Non-Intrusive Policy Optimization for Dependable and
Adaptive Service-Oriented Systems

Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner and
Schahram Dustdar
Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8, A-1040 Vienna, Austria

{lasthame}@infosys.tuwien.ac.at

ABSTRACT

The Service-Oriented Architecture paradigm facilitates the
creation of distributed, composite applications. Services are
usually simple to integrate, but often encapsulate complex
and dynamic business logic with multiple variations and con-
figurations. The fact that these services typically execute
in a dynamic, unpredictable environment additionally com-
plicates manageability and calls for adaptable management
strategies. Current system control strategies mostly rely on
static approaches, such as predefined policies. In this pa-
per we propose a novel technique to improve management
policies for complex service-based systems during runtime.
This allows systems to adapt to changing environments, to
circumvent unforeseen events and errors, and to resolve in-
compatibilities of composed services. Our approach requires
no knowledge about the internals of services or service plat-
forms, but analyzes log output to realize adaptive policies in
a non-intrusive and generic way. Experiments in our testbed
show that the approach is highly effective in avoiding in-
compatibilities and reducing the impact of defects in service
implementations.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications;
C.4 [Performance of Systems|: Reliability, availability,

and serviceability; G.3 [Probability and Statistics]: Markov

processes; H.3.5 [Online Information Services]: Web-
based services

General Terms

Algorithms, Experimentation, Management, Reliability

Keywords
Adaptation, Autonomic Management, Dependability, SOA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

504

1. INTRODUCTION

Service-Oriented Architecture (SOA) [17] is a paradigm
often used to realize large-scale software systems integrating
various services across multiple providers. A basic principle
of SOA is that services are loosely coupled and implement
business functionality as black boxes. Although services by
definition are stateless and solely react to the provided in-
put, service-based systems are generally depending on multi-
ple configuration parameters and operate in dynamic, error-
prone environments. All these characteristics render man-
agement of SOA systems a highly challenging task.

To ensure that such systems work properly, SOA gover-
nance is responsible for monitoring the performance of sin-
gle services, runtime environments, and the overall system
or service composition. This information is used either by
human operators that reconfigure the system manually, or
as input to policies that provide automated adaptation [20].
However, it is difficult to anticipate each and every possi-
ble system state and provide an according policy rule. It
is similarly problematic to foresee all effects of reconfigura-
tion actions. Software bugs, for instance, can occur in every
service implementation and runtime environment. Further-
more, the management policies or administrator actions may
be in conflict, thus forcing the application into unwanted
states or oscillation patterns [15]. In the end, human er-
ror can never be ruled out resulting in software defects [8],
incorrect policies, or wrong adaptation actions, respectively.

We present a novel approach for dependable and adaptive
control of service-oriented systems. Our technique poses low
requirements on the system, and can be integrated into any
SOA in a minimally invasive way. We propose a novel tech-
nique that infers a Markov Decision Process (MDP) model
by analyzing the effect of system configuration parameters.
The MDP model is automatically constructed from log out-
put emitted by the services. The MDP is used to derive op-
timized policies considering software bugs, incompatibilities,
and environmental changes. The main contributions of this
paper are (1) a generic framework for dependable and adap-
tive control of SOA based on log analysis, (2) novel tech-
niques for transforming typical SOA log data into an MDP
representation, and (3) real world experiments to quantify
the usefulness of this approach.

The remainder of this paper is structured as follows. In
Section 2 we introduce a motivating scenario as the basis
for discussion of our approach. Section 3 serves as a brief
overview on MDP and related algorithms. The main con-
tributions are presented in Section 4. Section 5 provides an

evaluation based on the introduced scenario. Related work
is discussed in Section 6, and Section 7 concludes the paper.

2. SCENARIO

In this section, we introduce a scenario that serves as the
basis for discussion of our approach. Consider a SOA that
provides an enterprise travel itinerary service, allowing em-
ployees to automatically manage flight, car and hotel reser-
vations for their trips to customers. The application is im-
plemented as a composition of multiple interacting services.

