World Wide Web
DOI 10.1007/s11280-012-0180-6

Crowdsourcing tasks to social networks
in BPEL4People

Daniel Schall - Benjamin Satzger - Harald Psaier

Received: 24 November 2011 / Revised: 28 May 2012 / Accepted: 19 July 2012
© Springer Science+Business Media, LLC 2012

Abstract Human-interactions are a substantial part of today’s business processes.
In service-oriented systems this has led to specifications such as WS-HumanTask
and BPEL4People which aim at standardizing the interaction protocol between
software processes and humans. These specifications received considerable attention
from major industry players due to their extensibility and interoperability. Recently,
crowdsourcing has emerged as a new paradigm for leveraging a human workforce us-
ing Web technologies. We argue that crowdsourcing techniques and platforms could
benefit from XML-based standards such as WS-HumanTask and BPEL4People as
these specifications allow for extensibility and cross-platform operation. However,
most efforts to model human interactions using BPEL4People focus on relatively
static role models for selecting the right person to interact with. Thus, BPEL4People
is not well suited for specifying and executing processes involving crowdsourcing
of tasks to online communities. Here, we extend BPEL4People with non-functional
properties that allow to cope with the inherent dynamics of crowdsourcing processes.

D. Schall (X))
Siemens Corporate Technology (CT T CEE), Siemensstrasse 90, 1211 Wien, Austria
e-mail: daniel.schall@siemens.com

B. Satzger - H. Psaier
Distributed Systems Group, Vienna University of Technology,
Argentinierstrasse 8, 1040 Wien, Austria

B. Satzger
e-mail: Satzger@infosys.tuwien.ac.at

H. Psaier
e-mail: Psaier@infosys.tuwien.ac.at

Published online: 10 August 2012 4\ Springer

World Wide Web

Such properties include human capabilities and the level of skills. We discuss the
formation of social networks that are particularly beneficial for processing extended
BPEL4People tasks. Furthermore, we present novel approaches for the automated
assignment of tasks to a social group. The feasibility of our approach is shown
through a proof of concept implementation of various concepts as well as simulations
and experiments to evaluate our ranking and selection approach.

Keywords crowdsourcing - BPEL4People - non-functional properties -
social networks

1 Introduction

Web services have paved the way for a new type of distributed system. Services let
developers and engineers design systems in a modular manner, adhering to standard-
ized interfaces. Services already play an important role in fulfilling organizations’
business objectives because process stakeholders can design, implement, compose,
and execute business processes using Web services as well as languages such as the
Business Process Execution Language (BPEL) [5].

However, the BPEL specification was lacking a concept of (process) activities that
are performed by human actors. Specifically the case that certain services in a process
need to be provided by people is not covered. Recently, major software vendors
have been working on standards addressing the lack of human interaction support in
service-oriented systems. WS-HumanTask [4] (WS-HT) and BPEL4People [3] (B4P)
were released to address the emergent need for human interactions in business-
oriented processes. These standards specify languages for modeling human interac-
tions, the lifecycle of humans tasks, and generic role models.

Meanwhile, a new Web-based business model called crowdsourcing attempts to
harnesses the creative solutions of a distributed network of individuals established
with the goal to outsource tasks to these workers [9, 20, 53]. This network of humans
is typically an open Internet-based platform that follows the open world assumption
and tries to attract members with different knowledge and interests. Large IT
companies such as Amazon, Google, or Yahoo! have recognized the opportunities
behind such mass collaboration systems [14] for both improving their own services
and as business case. While the aforementioned specifications have been created to
model human interactions in BPEL, it remains an open issue how to apply them to
crowdsourcing. Specifically, the WS-HT specification does not define any particular
mechanisms to find or select people in open and dynamic environments. Instead, a
Logical People Group is used to query an organizational directory. We believe that
human interactions in SOA need to be supported in a flexible manner, in particular,
it should be possible to use crowdsoucing for process execution.

In this work we present the following key contributions:

1. An approach for combining crowdsourcing techniques and B4P related XML
standards.

2. B4P with non-functional properties for adaptive and quality-aware crowdsourc-
ing of service-oriented processes.

3. Social community formation for efficient crowdsourcing of processes.

@ Springer

World Wide Web

4. Automated matching of tasks to members of a social crowdsourcing community.
5. Implementation and evaluation of our concepts.

This paper is structured as follows: In Section 2 we discuss related work, in
Section 3 we present the application areas of our proposed service-oriented crowd-
sourcing environment and outline the steps of our approach. In Section 4 we propose
extensions to introduce non-functional requirements for B4P. In Section 5 we explain
the establishment of a social network structure that allows for an efficient execution
of B4P processes. We present the automated matching of extended B4P processes to
a social community crowd in Section 6. Finally, we present in Section 7 the results of
our evaluation and conclude our paper in Section 8.

2 Related work

The work presented in this paper focuses on a methodology and tools allowing
human interactions in SOA to be executed in a flexible manner. We structure
our discussion of related work in the area of crowdsourcing, SOA, Web services,
and process-centric collaboration. Second, we present related research in adaptive
systems engineering. Third, we discuss approaches and metrics for network analysis.

In recent years, there has been a growing interest in the complex ‘connectedness’
of today’s society. Phenomena in our online-society involve networks, incentives,
and the aggregate behavior of groups [17]. Peer-production distinguishes from the
property- and contract-based models of firms and markets. Research by [8] analyzes
how groups of individuals successfully collaborate on large-scale projects following a
diverse cluster of motivational drives and social signals. In contrast, Human compu-
tation is motivated by the need to outsource certain steps in a computational process
to humans [18, 42]. An application of human computation in genetic algorithms was
presented in [25]. A variant of human computation called ‘games that matter’ was
introduced by [52]. Related to human computation are systems such as Amazon Me-
chanical Turk! (MTurk). MTurk is a Web-based, task-centric platform in which users
can publish, claim, and process tasks. [50] evaluates the task properties of a similar
platform in cases where large amounts of data are reviewed by humans. In contrast to
common question/answer (Q/A) forums, such as Yahoo! Answers,> MTurk enables
businesses to access the manpower of thousands of people using a Web services
API. Mixed service-oriented systems [41] and [42] target flexible interactions and
compositions of Human-Provided Services (HPS) [45] and Software-Based Services
(SBS). This approach is aligned with the vision of the Web 2.0, where people can
actively contribute services. In such networks, humans may participate and provide
services in a uniform way by using the HPS framework [41]. A similar vision is shared
by [36] defining emergent collectives which are networks of interlinked valued nodes
(services). In such collectives, there is an easy way to add nodes by distributed actors
so that the network will scale. Current crowdsourcing platforms offer very limited

http://www.mturk.com/

Zhttp:/answers.yahoo.com/

@ Springer

http://www.mturk.com/
http://answers.yahoo.com/

World Wide Web

support for modeling complex interactions (e.g., sub-task processing) that require
coordination of humans’ joint capabilities and software-based services.

Several trends originated from human interactions in service-oriented systems.
As mentioned before, B4P defines human interactions in business processes via the
human task specification [4]. A concrete implementation of B4P as a service has
been introduced in [51], but without supporting process adaptivity. Worklets [1]
grounded in activity theory represent self-contained subprocesses. Another approach
for flexible activities in business-oriented environments was presented in [12]. In
[39], the relation of various B4P-related Web standards and resource patterns is
discussed. In contrast to process-centric compositions in SOA, task-based crowd-
sourcing platform such as MTurk do not support long-running interactions and
compositions of humans and services. The problem of composition is strongly related
to organization and control. The key principles of autonomic computing (e.g., see [21]
for an overview) aim at supporting systems featuring self-* properties (e.g., failure
resilience through self-organizing computing elements). As an example, Maximilien
and Singh [29] focus on autonomic services and trusted service selection. In [28], a
reference architecture for self-organizing service-oriented systems is presented, but
without considering humans ‘as part’ of the system. The authors in [19] propose
adaptive flows to support flexibility and evolution in collaborative, pervasive en-
vironments. Technological and social aspects shape the operation constraints of a
system [24]. It is, therefore, important not only to model human interactions in
process-centric systems, but also to understand how people are connected [47, 54]
and how information flows are influenced by structure. When building Web-centric
applications involving human tasks, one has to consider incentive schemes that are
likely to encourage users to perform these tasks that crucially rely on human input
[48]. In this work we show how human metrics can be used in adaptive processes.

Human tasks metrics in workflow management system have been discussed in
[26]. A formal approach to modeling and measuring inconsistencies and deviations,
generalized for human-centered systems, was presented in [13]. In [56], flexible
process views in Web service environments are proposed to cater for the diverse
interests, authority levels, etc., of different users. Studies on distributed teams
focus on human performance and interactions [6, 35], as well as in Enterprise 2.0
environments [11]. Models and algorithms to determine the expertise of users are
important in future service-oriented environments [43]. Task-based platforms allow
users to share their expertise [54]; or users offer their expertise by helping other
users in forums or answer communities [2]. By analyzing email conversations [16],
the authors studied graph-based algorithms such as Hyperlink-Induced Topic Search
(HITS) [23] and PageRank [34] to estimate the expertise of users. The authors in [46]
used a graph-entropy model to measure the importance of users. The work by [55]
applied HITS as well as PageRank in online communities (i.e., a Java question and
answer forum). However, existing approaches for expertise mining have not been
applied in service-oriented crowdsourcing environments.

