right)

Fig. 5 Root square mean errors of heuristic estimates for different training set sizes of 25, 50, 75, and 100 % for the Gold Miner domain with a

3 9 3 grid (top-left), a 3 9 4 grid (top-right), a 4 9 4 grid (bottom-left), and a 4 9 5 grid (bottom-right)
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There is a special location where the robot can either

pickup an endless supply of bombs or pickup a laser

cannon. The laser cannon can shoot through both

hard and soft rock, whereas the bomb can only pen-

etrate soft rock. However, the laser cannon also will

destroy the gold if used to uncover the gold location.

The bomb will not destroy the gold. The problem

difficulty is scaled by increasing the size of the grid.

This domain has a simple optimal strategy: (1) get the

laser cannon, (2) shoot through the rock until reach-

ing a cell bordering the gold, (3) go and get a bomb,

(4) blast away the rock at the gold location, (5)

pickup the gold.

The four different world sizes for the Gold Miner

domain are: a 3 9 3 grid, a 3 9 4 grid, a 4 9 4 grid, and a

4 9 5 grid (Fig. 5). For this domain the standalone adap-

tive heuristics can almost optimally predict goal distance

estimates, as shown in Table 5, and thus seem to have

absorbed the optimal strategy from the training data. OW

improves over FF in most cases but is still far from the

performance of the standalone heuristics. Combinations

with FF tend to deteriorate the goal distance estimation

accuracy compared to the standalone heuristics. For the

problem instances of size 3 9 3 and 3 9 4, MLP and SVM

are basically equally accurate and differences can be

attributed to random effects. For the two larger problem

instances MLP outperforms SVM in terms of accuracy,

which can be attributed to different stopping conditions and

longer training times of MLP, as presented in Table 6.

Again, the training time of OW, which is based on 429

training instances, is magnitudes longer for OW compared

to MLP and SVM. The table also shows that the execution

times for computing estimates for MLP and SVM are again

Table 5 Errors of heuristic

estimates for random states of

the Gold Miner domain

The size of the world varies

from 3 9 3 grid to a 4 9 5 grid.

Lower values represent a better

estimation accuracy. The best

values are highlighted in bold

FF OW MLP FF ? MLP SVM FF ? SVM

3 9 3

RMSE 2.16 2.25 0.01 0.53 0.01 0.46

MAE 1.89 1.99 0.01 0.44 0.01 0.44

3 9 4

RMSE 2.28 2.02 0.02 2.12 0.01 0.01

MAE 2.06 1.81 0.02 1.48 0.01 0.01

4 9 4

RMSE 3.94 2.75 0.02 2.44 0.54 2.49

MAE 3.26 2.42 0.01 1.85 0.32 1.94

4 9 5

RMSE 4.87 2.83 0.01 2.68 0.75 2.67

MAE 3.64 2.49 0.01 2.12 0.60 1.72

Table 6 Mean/median/min/

max values for the time it takes

to generate a single heuristic

estimate for states of the Gold

Miner domain

Training refers to the time it

takes to train the corresponding

adaptive heuristic, which is

performed once during

initialization. Lower values are

better. All values are

milliseconds, except for the

training time of OW

OW training: 4.4 h (429

instances)

FF MLP SVM

3 9 3

Mean/median 7.55/7.16 0.25/0.24 0.16/0.16

Min/max 4.48/22.68 0.19/1.23 0.12/0.69

Training 9 2,143 34

3 9 4

Mean/median 15.47/15.02 0.33/0.29 0.19/0.19

Min/max 10.58/21.71 0.26/3.17 0.14/0.89

Training 9 1,497 29

4 9 4

Mean/median 25.36/25.91 0.45/0.38 0.20/0.19

Min/max 18.35/35.11 0.36/3.55 0.14/0.75

Training 9 16,146 532

4 9 5

Mean/median 43.21/42.78 0.45/0.38 0.23/0.22

Min/max 38.28/53.29 0.33/2.47 0.18/0.91

Training 9 37,567 1,676
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considerably faster compared to FF, while SVM is faster

than MLP for generating estimates. In Fig. 6, which shows

the sensitivity of the heuristics related to training size, the

values for the standalone heuristics are much better than

the values for the combined ones for all training set sizes.