) () (

[Client Client Client Client]

/ / -
77777777777777777777 | GDS Provider
L,
:

/)

Booking
Senvice

/
!

/

o ’ !

— GDSAdapter | |
— -

7 |

I

I

I

i
i

i

i

i

i

i

| Financial Hotel
! Management Reservation
i

i

i

i

i

i

i

-~ Service Provider

e
AN
| <--> External Request

Application !

——> Invocation

Figure 1: Architecture of the Travel Itinerary Application

A high-level overview of the services and interactions is
shown in Figure 1. When an employee requests a new trip,
the Global Distribution System (GDS) is requested to book
a flight. To that end, the GDS adapter retrieves the cus-
tomer address from the Customer Relationship Management
(CRM) system, and uses external GDS Providers to find
a suitable flight to an airport sufficiently close to the cus-
tomer’s site. At the same time the GDS needs to consider
the available budget, as retrieved from the Financial Man-
agement (FM) system. Next, the Hotel Reservation Service
(HRS) contacts external HRS Providers to find a hotel close
to the destination address. The Car Rental Service (CRS)
then issues a request to book a car for the specified period.

Parameter Type
Application-Specific
Dynamic Binding
QoS Criteria

Runtime Environment

Examples

Skip Budget Check
Providers for GDS, HRS
Max. Response Time of GDS
Resource Limits

Table 1: Parameters Defining the System Configuration

The system has various parameters that determine the
current configuration state and influence the performance
and functionality of the offered service (summarized in Ta-
ble 1). Firstly, services expose application-specific proper-
ties that can be set explicitly (e.g., whether to skip a time-
consuming budget check). Next, the composition depends
on external services that are dynamically looked up and
bound to at runtime (e.g., providers for GDS and HRS).
Moreover, Quality of Service (QoS) properties are used to
control the composition behavior (e.g., use only GDS provi-
ders with a certain response time). Finally, the runtime
environment in which services execute influences the compo-
sition behavior (e.g., resource limits, request queue lengths).
For reliable operation of a dependable system it is crucial to
capture these parameters and to define management poli-
cies which aim at reconfiguring the application in response
to undesired system states.

505

3. BACKGROUND

In this section, we provide an introduction to Markov de-
cision processes (MDPs) [18], a mathematical framework for
decision making, which serves as basis for our adaptive con-
trol mechanism. MDPs deal with decision making in an
uncertain world, where performance depends on a sequence
of decisions. At any point in time a decision making agent
chooses among a number of available actions. The execution
of an action affects the current state and a reward is given
to the decision maker as feedback. How the state is affected
probabilistically depends on the current state and the cho-
sen action, but not on previous states. An MDP (S, A, T, R)
is formally defined by a set of states S, a set of actions A,
a transition model T': S x A x S — [0,1], and a reward
function R : S — R. The transition function T'(s,a,s’)
determines the probability of reaching state s’ € S when ex-
ecuting action a € A while being in state s € S. The utility
of a state s is defined by the reward function R(s).

The main problem for MDPs is to find a policy 7 that
specifies which action to take for any state. In particular,
m(s) gives the action recommended by the policy for state s.
An optimal policy is one that maximizes the expected re-
wards over time. Some algorithms, such as value iteration
and policy iteration [18], are able to compute an optimal
policy if transition model and reward function are known in
advance. Reinforcement learning on the other hand solves
the online variant of an MDP, where transition model and
rewards are initially not known. Additional knowledge gath-
ered by observations of transitions and rewards are used to
iteratively improve a policy. Prominent reinforcement learn-
ing algorithms include Q-Learning [18] and Dyna-Q [21]. A
core contribution of this work is to show how MDPs, a math-
ematically sound and well understood model, can be lever-
aged to manage complex real world service-based systems.