In our previous work, we have designed and implemented the HPS framework
[41, 42, 45] allowing users to define services and to provision human expertise in
a service-oriented manner. Furthermore, we have designed a market-based crowd-
sourcing platform [40] and simulation environment to stimulate the evolution of user
skills. Here we extend B4P and related XML standards to cope with the inherent
dynamics of crowdsourcing environments. Also, we show how social networks can
help to process crowdsourced tasks in a more efficient manner.

@ Springer

World Wide Web

3 Service-oriented crowdsourcing

More than ever, business processes are affected by rapidly changing requirements
and imperative adaptations that come along with necessary modernizations of the
in-house activities and adjustments to the market. Many of today’s workflow-based
systems are still based on a fop-down design for processes. It is clear, that there
is a trend to the combination of interactions between humans and software based
applications, such as SBS, as a central requirement in business environments. This
may work fairly well for processes involving only SBS with minor human interaction.
However, once the human interaction models in those processes become more
important and complex, a top-down approach is unable to foresee and cope with
the implications of the human behavior related dynamics. There are several types of
tasks that are still best processed by humans.

3.1 Task-based crowdsourcing markets

Currently, the extensions to the specifications for business processes are designed for
simpler human tasks, e.g., making process progress decisions and process approval
requests [3]. Nevertheless, with the new marketplaces provided by crowdsourcing
including workers with manifold skills, new types of tasks can be considered for
outsourcing. Recently, many platforms have started to offer a versatile number of
tasks that can be outsourced to the crowd.

In the following, we overview some of the potential crowd tasks that could be
designed and outsourced using our approach:

— Classification or categorization tasks using for example the MTurk marketplace
[22], CrowdFlower,? or SmartSheet.* Categorization is one of the most common
use cases for crowdsourcing. A categorization task is one that asks a worker to
select from a list of options.

— Transcription tasks as offered by CastingWords® or SpeechInk.® Transcription
services include transcription of audio-to-text.

— Web development and web programming as provided by, for example, oDesk.’
Web development tasks include integration of scripts with Web service APIs or
programming questions regarding different frameworks or toolkits.

We foresee that our B4P-based approach can be used in scenarios like document
translation, proof-reading and correction of documents (see also crowd-powered
word processors®), transcription, data-cleansing, and simple programming tasks as
those offered by oDesk. These tasks can be crowdsourced by creating appropriate
B4P activities and WS-Human Tasks embeddings that are transmitted to the HPS

3http://www.crowdflower.com
4http://www.smartsheet.com
Shttp://www.castingwords.com/
Ohttp://www.sppechink.com/
http://www.odesk.com

8http://projects.csail.mit.edu/soylent/

@ Springer

http://www.crowdflower.com
http://www.smartsheet.com
http://www.castingwords.com/
http://www.sppechink.com/
http://www.odesk.com
http://projects.csail.mit.edu/soylent/

World Wide Web

middleware. The HPS middleware implements algorithms for matching, ranking,
selection and runtime monitoring of tasks.

3.2 Approach outline

Here, we propose adaptive human interaction support in service-oriented systems.
Human interaction support in SOA has only recently been proposed and supported
by standards such as WS-HT [4] and B4P [3]. We argue that these standards need
to be extended to support compositions of both SBS and HPS using crowdsourcing.
The benefit of this approach is a seamless QoS-based service-oriented infrastructure
that is able to adjust its interactions based on service-level agreements (SLAs) and
quality constraints. Our previous work [40, 42] has already detailed the challenges
of integrating in-house processes to a crowdsourcing environment. In this work, the
approach is extended by support for crowdsourcing of composed, complex tasks. We
have identified the following main challenges:

— Crowd structure: Composed tasks not only require humans for processing the
set of subtasks, but also, a coordinated and supervised assignment and merging
of the individual results to a final result. For this purpose, in this work we
identify three roles. The Coordinator, on the one side, keeps in touch with the
business process management, and, on the other side, maintains her/his relations
to various crowd communities. The motivation of coordinators is to some extend
similar to the role of a moderator in social-online communities such as Slashdot.
Moderators, in our case coordinators, can be understood as gatekeepers [27]
who control the quality of postings (in our case tasks) in online communities.
The Supervisor represents a community and is aware of the current possible
segmentation of one crowd task to a set of subtasks with the related distribution
to her/his team. Finally, there are the common crowd Workers. We believe that
this simple role model consisting of three distinct roles is sufficient for crowd
tasks as described in Section 3.1. Crowd members temporarily form teams to
work jointly on tasks on a magnitude of hours and days. Shortly after that
the team dissolves again and workers pick some other task. More complicated
hierarchies as found in enterprises or large-scale development teams may not be
suitable for such short-lived groups.

— Non-functional properties: Current service-based process definitions for hu-
man interactions, in particular the combination of BPEL, B4P, and WS-HT
definitions, need to be extended for the requirements of crowdsourcing. A
further challenge addressed with crowdsourcing, is the integration of SOA
agreements’ specifications WSLA (Web Service Level Agreements)’ in the
outsourcing process.

— Crowd member ranking: Crowd environments are dynamic by nature. Therefore,
it is vital to the outsourcing party that the current best matching crowd members
can be detected and ranked according to the task’s requirements. The result
allows the customer to select from a large set of potential workers. Also, the
final decision remains with the customer that can hide possibly sensitive selection
constraints from the public crowd platform.

http://www.research.ibm.com/wsla/WSLA093.xsd

@ Springer

http://www.research.ibm.com/wsla/WSLA093.xsd

World Wide Web

An important aspect of this work is to introduce the notion of expertise (i.e.,
human skills) in the context of B4P. Existing approaches for expertise mining (e.g.,
see [55]) have mostly been applied in online communities or social network analysis,
but not in process-oriented crowdsourcing environments. Here we introduce the
notion of capabilities and skills in B4P to ensure quality-aware crowdsourcing of
human tasks. In the following, we define important concepts used in this work:

— Skills are specific to the functions workers perform doing their job. As an
example, a worker may perform activities related to a software development task
such as reviewing code. The worker may be an expert in ‘Java programming’,
a beginner in ‘Python programming’ and so forth. However, skills—as used in
this work—are always based on personal expertise workers have and workers
may improve their skills through training (e.g., improving the skill level from
‘knowledgeable’ to ‘expert’).

— Capabilities describe non-functional human properties to determine a workers
suitable to work on a task. Human capabilities describe behavior properties
which cannot be directly derived from the worker’s profile. Example capabilities
include ‘worker should be capable of coordinating 5 other team members’ or
‘worker should be capable of merging and finalizing translated input from other
workers’. Thus, the suitability of a worker is highly dependent on the current
load conditions within the crowdsourcing environment. A worker might have
in principle the skills to finalize a translated document but may not have the
resources to merge the input from other workers. At B4P level, only capabilities
are defined such as ‘translate document and split/merge sections’. To fulfill this
capability, workers are matched and ranked based on their skills, their social
network connectivity (being able to split, distribute portions of the document to
peers in the social network and to merge the received input) and their current
load (number of pending tasks in a worker’s queue).

— Constraints allow the customer and owner of the WS-HT to state some strict
or relaxed filter options on the different roles. For example, from the customer
point of view, certain crowd members may belong to a group Preferred Workers
that is either populated automatically based on past experiences (e.g., reliable
and trustworthy behavior of a worker towards the customer) or other customer
internal policies. Constraints could state that only Preferred Workers should
be able to review certain portions of a document. Other constrains could for
example state that only workers from a certain geographical location may work
on a task.

Figure 1 outlines the idea of the approach. In the first step in Figure 1a, part of a
BPEL process includes a B4P extended activity (ba4) to transfer a set of human tasks
(ht) to the crowd. A task’s description comprises functional properties (FPs), e.g.,

Wi wz@\\ wi[P] w2 ¥y Wi[P]
e EL) Ss'g" wa[7]
N
W / [a]
\\,,,,, w2[P]

(a) BPEL/B4P processes. (b) FP matching. (¢) NFP matching. (d) Select and assign.

Figure 1 Enhanced B4P environment: matching, ranking, and selection of human workers.

@ Springer

World Wide Web

assignment regions R, and furthermore, non-functional properties (NFPs) including
capabilities C and quality expectations Q. In Figure 1b a set of potential crowd
workers W that can participate in the task ht is estimated by matching the task’s
aligned set of regions to the regions available in the environment. Next, in Figure 1c
the initial set of workers is reduced to a set that provides the required NFPs, e.g.,
their capabilities. Additionally, in this step the workers are ranked according to
their capabilities’ related skill level. The skill level hints the expectable quality. It
is important to note, that the requester has no knowledge about the hierarchical
structure in the crowd. Hence, the workers recommended to the requester are
actually a set of coordinators with aggregated capabilities. Finally, to guarantee the
promised quality in Figure 1d the human tasks are assigned according to the ranking.

All interactions within the environment are monitored by a logging component.
These logs contain information regarding task creation time, task assignments,
interactions among workers and so forth. Based on this information various metrics
are automatically calculated such as task processing speed and reliability (accepted
and finished tasks). The ranking procedure is based on these metrics which are
frequently updated. Thus, this feedback-loop approach enables the system to self-
adapt based on the workers’ behavior.