Here, more training set instances seem to lead to overfitting

and have negative impact on accuracy in many cases.

5.4 N-Puzzle

The following text passage quotes the description of the

N-Puzzle domain as provided by IPC-6:

This is the classic N 9 N sliding puzzle domain. This

has been a common testbed for search algorithms and

in particular work on macro learning.

The N-Puzzle domain could only be tested for one

domain size: In case of N = 2, the generated problems were

very easy to solve; i.e., solvable by plans of size 2 or 3. In

case of N = 4, the oracle was not able to generate solutions

in a reasonable amount of time. Therefore, only N = 3 has

been considered. By default, we train the heuristics with 50

instances (545 for OW). Table 7 shows that adaptive heu-

ristics improve the predication accuracy compared to FF.

However, the quality improvement is not as high as for

previous domains. All adaptive heuristics perform similarly

well, while standalone SVM shows the best results in terms

of accuracy. OW performs slightly below FF. The adaptive

heuristics again win clearly in terms of the time it takes to

compute a single heuristic estimate (cf. Table 8). The

training time for SVM heuristics is shorter than the MLP

training time, but the difference in training duration is

smaller compared to experiences in other domains presented

above.

6 Conclusion

In this work we elaborate on how to learn heuristic esti-

mates for state-space non-optimal planning using ANNs

and SVMs, two well-known methods from natural com-

puting. All conducted experiments proved that these

methods are able to generate standalone heuristics able to

significantly outperform the well-known FF heuristic in

terms of estimation accuracy. Additionally, the learned

heuristics are able to compute estimates magnitudes faster.

While both ANNs and SVMs can be used to augment the

FF heuristic, standalone heuristics showed better estima-

tion accuracy and lower overhead. Compared to the Obtuse

Wedge planner, which also learns heuristics based on

solved plans, our standalone heuristics provide superior

accuracy, have lower execution time complexity for gen-

erating estimates, and can be trained in a fraction of its

training time. However, the heuristics presented here are

less general and can only be applied to static goals and

fixed domains sizes.

In the future we will work on overcoming these two

limitations of our approach. For incorporating varying

goals, the learning problem can be reformulated. Instead of

learning a function h(s) mapping a state s to its distance

from the constant goal, a function h(s, g) could be derived,

mapping s and goal description g to the corresponding

distance. Training examples will be extended from

{si,di}i=1
n to {si, gi, di}i=1

n . As mentioned above, the second

limitation of the presented heuristic learning approaches is

that they cannot be trained using small problem instances

and used for solving larger instances, subsequently. In the

future we will work on incorporating such generalization

capabilities into our adaptive heuristics, e.g., by selecting

relevant features at predicate level rather than directly

taking the atoms’ values into account.

Fig. 6 Root square mean errors of heuristic estimates for different

training set sizes of 25, 50, 75, and 100 % for the 3-Puzzle domain

Table 7 Errors of heuristic estimates for random states of the

3-Puzzle domain

FF OW MLP FF ? MLP SVM FF ? SVM

3-Puzzle

RMSE 3.82 3.87 3.75 3.18 3.19 3.69

MAE 3.01 3.14 2.94 2.54 2.51 2.99

Lower values represent a better estimation accuracy. The best values

are highlighted in bold

Table 8 Mean/median/min/max values for the time it takes to gen-

erate a single heuristic estimate for states of the 3-Puzzle domain

FF MLP SVM

3-Puzzle

Mean/median 21.94/20.76 0.33/0.3 0.22/0.19

Min/max 3.94/74.43 0.28/1.06 0.12/2.88

Training 9 4,713 774

All values are milliseconds, except for the training time of OW

OW training: 2 h (545 instances)
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