4. ADAPTIVE POLICY OPTIMIZATION

In this section we present our approach for deriving opti-
mized policies that lead to dependable and adaptive service-
oriented systems. Figure 2 illustrates the assumptions we
are posing on the system. Since the internal structure of
the system is not important for our approach a generic SOA
model can be assumed, consisting of a number of runtime en-
vironments, each hosting a number of services. We suppose
that the system initially is either managed by an adminis-
trator or predefined policies, which are to be replaced by
an optimized policy. The crucial prerequisite is that sta-
tus information and management actions are observable, as
illustrated by the magnifying glass.

q

Status information

!

Management Actions

{

Service Service
Yy
m+1 m+q
OA

Service Service
XYy
1 m

Runtime Environment n

Runtime Environment 1

Figure 2: SOA without optimized policy. Information about
the system status and management actions need to be ob-
servable in order to apply our approach.

We argue that the entity initially managing the system
needs data about the system status and performed man-
agement actions anyways, hence such information is already
available in some form. We do not assume that this informa-
tion is produced centrally. Our approach is also applicable
if each service and runtime environment produces the re-
quired data about status and reconfigurations individually.
The status data needs to contain all information relevant
to the system’s performance and reliability. If, for instance,
the response time of services matters then the status data
should contain that information. However, there is no need
for semantic annotations. Status information may be issued
either at fixed intervals or triggered by events. It is suf-
ficient, but not necessary, to emit only the indicators that
have changed since the last output. At least if a performance
indicator changes significantly, then there should be a status
information update. We argue that all these requirements
are met by virtually any SOA, which typically log the change
of performance indicators and management actions.

In a nutshell, based on raw log data containing informa-
tion about status updates of individual or compound com-
ponents and management actions taken by the managing
entity, we derive an optimized policy that takes over con-
trol, as shown in Figure 3.

Log

|_[Adapter J[

Status information

Mgmt

Optimized
Adapter

Policy

Management Actions

Runtime Environment n

Runtime Environment 1

Service Service Service Service
oo e
1 m m+1 m+qg
OA

Figure 3: SOA with optimized policy, which takes system
status data as input and outputs an optimized management
action.

To be able to cover all kinds of systems with different mod-
els for providing status information and triggering manage-
ment actions, we use a log adapter transforming status infor-
mation into a canonical format and a management adapter
responsible for executing a decision generated by the opti-
mized policy.

Figure 4 shows the procedure of generating an optimized
policy. Log data, containing information about relevant per-
formance indicators as well as executed management actions,
is used as input to the log adapter, which transforms the in-
formation into a canonical representation. The log adapter
is also used during runtime to preprocess the monitoring
data for the optimized policy. The MDP Creator generates
an MDP based on the canonical log data. Since MDPs are
well known in A, the Policy Creator can be based on already
existing algorithms to finally create the optimized policy.

To the best of our knowledge there is no comparable ap-
proach transforming generic log data into an MDP. This
transformation is not trivial since, for instance, there is no
reward function contained in the log data, which, however,
is an essential part of an MDP. The final optimized policy
will mimic the successful management actions while avoid-

506

N Canonical Representation

MDP
Log [Log Adapter [MDP Creator Policy Creator

Optimized
Policy

Policy Optimizer

Figure 4: Functionality of the Policy Optimizer. It takes
system information — usually in the form of logs — as input
and outputs an optimized policy.

ing the ones that lead to errors. It is able to absorb complex
relationships, and root causes to effects that are not directly
linked. In the following we explain the three main compo-
nents of the policy optimizer.

4.1 Log Adapter

The log contains information about changes of perfor-
mance indicators and management actions. However, we
cannot assume, that logs from different services or runtime
environments adhere to a common standardized format. The
log adapter is responsible for the aggregation of all avail-
able logs from the system’s components, and transforms the
applications-specific formats into a canonical representation,
as indicated by the arrow labeled @ in Figure 5. Apart
from the Management Adapter, which provides a mapping
from abstract management actions to concrete calls of com-
ponents, the implementation of the log adapter is the only
functionality that needs to be provided by the user in or-
der to apply our approach. All other parts are generic and
provided by our framework.