4 Non-functional properties in B4P

Current B4P compositions include mainly functional properties. In the common case
these comprise the WSDL based information (operations and ports), and, related
to the potential assignments, role-based access models to the activities around the
task (c.f., [3, 30, 51]). However, the dynamic nature of crowdsourcing environments
requires a flexible definition of interactions in B4P. In particular, a situation aware
selection of potential workers must be possible. Thus, instead of defining strict
interaction models it is necessary to include in the definitions some properties
that guarantee a certain degree of freedom at composition and execution time.
We call these particular properties non-functional properties for B4P. Just as the
functional properties, these properties define possible task assignments and human
task processors that come into consideration. However, non-functional properties’
values are either not completely known a-priori, or tend to change rather frequently
over time. A crowd worker’s observed performance might be better or less than
expected because of the worker’s current situation and context which influences
her/his behavior. A typical example includes her/his present task load. The following
section gives a brief overview of the concepts included in BPEL, B4P, and WS-HT
before the new extensions are discussed, presented and explained in an XML sample.

4.1 Human tasks in B4P

Figure 2 shows the relation between BPEL, B4P, and WS-HT. The figure is a
simplified version of the relation and contains only the essential elements that are
addressed by our extensions.

Generally, a BPEL Process uses services to process the included activities. In
our case these can either include SBSs or HPSs. In the event of an HPS activity,
the B4P specification allows to bridge a BPEL Extension Activity to a B4P People

@ Springer

World Wide Web

BPEL B4P WS-HT
| Human Interaction I | Human Interaction Logical People Group
| T N
! : 7
|
1 «uses» 1 1 ! ! Generic Role:
i | ’ People I 1 |- Potential Owner
- ! ! 0.. Query ' || - Actual Owner
Activity ! i «uses»i 1 |- Excluded Owner
i «uses». _>| Human Task | «us‘es» - Initiator
- Task Stakeholder
J{ N I
[People Activity }‘ >| ,,,,, ! | - Notification Recipient
’4{ I | - Business Administrator
1 1 |
N I
«USES» People Assignment 0 - i
3 -
| i
| 1
v Generic Role: AN | Deadline ‘ «uses» | Notification ‘
- Process Iiator | by \
_ - Process Stakeholder 0.*
1 - Business Administrator
- Software Based Service N - Presentation Elements
- Human Based Service

Figure 2 Simplified B4P task model.

Activity. The People Activity contains either locally defined tasks from B4P Human
Interaction, a container for task definitions, or, from a WS-HT document’s Human
Task. Apart from the wrapping tasks B4P also defines People Assignments. These are
defined role types that refer to the whole process context. Similar to B4P’s definition,
WS-HT has a Human Interaction element. It is also a container for a task collection,
however, with additional elements. In particular, it allows to define Logical People
Groups that list the involved parties and their roles aligned with the tasks. The
Human Task used by both B4P and WS-HT is actually a WS-HT element that defines
the individual assignments between task and human (People Assignment), deadlines
with the Deadline element, and human readable description of the task with the
Presentation Elements.

4.2 Basic model and extensions

The current specification of WS-HT provides no elements to include non-functional
properties into their definition as required in crowdsourcing. This is a major short-
coming in the specification when applied to dynamic environments. The reminder of
this section explains the extensions to WS-HT necessary to include non-functional
properties. Additionally, in reference to the previous work in [37] with a similar
scenario, we consider that the agreements between the crowd brokers, the previously
introduced Coordinators, and the customers settle on an XPath processable WSLA
document. Hence, the values to the WS-HT functional and non-functional properties
are manly taken from an WSLA XML document.

Human interaction Listing 1 presents an extract of a WS-HT XML document. Such
a document starts with the humanlnteractions tag and for our purpose links an
additional namespace (cp). Next, the namespace (tns) related to the crowdsourcing
service is defined. Then, the import tag specifies the WSDL file and its location for all
WS operations specified in the interaction. The following logicalPeopleGroups and
tasks will be detailed by the following listings. At the end, an example of a notification
is listed. In WS-HT notifications are used to notify a person or a group of people of a
noteworthy business event. For this crowdsourcing scenario a general one is defined

@ Springer

World Wide Web

<?xml version="1.0" encoding="UTF-8"?>
<htd:humanInteractions xmlns:htd="http: //www.example.org/WS-HT"
"http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
="http://www.infosys.tuwien.ac.at/hps/" targetNamespace="http://www.infosys.tuwien.ac.at/hps/"
"http://www.infosys.tuwien.ac.at/crowd/params" targetNamespace="http://www.infosys.tuwien.ac.at/crowd/params"
xsi:schemaLocation="http://www.infosys.tuwien.ac.at/WS-HT ws-humantask.xsd">
<htd:import importType="http: //schemas .xmlsoap.org/wsdl/"

location="CrowdSourcing .wsdl" namespace="http://www.infosys.tuwien.ac.at/crowd" />

9| <!-- htd:logicalPeopleGroups -->
10| <!-- htd:tasks -->
11| <htd:notifications>
12 <htd:notification name="taskComplete">

13 <htd:interface portType="tns: CustomerPT"

14 operation="reportComplete" />

15 <htd:peopleAssignments>

16 <htd:recipients>

17 <htd:from>htd:getInput("SLA")//wsla:Parties/wsla:ServiceConsumer</htd:from>
18 </htd:recipients>

19 </htd:peopleAssignments>

20 <htd:presentationElements/>

21 </htd:notification>
22| </htd:notifications>
23| </htd:humanlInteractions>

Listing 1 Human interactions including roles, tasks and notifications.

1| <htd:logicalPeopleGroups>

2| <htd:logicalPeopleGroup name="taskCoordiantors">

3 <htd:documentation xml:lang="en-US">

4 coordinate tasks in the crowd

5 </htd:documentation>

6 <htd:parameter name="region" type="xsd:string" />

7 <htd:parameter name="communities" type="cp:ListOfCommunities" />

8 <htd:parameter name: apabilities" type="cp:tListOfAggregateCapabilities" />
9 <htd:parameter name="constraints" type="cp:tListOfConstraints" />

10| </htd:logicalPeopleGroup>

11| <htd:logicalPeopleGroup name="taskSupervisors">

12 <htd:documentation xml:lang="en-US">

13 supervises tasks in the crowd and aggregates results

14 </htd:documentation>

15 <htd:parameter name="region" type="xsd:string" />

16 <htd:parameter name="communityId" type="xsd:string" />

17 <htd:parameter name="capabilities" type="cp:tListOfAggregateCapabilities” />
18 <htd:parameter name="constraints" type="cp:tListOfConstraints" />
19| </htd:logicalPeopleGroup>

20| <htd:logicalPeopleGroup name="taskWorkers">

21 <htd:documentation xml:lang="en-US">

22 can processes tasks

23 </htd:documentation>

24 <htd:parameter name="region" type="xsd:string" />

25 <htd:parameter name="communityId" type="xsd:string" />

26 <htd:parameter name="capabilities" type="cp:tListOfCapabilities" />
27 <htd:parameter name="constraints" type="cp:tListOfConstraints" />

28| </hid:logicalPeopleGroup>
29| </htd:logicalPeopleGroups>

Listing 2 Groups defined in the context of the crowd model.

at the end of the interaction definition. Via the port CustomerPT the customer is
informed that her/his outsourced task is complete. In this case, the from tag does not
specify one of the logical people groups defined in Listing 2. Instead, it specifies the
service customer which can be found in the WSLA’s Parties section.

Logical people groups This part of the human interactions definition organizes
the members of the crowd in our scenario in groups of people. As motivated in
Section 3.2 and in detail explained later in Section 5 we have identified three distinct
roles for structured crowdsourcing. Listing 2 defines those roles for the WS-HT

@ Springer

World Wide Web

document. Furthermore, the content of the tag logicalPeopleGroup allows to char-
acterize the different roles in the outsourcing process. Here, our first extension to
the standard is evident. Apart from the standard WS-HT parameter region, the
parameters define some necessary non-functional properties for the groups.

These include a parameter for the affiliation of the crowd members. For the
coordinator this is a list of communities. The communityId is for members
affiliated with exactly one community (supervisor and worker). Next, the capabilities
of a member are stated in capabilities. Those of the coordinator and supervisor
are aggregated across the hierarchy. Finally, a property denoted constraints
allows the customer and owner of the WS-HT to state some strict or relaxed filter
options on the different roles. Hard constraints may be used to hide sensitive
information from crowd members and soft constraints may be used to influence the
automatic matching of tasks to crowd members.

Tasks The main part of a WS-HT states the tasks and subtasks. Listing 3 includes
a single document review task, a service offered by many current crowdsourcing
platforms. After a brief documentation of the content, the WS port offering the
review service is defined. The port connects the caller to the selected crowd coor-
dinator. Any further delegation of the task is not directly influenced by this task
specification, but remains in the hands of the crowd members. Another necessary
extension to the standard is the quality tag. It defines the expected quality of the
promised reviews. The value of the quality is derived from the publicly accessible
WSLA document with immutable content and prepared to be reused for future
similar review tasks. Therefore, there is a need for a document that contains the
customers requirements for this particular task. In the presented case, this is the
DocumentReview document only accessible by the customer. In the tag people-
Assignments, after region and capabilities criteria, constraints tag contains a
number of hard or soft constrains in /istOfConstraints that define the final selection
and are provided by DocumentReview. These might include constraints that must
not be propagated to the crowd. Otherwise, as by definition the content of the tag
peopleAssignments maps between the roles defined in WS-HT and their properties
defined in Listing 2.

The presentation Elements tag contains standard information about human tasks
and notifications. This is another example, where all values are gathered from the
customers own document. As intended by the standard, the content is human-
readable information about the task and structured according to content displayable
at a user interface. This allows the customer to specify the particularities of the task
and the involved crowd members to deal with their tasks and notifications via a user
interface.