Statusinformation
0..%|-timestamp : long

Component
-name : string

performancelndicators
0..*

11
ManagementAction Parametgr
- -name : string
~timestamp : lon
2 J -value : T

Figure 5: Functionality of the Log Adapter

We propose the model shown in Figure 5 as canonical for-
mat for capturing relevant information contained in the log
data. StatusInformation emitted from system components
includes updated performance indicators, captured in Pa-
rameter, consisting of a generic name-value tuple.

Errors are identified as a special type of performance indi-
cator in the log entries, and an according Parameter named
‘ERR’ is set. When a configuration change is performed —
either by the administrator or by the currently active man-
agement policy — the system emits a log message that is
captured by ManagementAction in the model.

4.2 MDP Creator

In this section we show how the canonically represented
log data are transformed into an MDP (S, A, T, R).

MDP States and Actions

The first step towards a complete representation as an MDP
is the extraction of states S and actions A as shown by the
arrow labeled @ in Figure 6. The captured StatusInforma-
tion updates for each component are aggregated to Compo-
nentStates, and further to a full State representation for the

Action 4
-timestamp : long

State S
-iSERR : boolean

0“7‘: ﬁ—:
ComponentState DiscretizedParameter
-hame : string 0..* [-name : string
-timestamp : long -value : T
T:SxAxS

Figure 6: Generation of states, actions and transition model

system. This aggregation is based on either temporal prox-
imity of the timestamps or on a correlation by a specified
Parameter attribute, such as request id. If a state contains a
component state with at least one DiscretizedParameter sig-
nifying an error, the state is labeled as error state by setting
isSERR. States S of the MDP must be finite. Parameters,
however, contain continuous values and could result in an in-
finite number of states. Therefore, we conduct an automatic
discretization of the observed values for each continuous Pa-
rameter (e.g., response-time), using a simple equal width in-
terval method [12], resulting in DiscretizedParameters. Our
framework is designed to allow for the usage of different
discretization methods, such as equal frequency binning or
Holte’s 1R [13], but we found that the simple equal width
binning method performed reasonably well. Actions A are
constructed from each ManagementAction element. Addi-
tionally, a no-operation action (NOP) is added to the set
of actions to allow the policy to remain in the current state,
which allows to cover environment changes. Whenever per-
formance indicators change without interference of policy or
administrator action, the NOP action is used to represent
external events not within control of our framework.

MDP Transition Model

In this step, we extract the transition model T': S x A x S
from the representation generated so far, as shown by the
arrow labeled ® in Figure 6. The transition model T'(s, a, s")
assigns the probability of reaching state s’ from state s when
performing action a. We derive the transition model by
employing a modified Passive ADP Agent [18] algorithm.
Algorithm 1 is invoked for each State and Action in chrono-
logical order, incrementally constructing a transition model
from the observed data.

MDP Reward Function

To complete the generation of the MDP (S, A, T, R), we fi-
nally need to derive a reward function R : S — R from the
model. So far, the required data was in some way directly
extractable from the log output. The reward function, how-
ever, is not readily available, as neither the logs, nor the
models generated so far provide any reward signals.

507

Algorithm 1 Transition model learning

Input: s’ current state,
a previously taken action
persistent: T'(s,a,s’), a transition model
Nsa, a table of frequencies for the state-action
pairs, initially zero
N/ |sa, a table of outcome frequencies given state-
action pairs, initially zero
if s is not null then
increment Ngq(s,a) and Ny/|sa (s, s, a)
for each t such that N, 4, (t, s, a) is nonzero do
T(s,a,s") Ny |sa(t,s,a)/Nsa(s,a)
end for
end if

We propose a novel approach to finding a reward function
from preprocessed log data, based on the assumption that a
majority of the actions taken by the initial managing entity
are reasonable. The basic idea is that if the initial manager
performs some action a in state s; which leads to state sa,
i.e., s1 = s, then we assume that state so is more desirable
than state si. In the case of contradictory transitions where
there are a number of transitions s; — s2 and s2 — s1 we
assume that the majority of management actions was ben-
eficial. In any case, failure conditions are to be avoided.
Figure 7 graphically illustrates how we generate a reward

Transitions Orderings as forest Height in Graph Rewards
a
A — B C F A=0 A=0
BE——C \l, \l, B= B=05
a C=2 C=1
A—— B
a ,->B E D=0 D=0
B———= A X /\ E=0 E=0
D——8 \ F=1 F=05
£ —0b F SA D

Figure 7: Illustrative example of our reward function

function R that assigns rewards to states. The input is ob-
served transitions 7Y C S x A x S. As a first step a forest
F = (S, E) is created, where the nodes consist of states S
and edges E. Furthermore, the following condition holds:
(s1,82) € E = |{s1 = s2}| < |{s2 = s1}|. The reward
function R : S — [—1, 1], which maps states to rewards, is
defined as follows

heightp(s) .
height(iubl;'ee(s))’ if s # ERR
R(s) =< —1, if s= ERR (1)
0, otherwise,

where heightr(s) returns the length of the longest path from
node s to a leaf node in F, subtree(s) return the tree s
belongs to, and height(t) returns the height of tree t, i.e.,
the height of its root node.

The definition ensures that failure states give lower (neg-
ative) rewards than all non-failure states. Non-failure states
give a higher reward if they have been favored by the ini-
tially managing entity. For a state without any occurrence
in the log, 0 reward is given.

4.3 Policy Improvement

The output of the MDP creator is a system description
in the form of an MDP. In the policy improvement step,

well-known decision making algorithms can be applied to
optimize the management policy. We have incorporated
both Policy Iteration [6] for adapting a policy to avoid er-
ror states in an environment, that is not expected to change
significantly, as well as the Q-learning [22] algorithm, able
to iteratively adjust to changing environments.

Finally, to utilize the optimized policy, it is deployed, re-
placing the initial policy. The policy optimization can be ar-
bitrarily repeated. This allows to take additionally gathered
data into account to refine the policy and react to changes
in the environment.

5. EVALUATION

To evaluate our approach, we have created a simulation
testbed, allowing for quick and easy specification of complex
composite applications, their runtime properties, as well as
the initial management policies. The simulation testbed is
implemented using Ruby'. It provides a domain-specific
language (DSL) for the definition of the service behavior,
e.g., interaction with other services, and processing cost.
Furthermore, it allows for the specification of configuration
variants and parameters that can be dynamically changed
during runtime. Listing 1 shows a simplified definition of the
HRS’s “find hotel” method in the “search using all external
providers” configuration. It adds a new configuration variant
to the HRS’s “find hotel” method, which invokes 3 partner
services CRM, FM, and GDS. Furthermore, to model in-
teraction with external services, the ‘cost’ value defines the
mean of the normally distributed invocation time.

add("hrs#find_hotel").add_config("all#regular") do
invoke "crm#get_customer_address"
invoke "fm#get_budget"
invoke "gds#get_flight_information"
cost 4 # estimated cost of external requests
end
Listing 1: Service method definition: HRS “find hotel”,
demonstrating basic capabilities of the developed simulation
testbed, i.e., invocation of other services and their methods,
simulation of external processing costs, and the definition of
configuration variants.

The simulation testbed furthermore allows for the specifi-
cation of initial management policies for the created services
using a similar DSL. Additionally, a management interface
is provided, allowing to replace the initial policy with the
optimized one. We also provide for several different user in-
teraction patterns to simulate varying numbers of users with
different behaviors.

The policy optimization framework is implemented as a
Java library. Currently, there is one log adapter?, compati-
ble with the simulation testbed log, and conforming to the
specification. The optimization algorithms, i.e., policy iter-
ation and Q-Learning, are optimized implementations of the
algorithms presented in [18].