From Listing 3 it becomes apparent that the document comprises a number of
chapters. Also, urls are defined indicating where the document is provided for review
(document_url), the location of the questionnaire (review_url), and a result
submission portal at result_url. According to the WS-HT standard, the task
tag can also include compositions with a set of subtasks connected to individual
task definitions. These tags provide a convenient method to detail segmented tasks
a-priori. Nevertheless, crowdsourcing is a dynamic environment and a top-down
segmentation of the task might contradict the current possible worker assignments.
Thus, for our scenario we transfer the burden of on-line segmentation to the involved

@ Springer

World Wide Web

1| <htd:tasks>
2| <htd:task name="DocumentReview">
3 <htd:documentation xml:lang="en-US">
4 This task requires the review of a multipage document
5 </htd:documentation>
6 <htd:interface portType="1tns :ReviewHandlerPT"
7 operation="review" responsePortType="tns:ReviewHandlerCallbackPT" responseOperation="reviewResponse" />
8 <cp:quality>
9 htd:getInput("SLA™)//wsla:Expression[wsla:SLAParameter="quality’]/wsla:value
10 </cp:quality>
11 <htd:peopleAssignments>
12 <htd:taskStakeholder>

13 <htd:from logicalPeopleGroup="taskCoordiantors">

14 <htd:argument name="region"> <!-- hard constraints -->

15 htd:getInput("SLA")//wsla:Expression[wsla:SLAParameter="region’]/wsla:value

16 </htd:argument>

17 <htd:argument name="capabilities"> <!-- hard constraints -->

18 htd:getInput("SLA")//wsla:Expression[wsla:SLAParameter="capabilities’]/wsla:value
19 </htd:argument>

20 <htd:argument name="constraints"> <!-- hidden hard/soft constraints -->
21 htd:getInput("DocumentReview")/listOfConstraints

22 </htd:argument>

23 </htd:from>

24 </htd:taskStakeholder>
25 </htd:peopleAssignments>
26 <htd:presentationElements>

27 <htd:name xml:lang="en-US">Document Review </htd:name>

28 <htd:presentationParameters>

29 <htd:presentationParameter name="title" type="xsd:string">

30 htd:getInput("DocumentReview")/title

31 </htd:presentationParameter>

32 <htd:presentationParameter name="chapters" type="xsd:integer">
33 htd:getInput("DocumentReview")/chapters

34 </htd:presentationParameter>

35 <htd:presentationParameter name="document_url" type="xsd:string">
36 htd:getInput("DocumentReview")/document url

37 </htd:presentationParameter>

38 <htd:presentationParameter name="review_url" type="xsd:string">
39 htd:getInput("DocumentReview")/review url

40 </htd:presentationParameter>

41 <htd:presentationParameter name="result_url" type="xsd:string">
42 htd:getInput("DocumentReview")/result url

43 </htd:presentationParameter>

44 <!-- and more -->

45 </htd:presentationParameters>

46 <htd:subject xml:lang="en-US">

47 Review of a document {S$title} comprising {$chapters}

48 </htd:subject>

49 <htd:description xml:lang="en-US" contentType="text/plain">

50 Review the attached document {$title} comprising {$chapters}.

51 Find the document at {Sdocument url} and the related questionnaire at {Sreview url}.
52 Only fully and in—time completed questionnaires accepted at {$result url}.

53 </htd:description>

54 </htd:presentationElements>

55 <!-- htd:deadlines -->

56 <!-- crowdsourcing is flexible thus NO task compositions -->
57| </htd:task>

58| </htd:tasks>

Listing 3 The set of human tasks.

crowd supervisors and hint a possible segmentation in this example by providing the
number of chapters.

Deadlines The WS-HT standard also provides sections to notify the associated
parties in the process. The section related to a particular task is enclosed in the
deadlines tag displayed in Listing 4. Related to our document review example, the
defined notification chain is triggered by a completion deadline. The deadline itself
has been agreed in the WSLA. An escalation is triggered if the condition stated is
violated. In the example DocumentReview’s value reviewComplete is set to true

@ Springer

World Wide Web

if the complete review has been submitted to the aforementioned result_url. If
the condition is broken then the assigned supervisors and coordinators are informed
about the SLA violation.

1| <htd:deadlines>
2| <htd:completionDeadline name="notifyManagement">
3| <htd:documentation xml:lang="en-US">
4 notify the requester on deadline
5 </htd:documentation>
6 <htd:for>htd:getInput("SLA")//wsla:Expression[wsla:SLAParameter="deadline’]/wsla:value</htd:for>
7 htd:escalation name="deadlineMissReview">
8 <htd:condition>
9 <![CDATA[htd:getInput("DocumentReview”)/reviewComplete = true()]]>
10 </htd:condition>
11 <htd:notification name="deadlineMissSupervisor">
12 <htd:documentation xml:lang="en-US">
13 inform the hierarchy of responsible roles
14 </htd:documentation>
15 <htd:interface portType="tns:ReviewHandlerPT" operation="escalate" />
16 <htd:peopleAssignments>
17 <htd:recipients>
18 <htd:from logicalPeopleGroup="taskSupervisors">
19 <htd:argument name="supervisorID">
20 htd:getActualOwner("AssignedSupervisor")
21 </htd:argument>
22 </htd:from>
23 <htd:from logicalPeopleGroup="taskCoordiantors">
24 <htd:argument name="coordinatorID">
25 htd:getActualOwner("AssignedCoordinator™)
26 </htd:argument>
27 </htd:from>
28 </htd:recipients>
29 </htd:peopleAssignments>
30 <htd:presentationElements/>
31 </htd:notification>
32 </htd:escalation>
33| </htd:completionDeadline>
34| </htd:deadlines>

Listing 4 Defined timeouts and escalation actions.

5 Social aggregator

Today, social networks are a mass phenomenon found in private (e.g., Facebook) and
professional environments (e.g., LinkedIn). It is reasonable to assume that the trend
of social networks will continue to penetrate more and more aspects of our lives. In
a business context a social network is either formed explicitly, by manually adding
contacts, or implicitly, based on observed interaction and collaboration patterns. We
argue that it is highly beneficial to consider social aspects in crowdsourcing since
a clique in a social network is more likely to efficiently work on collaborative tasks
than a group of random workers. On a global scale, members of the latter are likely to
have never worked together before, to have different cultural background, to speak
a different language, and to live in different timezones, which altogether makes it
extremely hard to create high-quality task processing results.

The structure of companies is typically organized hierarchically. We borrow that
concept to some extent and distinguish between three roles in our crowdsourcing
system:

— Workers perform the actual processing of tasks and are assigned to one or
multiple supervisors.

@ Springer

World Wide Web

— Supervisors represent the head of a group of workers. They are responsible
for breaking a task down into subtasks, to distribute those subtasks to suitable
workers in her/his team, and to finally check the result. Each supervisor in turn
is assigned to one or multiple coordinators.

— Coordinators are the interface between the customers who submit tasks to the
social network and the supervisors who are responsible for tasks processing.

Figure 3 shows the main steps that are performed to augment the social network
in order to make it suitable for crowdsourcing. The origin is a social network (c.f.,
Figure 3a) that was formed either explicitly or implicitly; the nodes denote users of
the crowdsourcing system and the edges social relationships between those users.
Every user has a profile describing her/his skills. In the next step, illustrated in
Figure 3b, role hierarchies are formed.

We use betweenness centrality, a measure from graph theory indicating the
importance of a node, to determine a member’s role. We propose betweenness
centrality because it is often used in social and communication networks to estimate
the potential monitoring and control capabilities a node may have on data flowing
through the network [15]. In particular, we assume that nodes obtaining the role of
a supervisor will have a high betweenness centrality value because these nodes have
great influence on task flows. Let us define the graph G(V, E) consisting of the set
of vertices V' and the set of edges E. Shortest-path betweenness centrality, as used
in this work, defines the importance of a node s based on how many pairs of vertices
go through s € V in order to connect through shortest paths in G (e.g., see [10, 47]).
Betweenness centrality B(s) is formally defined as:

B(s) < Z 8u(s) (1)
st 8ut

where g, is the number of shortest paths linking nodes u and #; and g,,(s) is subset
of those paths that contain node s. When the betweenness centrality of a user
exceeds a certain threshold tg s/he has the prerequisites for becoming a supervisor,
if it is greater than an even higher threshold value z¢ s/he could adopt the role of
coordinator. This functionality is outlined in Algorithm 1.

{¢1, ¢2, €3, ¢4}

Coordinator

Supervisors

® ... Users Workers
— Social Relations {c1, ¢2} {3, ¢4}
(a) Social network. (b) Role hierarchies. (c) Aggregators.

Figure 3 Social roles and aggregation.

@ Springer

World Wide Web

When the importance values are calculated and a user fulfills the basic re-
quirements for becoming a supervisor or coordinator two different approaches are
supported how to actually decide on the roles:

— Invitation: The platform invites users exceeding a certain betweenness centrality
threshold to adopt a hierarchically higher role. The user may accept or decline
the offer.

— Nomination: The platform only nominates candidates for higher roles based on
their importance in the social network. Users connected to the nominee can
vote whether they support the candidate. Only with a certain minimum number
of supporters the user is awarded the higher role. This prevents to assign high
roles to users who have a high number of relationships and therefore a high
importance indicator but whose relationships are mostly superficial and weak.