We implemented the scenario application as described in
Section 2, with multiple concurrent clients sending requests

"http://ruby-lang.org/

2 An exemplary logdj configuration and helper methods con-
forming to the implemented format are available at https:
//gist.github.com/1197839

508

1500 4
3

1000
2

500
_ I
o || 0

Original Policy Q-Learning Original Policy Q-Learning
Policy Iteration Policy Iteration

(a) Total Errors (b) Processing Time (s)
Figure 9: Evaluation result summary. Our approach was
able to significantly improve the initial management policy
using both, policy iteration and Q-Learning. Error occur-
rence was reduced by more than 70%, and average processing
time decreased by over 27%.

to the Booking Service. The initial policy is designed to
degrade the quality of services for faster processing times
if load rises above a certain threshold. In the interaction
of the HRS and GDS services there manifests a hidden in-
compatibility in one certain configuration constellation. In
that scenario, the HRS is configured to only consider major
airports for finding hotels which increases the probability of
empty results for the travel itinerary in combination with
the GDS, configured to look for the cheapest flights, which
might use smaller airports. This situation is perceived as an
error and mitigated by the HRS querying all available part-
ner services incurring additional processing overhead. This
special case is not addressed in the otherwise useful initial
policy. In general, as argued before, it is very difficult to an-
ticipate all possible failure scenarios, which calls for adaptive
management policies as proposed in this paper.

The policy optimization is performed after a bootstrap-
ping phase which is needed to collect log data. This phase
is completed if 3000 requests have been processed. KEach
single service invocation triggers the output of at least one
status update information. The requests are issued in a
sawtooth pattern to simulate varying load patterns. The
evaluation period, in which the performance of policies is
assessed, consists of an equal amount of requests following
the same pattern. The evaluation was performed on a ma-
chine with a 2.4GHz quad-core Intel Xeon E5620 CPU with
12MB shared L3 cache, 16GB RAM, running Ubuntu 10.04
LTS.

The results in Figure 9 show, that we are able to reduce
the occurrence of errors by over 70% using the Q-Learning
policy improvement, and by more than 80% using the pol-
icy obtained through policy iteration. Furthermore, the av-
erage request processing time is reduced by over 27% due
to the reduced impact of the performance penalty incurred
when errors are encountered. The worse performance of the
Q-Learning algorithm with regard to total errors can be at-
tributed to the slower convergence of this algorithm for the
given problem. However, Q-Learning is more suitable for
iterative, online policy improvement.

Figure 8 presents detailed evaluation results. The section
‘Queue Length’ shows the system’s processing queue and
illustrates that the chosen request pattern induces signifi-
cant stress on the application. The three ‘Processing Time’
sections show the time it took the system to process each
single request. The optimized policies maintain appropriate

1800 | Queue Length /—;,

1200

600

Original Policy —+—
Policy lteration ---%--- 7
Q-Learning ------

.
Processing Time (Original Policy)‘

6L n " T ° i
2 e s it i st o i
T t t
10 | Processing Time (Policy Iteration) 2% X X KR XK XK X X X x X B
TONCY 2 L xR s <X w0 e Sie it avte X X XM peex X, Xx X v .

6 X X s 5% X ><><><>%< XX >3<>< R PR 1 XK s R XX P X o >22<>%<X < o OO X XXX 0N X X X O
2 + + : f +

10 7

Processing Time (Q-Learning)
© NI

—

S’ o o S0k Kk Ko
—

- * LK
ik —

it !