The final step to make the social network ‘crowdsourcing-ready’ is to create
the higher-role profiles as an aggregation of all affiliated user profiles, as seen in
Figure 3c. This provides the basis for simple and rapid matching of tasks to competent
groups in social crowdsourcing, as described in the following section.

Algorithm 1: Detecting roles of users.

input : The social collaboration graph G(V, E).
output: The set V containing workers u € V with different roles in the social network.

1 7g /* threshold for supervisors */
2 7¢ /* threshold for coordinators */

3 /* simplified betweenness centrality evaluation of nodes in network G (for details see [10]) */
4 forveVdo

5 foreach n € N(v) /*neighbors of v¥/ do

6 if shortest path through n then

7 | /* save distance */

8
9

end

end
10 end
11 foreach node along shortest path to v do
12 /* from the most distant s to v */
13 if s # v then
14 | increase B(v)
15 end
16 end

17 for u € Vdo

18 if B(u) > 75 then

19 ‘ isS upervisor(u, true)
20 end

21 else if B(u) > 7¢ then

22 ‘ isCoordinator(u, true)
23 end

24 end

6 Task segmentation and matching

In this section we detail our approach for task processing in the crowd. First, we
explain in detail how human tasks (as defined in the context of B4P) are passed
from coordinators to supervisors and finally assigned to workers. As next step, we
introduce a ranking approach to select the best suited coordinator.

@ Springer

World Wide Web

6.1 Hierarchical activities

Crowd activities can be structured as hierarchies (see Figure 4) using parent and child
relations. Child activities specify the details with respect to the (sub-)steps in collab-
orations, for example, sub-activities in the scope of a parent activity. This allows for
the refinement of collaboration structures as the demand for a new set of activities
(e.g., performed by different people and services) increases. The need for the
dynamic refinement of collaboration structures is especially required when people
have limited experience (the history of performed activities) with respect to a given
objective or goal [42]. Furthermore, some people tend to underestimate the scale
and complexity of an activity; thus the hierarchical model enables the segmentation
of activities into sub-activities, which can be, for example, delegated to other people.
Activities have a relatedTo property which provides a mechanism to link to any
other activity. Typically, multiple members work on the same activity with different
roles. The InvolvementRole identifies the coordinator, supervisor, and responsible
worker of an activity. Involved workers apply a set of GenericResources to perform
their work. Objects such as documents are represented as a shared Artifact. A
ControlAction captures activity-change events, interactions between members, and
work carried out. Actions can trigger events describing the progress of activities.

6.2 Social interactions

Figure 5 and related sub-figures show how task processing is performed in the crowd.
We argue that interactions in crowdsourcing environments are governed by user
preferences and social trust.

Crowdsourcing follows the open world assumption which permits users to join
and leave a particular community (platform) at any time. Instead of following a
set of company rules or policies, crowd workers can be regarded as ‘self-employed’
individuals. However, it is in the interest of the worker to earn higher rewards and to
work on tasks matching her/his expertise and interest. Also, we believe that complex
tasks are typically rewarded higher as compared to simple tasks. Crowd members
may decide to work with other members on a joint task based on previous experience
or recommendations received from friends. Indeed, these interactions are not known
in advance. Therefore, it is not possible to specify different task processing patterns

ControlAction

FURI
ExecutedBy
AppliedResource

parent child)
0. 0.1 . |Service
relatesTo *
ActivityInstance

1 User
* *
‘ :

GenericResource InvolvementRole Coordination Communication Execution

Figure 4 Excerpt of hierarchical activity model.

@ Springer

World Wide Web

flexible activities

- v | WS[P] ws[P] [n]
/w/ a EI W5EL @ L" _%I Q I _merge»?
Sty VACH ot X7
~—_ social — { ht contextJ we[P] w7[P] welEl w7|E|
(a) Forward. (b) Crowd activities. (c) Assign. (d) Merge and rate.

Figure 5 Segmentation of tasks in social network.

that are performed in the crowd at the B4P or WS-HT level. The segmentation of
human tasks is illustrated by Figure 5.

As a first step in Figure 5a we assume that the selected coordinator W1 forwards
(e.g., through delegation) the human task to W5 who is a supervisor. The selection
of the supervisor may entirely depend on W1’s preferences to forward tasks to W5.
Moreover, the previously discussed preferences as defined along with the groups may
prevent W1 to forward a task to any of the supervisors s/he is connected to in the
social network.

The supervisor receives a given task and performs some segmentation. In this
context, we introduce crowd activities, which are collaborative activities performed
by crowd members in a flexible manner. The notion of flexible (crowd) activities
is independent of the previously discussed process activities that are designed in
the context of processes such as BPEL. Here, we show how to combine flexible
interactions and fop-down process activities and tasks in order to support adaptive
compositions of human- and software-based services. In our previous work [42] we
have designed an activity model supporting collaborative working environments.
The model and a set of collaboration tools have been implemented on top of Web
services technology. Also, the inclusion of human capabilities in service-oriented col-
laboration environments is supported through the HPS concept [45]. These activities
include, for example, ‘write document’, ‘review document’, ‘proof-read paragraph’.
Furthermore, these activities can be created and modified on-demand by people, e.g.,
the supervisor, based on their preferences and expertise in performing a specific type
of task. Figure 5b shows an example of such an activity structure that can be created
in a specific human task (ht) context.

Assume the ‘review document’ task (cf. Section 4) that needs to be outsourced
to the crowd. The supervisor decides to split and to process the task by creating
a hierarchical crowd-activity structure. A parent activity is initiated with the task’s
context data (presentation, elements, time constraints, etc.). Depending on the
task’s properties (e.g., duration, effort) sub-activity a2 and a3 are associated as
child activities to al. The segmentation step may be assisted by an activity service
(a software service to manage crowd-activities) that recommends how many sub-
activities the parent activity should be segmented into. Though, it is the responsibility
of the supervisor W5 to allocate sub-activities to workers.

In social environments selection preferences and resulting interactions typically
depend on the trust between actors. How much WS trusts its neighboring peers (e.g.,
workers) is strongly influenced by previous interaction behavior. For example, W5
may trust a worker W6 more than W7 in performing a given activity depending on
WS5’s collaboration experience. Positive experience results in higher trust between
collaboration partners. We have established a set of metrics to measure collaboration

@ Springer

World Wide Web

experience (see [41, 43, 49]) including the activity success and responsiveness when
processing an activity. A detailed description of these metrics and a trust model is,
however, out of scope of this work. The assignment procedure is shown in Figure 5c
where W5 assigns a2 to W6 and a3 to W7. Each of these sub-activities can be
controlled (e.g., inspecting the status and progress of an activity) by the supervisor.
Once the workers W6 and W7 (see Figure 5d) deliver the results, the supervisor takes
the output of a2 and a3 and merges them. For example, the results can be combined
by simply merging separate document sections to one document that was reviewed by
W6 and W7. However, since the supervisor W5 is responsible for the final quality, W5
checks the result before the output of al is returned to the coordinator and/or B4P
requester. How the result is being passed from the supervisor to the B4P requester
may in fact depend on the ‘social protocol’ or preferences of actors. A coordinator
may prefer to act as the main interface towards the crowd and thus may want to
return the result.

The final step is the rating of the supervisor. Rating is performed to give feedback
how well the supervisor distributes activities in the crowd. Crowd workers will be
satisfied if the supervisor distributes activities that fit their expertise. Also, a worker’s
queue should neither be empty nor overloaded. This means that the supervisor
should not accept too many tasks to avoid overload conditions. Careless assignments
(e.g., activities that have low or no overlap with a worker’s interest and skills) and
false assumptions with regards to activity effort would cause bad ratings.

Next, we will introduce a ranking algorithm to rank coordinators based on
capabilities and quality constraints specified by the B4P requester.

6.3 Ranking coordinators

Here we introduce our novel ranking approach that bases its input on skill informa-
tion as well as social network metrics. The approach consists of three essential steps
that are briefly introduced in Algorithm 2.

Algorithm 2: Ranking approach outline.

input : The social graph G(V, E) and detected roles.
output: Ranked list of coordinators.

1. Calculate importance scores in the hierarchical social network (detailed by Algorithm 3).
2. Calculate the rank of supervisors S R based on
— their skills and
- their social standing (reputation) within the social network.
Also, calculate the rank of each worker based on
— their skills and
— task load conditions.
Append the workers’ rank connected to a particular supervisor to S R.
3. Each coordinator gets the ranking scores of the top-ranked supervisor it is connected to. Sort coordinators
according to their ranking score.

Let us start with the definition of procedure to rank the importance of individuals
in social networks. In this work we utilize the concept of hubs and authorities in Web-
based environments. This concept has been introduced by Kleinberg [23] to rank
Web pages in search queries using the HITS algorithm. The notion of authorities
in social or collaborative networks can be interpreted as a measure to estimate

@ Springer

World Wide Web

the relative standing or importance of individuals in social networks. Compared to
methods such as PageRank [34], the main advantage of the HITS model is that hub
and authority scores are calculated for each node in the network.

Applying this idea in our scenario, assume an undirected social network and
roles of users that were detected using the previously introduced approach (cf.
Algorithm 1). Also assume the hierarchical network that can be created considering
the roles and the social graph. Coordinators are responsible for forwarding tasks
to supervisors, thereby acting as hubs in the network. According to the theory
developed in [23], the hub H(u) and authority A(u) scores of nodes u € V in the
network is calculated as:

H(u) < Z A®) A(u) < Z H() ©)

(u,v)eE (v,u ek

However, we assume multiple roles in the social network such as coordinators,
supervisors, and workers. Workers develop expertise in different areas depending
on their interest and task processing behavior. Given the model in (2), workers
would have higher authority scores if they receive requests to perform activities
from supervisors that are connected to many ‘good’ authorities (i.e., workers).
Good workers are characterized by their reliable task processing behavior which is
monitored at runtime. '’

Thus, a supervisor trusts a particular worker if the worker processes tasks in timely
and satisfactory manner. Supervisors are rated by workers based on the suitability of
assigned work. For example, supervisors who carelessly delegate tasks to workers
without knowing their interests or who ignore the workers’ load conditions (e.g.,
oversupply of task assignments in too short time frames) would receive bad rat-
ings. Ratings thereby influence the weight of a relationship between worker and
supervisor. Notice, both trust and rating relations are established upon interaction
monitoring and mining. Thus, in addition to the undirected social links, directed re-
lations are introduced based on collaborations between actors in the crowdsourcing
environment.

The recursive definition of hub and authorities is typically computed using an
iterative algorithm. In the following Algorithm 3 we introduce an extended HITS
algorithm suitable for calculating hub- and authority scores in hierarchical social
networks.

The goal of the algorithm is to calculate:

— hub scores for coordinators as they forward tasks to supervisors through delega-
tion actions,

— hub scores for supervisors as they perform pre-processing of tasks and create
flexible crowd-activities that are distributed and assigned to workers,

— authority scores for supervisors as they receive task requests from coordinators,
and

— authority scores for workers as they perform the actual work.

10Task processing behavior is observed through interaction monitoring techniques. Interaction
metrics are established to obtain weighted social relations between actors. These relations are used to
automatically calculate social network metrics such as hub- and authority-based importance scores.

@ Springer

World Wide Web

The first step in Algorithm 3 (see lines 2-4) is to initialize two vectors H and A
that hold hub and authority scores, which are updated after each iteration z. Without
any prior (node bias), the initialization vectors p’ and p4 hold for each node the
same initial value. The main loop (lines 6-26) is executed until the ranking scores
converge (i.e., the ranking order of nodes is no longer changed between the step
t — 1 and t). For each node u € V, we update hub- and authority scores according to
the aforementioned update procedure. The set of u’s neighbors is obtained by N(u).
Assume that u is a coordinator (line 10), then only u’s hub score H(u) is updated.
The next case holds (line 13) if u is a supervisor and the neighbor v is a worker. In
this case, the supervisor’s hub score needs to be updated.

Algorithm 3: HITS algorithm in hierarchical social networks.

1 /* Initialize hub and authority scores */
2 foru e Vdo
3| H@O < pl AWO < pi

4 end
s1=1
6 while not converged do
7 for u € V do
8 /* update ranking scores */
9 for v € N(u) do
10 if isCoordinator(u) then
1 Hw)® — Hu)"=D + AW)*H
12 end
13 else if isSupervisor(u) A —isCoordinator(v) then
14 ‘ Hw) D — Hu)"™D + wy, AW)D
15 end
16 else if isSupervisor(u) A isCoordinator(v) then
17 | AW « A@D + H@)D
18 end
19 else if isS upervisor(v) then
20 | AW — AW + wy HE) D
21 end
22 end
23 end
24 /* Normalize rankings and test for convergence */
25 t=t+1
26 end

As mentioned before, the hub score of supervisors is influenced by ratings they
receive from workers. Thus, the authority score of v is added with weight w,,, to H (u)
(see line 14). In case v holds the role of a coordinator (line 16), u’s authority score
is updated. Notice, weights are only calculated between supervisors and workers as
we assume stronger collaborations between these two actors whereas coordinators
mainly act as ‘entry points’ to the crowdsourcing platform.

The final procedure (line 19-21) is performed to update the worker’s authority
score. Here, the score H(v) is appended with weight w,,, that is calculated based on
mining metrics (e.g., how much the supervisor v trusts the worker u). After these
steps, a check in line 24 verifies if convergence has been reached. For larger social
networks a fixed number of steps can be used to reduce the time needed for comput-
ing importance scores. After convergence the final scores are copied into H and A.

@ Springer

World Wide Web

Next, we introduce the ranking procedure to process crowd-activities that can
be segmented into flexible activity structures. Certain activities can be decomposed
hierarchically into sub-activities depending on their required processing effort or
complexity. Algorithm 4 shows the procedure to rank coordinators. As input we
assume the social network graph G(V, E), an activity a € A which could be part of a
complex activity structure, and the set V¢ of coordinators. The goal of the algorithm
is to assign a ranking score to each user u € VC. First, a set V3 is initialized that
contains supervisors connected to u (see lines 2-7). The next loop (lines 8-21) shows
how to calculate rankings scores for supervisors. Note that the coordinator u acts as
a ‘proxy’ for supervisors; thus u’s score is based on the score of the highest ranked
supervisor (lines 22-23).

Algorithm 4: Rank coordinators based on social graph G.

input : G(V, E) representing the social network graph, splittable activity a € A and the set of coordinators V¢
that have already been filtered based on hard constraints.
output: Ranked list of coordinators (CR).

1 for u e V¢ do

2 /* Get supervisors connected to u */

3 for v € N(u) do

4 if isSupervisor(v) then

5 | V§e—viuy

6 end

7 end

8 for ve VS do

9 /* Get workers connected to v */

10 for n € N(v) do

11 if —isCoordinator(n) then

12 | VWWeviun

13 end

14 end

15 SR(v,a) « a- skill(v,a)+ (1 —a)-(0.5-A(v) + 0.5- H(v))
16 for n e V¥ do

17 score, « 3 - skill(n, a) + (1 — B) - (1 — getRate(n, a, DueAt(a))
18 scoreyw « scoreyw + ﬁscore,,
19 end

20 SR(v,a) « SR(v,a) + scoreyw

21 end

22 s « getTopRanked(S R(a))

23 CR(u,a) « getS core(s, a)

24 end

5 /* Order by soft constraints: sort CR in descending order */
26 return CR

Iy

The basic idea to calculate rankings for supervisors has been shortly explained
in Algorithm 2. Our approach (see Algorithm 4) is to rank supervisors based on the
actual (observed) skills (line 15), the importance of supervisors in the social networks
(line 15), and the actual skills of workers a supervisor is connected to (lines 16-19).
The set of workers V¥ connected to v is first initialized (lines 9-14). In the following
(lines 15-20) the computation of v’s ranking score is shown. The initial supervisor
ranking score SR is calculated as shown in line 15. The initial score is the aggregation
(weighted by the parameter «) of the supervisor’s skills and (social) importance.
These input parameters are detailed in the following Table 1.

@ Springer

World Wide Web

Table 1 Description of calculations and equations.

Ranking input Description

Skill The skill of supervisors and workers. The function skill(v, a) returns v’s skill
level with respect to an activity a. For example, if a demands for language
skills in English with the level ‘expert’ and v’s experience in English is at the
level ‘expert’, v’s skills match perfectly a’s skill requirements. Also, skill
profiles are automatically maintained by updating the users’ experience.

In our previous work we have designed and implemented algorithms
for profile matching [44] and skill updates [40]. Details regarding skill matching
and update are not presented in this work.

Importance The relative standing of a user within the social network. As explained before,
the importance of a node is based on the concept of hubs and authorities
in social networks. The supervisor’s importance is determined by both hub
and authority scores due to the hierarchical nature of the previously explained
social (collaborative) network. Hence, v’s importance score is the weighted
sum of the authority score A(v) and the hub score H(v). Different weights
could be used to assign preferences to either score.

The next steps (lines 16-19) in Algorithm 4 is to calculate ranking scores for
each worker connected to the supervisor v. This is done in a similar manner as
for the supervisor. However, instead of considering the importance of a worker
within the social network, we take other workload related factors into account. The
function get Rate calculates the workers’ rate based on the earliest possible start time
(influence by the workers’ task queue size) and activity effort. This means that even if
a supervisor has high skills and high importance, it still needs to be connected to a set
of workers who have free resources in terms of free time to process a crowd activity.
Otherwise, the supervisor would need to handle all activities him/herself. The score
of each worker is appended with equal weight WI—W‘ The final score SR is the sum of
the supervisor’s inital ranking score plus the workers’ ranking scores.

7 Implementation and evaluation

Our evaluation and results are based on a proof of concept implementation of various
introduced concepts and simulations of interactions in social-crowd environments.
The following Section 7.1 describes the SOA-based crowdsourcing environment in-
cluding the lifecylce of a human task and the principle interactions between services,
Section 7.2 explains how the basic social network structure has been generated and
Section 7.3 presents our findings.