2 Mpmetestm e

T

Cumulative Errors

moem L I
0 500 1000

I
1500

I
2000 3000

Figure 8: Results of the conducted experiment. The x-axis represents the progress of the evaluation based on the number of
request processed. ‘Queue Length’ shows the number of requests pending for processing. The three ‘Processing Time’ panels
depict the time it took for individual requests to be processed for each of the three evaluated policies. ‘Cumulative Errors’
shows the aggregated number of errors occurred during the evaluation run.

processing times, and allow for a degradation in processing
time to avoid errors. The last section, ‘Cumulative Errors’,
shows the aggregated number of errors encountered during
the evaluation. In our scenario, both optimized policies out-
perform the original management strategy.

6. RELATED WORK

Autonomic and policy-based management, fault tolerance,
and self-healing systems research has received a lot of atten-
tion in the past and continues to do so until today. Recently,
these areas are becoming more and more relevant for SOA
environments, as unaided optimization of configuration, col-
laboration, and error mitigation strategies, are essential for
the successful implementation of a loosely-coupled SOA.

An approach to autonomic SLA-based management of dis-
tributed systems is presented in [1], proposing a hierarchi-
cal architecture of autonomic managers using a traditional
MAPE cycle, each responsible for certain non-functional
concerns of an application according to a predefined policy.
Similarly, [14] presents an autonomic framework for prevent-
ing SLA violations. The approach presented in [19] applies
automated planning algorithms for system reconfiguration
based on user-defined objectives.

Several approaches have been presented in the area of self-
healing web service integration and composition (e.g., [9, 11,
10]), as well as self-healing BPEL processes (e.g., [5, 4, 16]).
The presented techniques are concerned with optimizing the
behavior of integrated and/or composed services and busi-
ness processes, using static a priori policies, and, contrary
to our approach, assume in-depth knowledge of the services
to be managed.

An architecture for self-manageable cloud services is pre-
sented in [7]. Similar to our approach, services provide man-
agement interfaces to allow for the control by the autonomic
manager. However, the presented solution requires for the
autonomic manager to know the service capabilities ahead
of time.

A notable method for policy-driven autonomic manage-
ment using reinforcement learning techniques is presented

509

in [3, 2]. The approach allows for optimization of runtime
behavior of managed applications by analyzing and decon-
structing the provided management policies, utilizing a com-
plex management architecture. In contrast to our approach,
managed applications and components must be completely
controlled using the proposed framework, policies enforced
by internal mechanisms cannot be taken into account.

7. CONCLUSION

In this paper we propose a novel approach for optimizing
control policies for SOA, leading to dependable and adap-
tive service-oriented systems. The approach makes minimal
assumptions about the structure and capabilities of the sys-
tem. We present a new technique to transform log data into
a Markov Decision Process representation, which is used to
generate an improved control policy that takes into account
dynamics of the environment and software defects. This
is done at runtime without need for human intervention.
Experiments conducted in a testbed consisting of real Web
services show that the adaptive policies are capable of mit-
igating the effects of defects and incompatibilities between
collaborating components.

As future work we plan to integrate service level objec-
tives, as well as request payload data, into the policy gen-
eration in addition to log data. We will also investigate
how our approach can be applied to Web service compo-
sitions and business process optimization. Another future
research direction includes to consider not only the service
level but also the resource level, i.e., to control the mapping
of services to resources. The techniques presented in this
paper allow to manage relatively complex service-oriented
systems. However, if large-scale highly complex systems are
to be controlled, algorithms for complexity reduction, such
as principal component analysis, could be employed. Ac-
tive learning promises better exploration and faster learning
rates for Q-learning.

Acknowledgement

The research leading to these results has received funding
from the European Commission’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 257483 (In-
denica).

8.
(1]

[10]

REFERENCES
M. Aldinucci, M. Danelutto, and P. Kilpatrick.

Autonomic management of non-functional concerns in
distributed & parallel application programming. In
IEEE International Symposium on Parallel Distributed
Processing, 2009. IPDPS 2009., pages 1 —12, May
2009.

R. Bahati and M. Bauer. Modelling reinforcement
learning in policy-driven autonomic management.
International Journal On Advances in Intelligent
Systems Volume 1, Number 1, 2008, 2008.