7.1 SOA-based crowdsourcing environment

In this section we provide an overview of the main services and the most important
interactions between services (see Figure 6). The implementation of our NFP-aware
B4P execution environment is mainly built on-top of a service-oriented collaboration
environment. The collaboration services, however, can be used independently of
any top-down process model. The main extensions of the environment consist of
the WS-HT Interface (a plugin of the HPS Middleware) to provide a bridge

@ Springer

World Wide Web

‘ B4P Layer WS-HT Interface ‘ HPS Middleware ‘ HA Service Template Store Logging Service ‘ Relevance Engine
—~ H Create HT | 1 1 1 | H
L i I I I 1
T s ! ! ! ! : !
[: A n : Resolution Query ; } } } :
[4 > | | | i
1 ! - \ QoS ! ! Get Ranked Workers ! !
1 . . N
Init HT Annotations t »
1 i Context i i Ranked List of Workers i i
1 I | ! | 1
I i | QueryResponse < TTTTTTTTTOT prTT [Tt !
v HT Created “&—--------------- ! ! ! ! i
U i i i i i i
;:< | Start HT I i | | I |
1 | i I I I 1
\2) T StartHT[HT Contexq | ! ! ! !
I —_— | I | I
‘T \ 1 | Init HA Context | ! ! i
| i J i i i
i i i e Get Execution Template ! !
1 1 O | 1
i | | H i Template Response i |
i | | | I i
- i InitHA Koo ! - i
‘ ! ! Context ! Get t—IA Graph [Execution Template] !
| | 1 »
. : Do ;' ;' HA Graph | i
I
| | | 1 K—mmm Fo—m—m——— A= mmm |
i H | N 1HA Context Initiated | | | H
I i N | | | !
| ! ! Subscribe HA Events [Filter] ! !
Lo i HT Active ; i i > !
i | i
L ! HTReserved K ~77" 77777 mTmooo ! ! | ! |
N 1 | | | | I
(2) &= H ! Messagel | ! ! !
cJ HA Event
Y : | R !
/! I i r T » 1
N | . | HABvent | ! !
Lo | HT InProgress I~ 1% T T | i
1 | | | 1
| I HT InProgress | | | | | | I
| - ! ! Message 2 ! ! ! !
— 7%
| 1 |) i HA Event | |
. i Lo 1 1 » i
i i o I I i i
o | A < | thEwn | | |
1 H 1 Execution Get Escalation Template | | i
]] i L I} » I 1
i | o] > I i
1 : : ; 1 Template Besponse ; ; :
| 1 | S Fm———————mm - 1 i 1
i H 1 1 ' 1 Perform Escalation [Template] | i
i | [I | | »
[i N i | HA Action | i
! i i \1 MessageN 1Y i i i
i —
| | i b | | | i
| ! ! ! Finalize HA } } } !
Lo 1 HT Completed — | ' H
/3\ i HT Completed ¢—————— | | | 1
(3) I I i i
i I I I i

.

Figure 6 Sequence diagram of adaptive B4P process execution.

between B4P and the crowdsourcing environment. The protocol between the B4P
Layer and the WS-HT Interface isinconformance with the WS-HT [4] standard.

The collaboration environment consists of a SOA-runtime for mixed service-
oriented systems (see HPS Middleware). Unlike traditional SOA-based systems,
also human-based services (i.e., HPSs) are made available for discovery and in-
vocation [45]. Coordination and collaboration among people and services (HPS
and SBS) is achieved by using an activity service (HA Service). The Template
Store contains activity skeletons (e.g., activity structure) that can be instantiated at
runtime. Such templates include, for example, the definition of parent child activities
to perform a document review. The Logging Service monitors all interactions
and saves XML-messages and additional metadata in a database for later analysis.
The Relevance Engine implements ranking and mining algorithms.

The lifecycle of human task execution is structured into three essential phases.
First, a resolution query is performed to find suitable candidate workers who can
process a human task. Second, a crowd-activity structure is initialized that allows

@ Springer

World Wide Web

1| <mex:Metadata>

2| <mex:MetadataSection Dialect="http://schemas.xmlsoap.org/wsdl/">
3 <wsdl:definitions>

4 <!-- Omitted -->

5 </wsdl:definitions>

6| </mex:MetadataSection>

7| <mex:MetadataSection Dialect="http://xmlns.com/foaf/0.1/">

8 <rdf:RDF xmlns:foaf = "http://..." xmlns:capability = "http://.../capability.owl#">
9 <foaf:Person rdf:about="http://www.infosys.../staff/">
10 <foaf:name>H. Psaier</foaf:name>
11 <foaf:interest rdf:resource="http://.../hpsaier/interests.rdf"/>
12 <!-- Omitted -->
13 <capability:op>
14 <capability:port id="TSportType">
15 <capability:op id="translateDoc">
16 <capability:opwsdlxpath>
17 wsdl:operation/[@name="TSportType"]
18 </capability:opwsdlxpath>

19 <capability:opmetricgrounding
20 rdf:resource="http://.../grounding-translateDoc.xml"/>
21 <capability:opmetric>
22 <capability:opmetricid>cost</capability:opmetricid>
23 <capability:opmetricvalue>100.0</capability:opmetricvalue>
24 </capability:opmetric>
25 <capability:opmetric>
26 <capability:opmetricid>reliability</capability:opmetricid>
27 <capability:opmetricvalue>0.8 </capability:opmetricvalue>
28 </capability:opmetric>
29
30 <Jcapability:op>
31 </capability:port>
32 </foaf:Person>

33 </rdf:RDF>

34| </mex:MetadataSection>

35| </mex:Metadata>

Listing 5 HPS metadata exchange description.

crowd-members to process activities in a flexible manner. Third, workers collaborate
to jointly work on activities (collaboration phase). Figure 6 details the interactions
between the various services.

7.1.1 Human task creation and resolution of workers

A request to create a human task that is to be performed by the crowd is initiated
by the B4P Layer. This layer is typically implemented as an extension of a BPEL
orchestration engine. The specification of a human task contains additional elements
to ensure the quality of a task’s result (cf. QoS Annotations). These annotations have
been introduced in the context of Listing 3 and define the required set of human
capabilities, which are matched against capability profiles, and the required quality.
NFP elements such as human capabilities are used in the matching procedure (see
arrow Resolution Query).

Listing 5 shows the simplified structure of the resolved HPS information. NFP
elements are embedded in the HPS’s WSDL interface. In addition, an extended
FOAF description is inserted into a WS-Metadata-Exchange'! (MEX) document
(see also [45]). The HPS framework uses SPARQL to define search queries'?
on FOAF structures. The sample response message to a MEX GET request in

Uhttp://www.w3.org/Submission/WS-MetadataExchange/
Lhttp://www.w3.org/TR/rdf-sparql-query/

@ Springer

http://www.w3.org/Submission/WS-MetadataExchange/
http://www.w3.org/TR/rdf-sparql-query/

World Wide Web

Listing 5 comprises the following elements. The main response body contains the
currently offered operations in a WSDL (omitted for brevity) and the related
NFPs in the second MetadataSection in FOAF format. The elements with the
capability prefix provide the current NFP values for a related operation defined
in the WSDL section. In our current implementation, such NFPs are costs and
primarily quality metrics, such as the HPSs reliability and responsiveness. The XPath
statement identifies an operation uniquely. The following metric grounding resource
opmetricgrounding links a document with metric definitions (meaning, measure-
ment, unit, range of values, etc.) to the listed metric ids. The HPS Middleware
interacts with the Relevance Engine to obtain a ranked list of workers.!> The
successful result of this interaction is denoted by the arrow HT Created.

7.1.2 Reserve human task and initialize activity structure

The activity structure is being initialized by Start HT. The WS-HT Interface
passes the HT Context to the HPS Middleware, which in turn signals /nit HA
Context to the HA Service. Depending on the selected HT Context, different
activity execution templates can be selected (Get Execution Template). An execution
template may define how activities are processed. For example, if the result that is
provided in the context of a specific human task has always low quality, an additional
quality assurance step can be inserted dynamically in the execution template. The
next step is to assign people to activities that are part of the execution template (see
Get HA Graph). Ranking of people is performed by the Relevance Engine!®
(cf. to discussions related to matching and ranking in the previous section). The
Logging Service logs all service interactions (i.e., SOAP calls) and also events
triggered by the activity service. Activity events are fired based on activity changes
(start, suspend, or finalize activity) and actions taken by human actors. Such actions
include delegations of activities or the assignment of new activities. The Logging
Service implements a publish/subscribe mechanisms that allows subscribers to get
notified about specific events. The HPS Middleware subscribes to activity change
events to monitor the status of activities (see arrow Subscribe HA Events). The result
of these steps is HT Reserved.

7.1.3 Task execution and escalation handling

In service-oriented systems, people interact and collaborate by using tools and
services to perform their work. Each service call (performed in the context of an
activity) is processed by the HPS Middleware. The middleware implements a
SOAP dispatcher that performs message inspection and routing. The HA Service
notifies the Logging Service about activity changes (see HA Event). Here the
activity status is changed to ‘activity in-progress’. The event is also sent to the
middleware which signals HT InProgress. A series of messages 1 ...N is then
exchanged between the HA Service and the HPS Middleware until an activity
is finalized. Escalations are defined in the context of a human task (cf. Listing 4).

13For simplicity, we do not discuss the different social roles such as coordinators or supervisors in this
context. Notice, the result of a resolution query is a list of coordinators if the task can be segmented
in multiple crowd-activities.

14The Relevance Engine has by default access to all logs and events collected in the environment.

@ Springer

World Wide Web

As mentioned before, the HPS Middleware acts as a bridge between the B4P-
based process the activity-based collaboration services and tools that are used by
crowd workers. Thus, the middleware monitors the status of activities and checks
whether deviations in the progress of activities may cause deadline violations. The
Relevance Engine receives a Perform Escalation call to trigger a HA Action if a
deadline is going to be violated. As shown previously in Listing 4, a notification may
be the result of such an escalation action. The Relevance Engine performs the
escalation by sending the HA Action to the activity service. Notice, escalations are
not directly performed by the HPS Middleware. The Relevance Engine deals
with escalations to support dynamic aspects (e.g., adaptive notification chains) and
also future extensions of our approach such as complex event processing features.
HT Completed is triggered once Finalize HA is received from the activity service.