R. M. Bahati, M. A. Bauer, and E. M. Vieira.
Policy-driven autonomic management of
multi-component systems. In Proceedings of the 2007
conference of the center for advanced studies on
Collaborative research, CASCON ’07, pages 137-151,
New York, NY, USA, 2007. ACM.

L. Baresi and S. Guinea. Dynamo and Self-Healing
BPEL Compositions. In Companion to the proceedings
of the 29th International Conference on Software
Engineering, ICSE COMPANION ’07, pages 69-70,
Washington, DC, USA, 2007. IEEE Computer Society.
L. Baresi, S. Guinea, and L. Pasquale. Self-healing
BPEL processes with Dynamo and the JBoss rule
engine. In International workshop on Engineering of
software services for pervasive environments: in
congunction with the 6th ESEC/FSE joint meeting,
ESSPE ’07, pages 11-20, New York, NY, USA, 2007.
ACM.

R. Bellman. Dynamic programming. Dover Pubns,
2003.

I. Brandic. Towards self-manageable cloud services. In
Computer Software and Applications Conference,
2009. COMPSAC ’09. 33rd Annual IEEE
International, volume 2, pages 128 —133, July 2009.
A. Brown and D. Patterson. To err is human. In
Proceedings of the First Workshop on FEvaluating and
Architecting System dependabilitY (EASY01), 2001.
K. Chan and J. Bishop. The design of a self-healing
composition cycle for web services. In Software
Engineering for Adaptive and Self-Managing Systems,
2009. SEAMS ’09. ICSE Workshop on, pages 20 —27,
May 2009.

G. Denaro, M. Pezze, and D. Tosi. Designing
self-adaptive service-oriented applications. In
Autonomic Computing, 2007. ICAC ’07. Fourth
International Conference on, page 16, june 2007.

510

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

G. Denaro, M. Pezze, and D. Tosi. Shiws: A
self-healing integrator for web services. In Companion
to the proceedings of the 29th International Conference
on Software Engineering, ICSE COMPANION 07,
pages 55-56, Washington, DC, USA, 2007. IEEE
Computer Society.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised

and unsupervised discretization of continuous features.
In Proceedings of the 12th International Conference on

Machine Learning, pages 194-202. Morgan Kaufmann
Publishers, Inc., 1995.

R. Holte. Very simple classification rules perform well
on most commonly used datasets. Machine learning,
11(1):63-90, 1993.

P. Leitner, A. Michlmayr, F. Rosenberg, and

S. Dustdar. Monitoring, Prediction and Prevention of
SLA Violations in Composite Services. In Proceedings
of the IEEE International Conference on Web Services
(ICWS’10), pages 369-376, Los Alamitos, CA, USA,
2010. IEEE Computer Society.

E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. Software
Engineering, IEEE Transactions on, 25(6):852 —869,
nov/dec 1999.

S. Modafferi, E. Mussi, and B. Pernici. SH-BPEL: A
Self-healing Plug-in for WS-BPEL Engines. In
Proceedings of the 1st workshop on Middleware for
Service Oriented Computing (MW4SOC 2006),
MW4SOC 06, pages 48-53, New York, NY, USA,
2006. ACM.

M. P. Papazoglou, P. Traverso, S. Dustdar, and

F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. Computer,
40(11):38-45, 2007.

S. Russell, P. Norvig, J. Candy, J. Malik, and

D. Edwards. Artificial Intelligence: A Modern
Approach. Prentice hall, 2010.

B. Satzger, A. Pietzowski, W. Trumler, and

T. Ungerer. Using automated planning for trusted
self-organising organic computing systems. In ATC,
volume 5060 of Lecture Notes in Computer Science,
pages 60-72. Springer, 2008.

M. Sloman. Policy driven management for distributed
systems. Journal of Network and Systems
Management, 2(4):333-360, 1994.

R. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning,
volume 216, page 224. Citeseer, 1990.

C. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3):279-292, 1992.