7.2 Social network generation

At the time when performing this research, a sufficiently large crowd user-base
was not available to perform tests with real users. In our experiments, we generate
synthetic social graphs to test the applicability and effectiveness of our proposed
ranking model. We use two different methods to generate social graphs: random
graphs [31, 33] are generated and graphs based on the preferential attachment model
[7, 38]. The more general case are random graphs wherein each pair of nodes
has an identical, independent probability of being joined by an edge. Preferential
attachment results in more specific graphs wherein nodes preferentially connect to
existing nodes with high degree (the ‘rich get richer’). By using two these methods,
we are able to evaluate the effectiveness of our ranking approach by considering
different social network structures. Figure 7 shows a basic social network structure
that has been generated according to the statistical properties as found in freely
emerging networks. Each figure visualizes a graph with 200 workers.

(a) (b)

Figure 7 Generated social graphs: a sparsely connected random graph and b preferential attachment
graph.

@ Springer

World Wide Web

Here we employ two methods to generate social graphs:

1. Random graphs are based on the assumption that any random actor will establish
a connection to some other random actor with probability p. The resulting graph
structure is visualized by Figure 7a. In our experiments, we use a probability of
0.3 that an actor u will establish a connection with a random actor v.

2. Preferential attachment graphs are based on the assumption that networks
emerge according to the rule of preferential attachment [38]. This process pro-
duces a scale-free graph with node degrees following a power-law distribution.
The resulting social graph represents very well the structure of autonomously
forming collaborations in cooperation networks [32].

By using a probability of 0.3 to generate random graphs, both graphs, random and
preferential, have approximately the same amount of edges; thereby making the both
types of graphs comparable with regards to number of workers and number of edges.
Roles in the social network were detected according to Algorithm 1. Coordinators
are visualized as triangular shapes, supervisors are depicted by rectangles, and
regular workers are shown as circular nodes. One can see that the random graph
in Figure 7a exhibits only sparsely connected nodes when compared to Figure 7b.
Using these two graphs, we are able to compare the results of our ranking approach
under different conditions. This is an important issues because sparse networks are a
natural phenomenon in newly established social networks.

In each network, workers have certain skills associated with it. In our experiments
we only use a single skill whose skill level is distributed according to a normal
distribution A (u, 0?) with a mean value = 0.6 and a standard deviation o> =
0.25. The parameters of this model (mean value and standard deviation) yield the
following skill level properties of the resulting worker population: most workers have
good skills in performing their tasks with an average skill level of 0.6, some workers
are highly skilled with a maximum skill level of 1.0 (top expert) and on the contrary
some workers have a very low skill level (in our experiments the minimum skill level
was 0.02). If a higher or lower average value would be chosen, the expected quality
of returned tasks can also be expected to be higher or lower respectively. If a higher
standard deviation is chosen, the likelihood of having more highly skilled workers
as well as workers with very low skills increases. By choosing a lower standard
deviation, it is more likely that the workers will have the average skill level of 0.6
and it is less likely that workers have high or low skills.

7.3 Discussion

We performed several experiments and compared the quality of task results con-
sidering task processing with and without social network structures. The default
option of our simulation is to process activity in the context of a human task without
advanced processing. This configuration provides the baseline results for comparison
with the advanced processing option. The configurations of our experiments are de-
tailed in Table 2. The entry advanced processing indicates whether certain activities
were split and processed collaboratively in social networks.

Table 2 shows three pairs of experiments (1, 2), (3, 4), and (5, 6). Each pair
compares the default processing behavior with the advanced processing option.
Advanced processing means that actors’ behavior is guided by their social role.

@ Springer

World Wide Web

Table 2 Configurations for Conﬁguration 1 2 3 4 5 6
different experiments.

Number of workers 100 100 100 100 200 200
Activities per round 5 5 10 10 5 5
Advanced processing No Yes No Yes No Yes

Coordinators forward task requests to supervisors which split tasks into multiple
(crowd-)activities that are assigned to workers. In our simulation, tasks are issued by
the B4P requester in fixed rounds. In each round, 5 tasks are issued in configuration
1 and 2 and also in 5 and 6. The configurations 3 and 4 are based on 10 tasks per
round to analyze processing behavior (e.g., quality) under different load conditions.

7.3.1 General case—random graphs

The first set of experiments were performed using random graphs as depicted in
Figure 7a. However, we vary the number of workers according to the previously
described configurations.

Table 3 shows the numerical results, which are visualized in the previous Figure 8.

7.3.2 Specific case—preferential attachment graphs

The second set of experiments were performed using preferential attachment graphs
as depicted in Figure 7b. Again, we vary the number of workers according to the
previously described configurations.

The Table 4 shows the numerical results, which are visualized in Figure 9.

7.4 Overall findings

Both sets of figures, Figures 8 and 9 show the results of our experiments by comparing
the different pairs of configurations. The horizontal axis of each figure shows the
index of a configuration that corresponds to the simulation parameters as defined
in Table 2. In general, both graphs (random and preferential attachment) exhibit
similar results with only minor differences. This means that our proposed ranking
approach is applicable to both, sparsely connected random graphs as well as more
densely connected preferential attachment graphs. Thus, the following discussions
apply to both sets of experiments using respective graph structure.

The first series of experiments shows the relation of the number of created
activities versus the number of finished activities. Without advanced processing, an
activity is simply created based on the properties of a human tasks and assigned to
individual workers. On the other hand using advanced processing, if the duration of
a task exceeds a certain duration threshold, an activity is created that is split into

Table 3 Numerical values of Configuration 1 3 3 4 5 6
experiment results using
random graph.

Created activities 1000 2237 2000 4106 1000 2208

Finished activities 940 2234 1147 3950 989 2108

Average quality 0.720 0.736 0.488 0.607 0.847 0.907

Overdue activities 23 2 13 1 7 1
(%)

@ Springer

World Wide Web

4500

4000 Average Quality Overdue Activities (%)
3500 1.000 25
gggg uCreated 0-800 20
2000 Activities g goo 15
Finished
1388 Activities 0.400 10
500 I I 0.200 5 I
0 0.000 0 - -— —
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
a) Activity creation. b) Activity quality. C) Activities overdue.
y Yy q y

Figure 8 Experiment results using random graph.

multiple sub-activities. The supervisors distributes sub-activities in the context of a
parent activity, assembles the result, and passes it on to the coordinator.

Both Figures 8a and 9a show that the number of activities is always higher in
social-crowd environments (i.e., advanced processing) because activities are split
and reassigned to workers. However, the number of finished activities in relation
to the number of created activities is always higher when compared to the regular
processing behavior. This means that advanced processing increases the number of
created and successfully finished activities (i.e., the reliability in processing activities
in crowdsourcing environments increases).

Figures 8b and 9b visualize the average quality obtain in different experiment
configurations. The quality of a task result is based on the worker’s skill (regular
processing) or the supervisor’s skill (advanced processing). Thus, in the latter case
the quality is ensured by the supervisor. The average quality of tasks is always
higher in the advanced processing case. This is the result of our ranking approach
which ensures that coordinators are ranked higher if they are connected to skilled
supervisors. Comparing the pairs of configurations, the quality in the configuration
pair 3 and 4 is lower due to the larger number of activities to be processed. However,
our advanced processing approach still outperforms the regular processing setting in
terms of providing better quality results. Also, given a larger social network of 200
workers the task quality is higher.

Finally, Figures 8c and 9c show the number of overdue activities which were not
processed on time (deadline violations). The percentage ratio of overdue activities
is much lower in the social-crowd environment because larger tasks (based on
effort/duration of a task) are split into smaller crowd-activities which are processed
faster than larger chunks of work. It is easier to assign smaller tasks to crowd mem-
bers instead of finding people to process larger tasks; thereby reducing the number of
overdue activities.

To conclude our discussions, we confirm that the proposed social-crowd environ-
ment has a number of advantages over traditional environments that are based on a

Table.4 Numerical Vfilues of Configuration 1 3 3 4 5 6
experiment results using
preferential attachment graph.

Created activities 1000 2237 2000 4406 1000 2208

Finished activities 944 2233 1258 4062 989 2208

Average quality 0.724 0.799 0.492 0.550 0.847 0.873

Overdue activities 22 1 12 1 6 0
(%)

@ Springer

World Wide Web

4500 A
4000 Average Quality Overdue Activities (%)
3500 1.000 25

2 3 456

- Crea?ed 0.800
’;_Ct!";:'eds 0.600 15
Inishet
Activities 0.400 10
0.200 I
0.000 0 - -
1 2 3 4 5 6 1 2 3 4 5 6

(a) Activity creation. (b) Activity quality. (c) Activities overdue.

3000

2500

2000

1500

1000

500 I
0

o

Figure 9 Experiment results using preferential attachment graph.

population of workers which perform tasks separately. Our experiments show that
task quality is increased while improving reliability and performance of the crowd.

8 Conclusion

Crowdsourcing has emerged as an important paradigm in human problem solving
techniques on the Web. In such environments, people offer their skills and capa-
bilities in a service-oriented manner. However, one cannot rely on the constant
availability of people. The dynamic discovery of skilled people becomes a key
aspects. Here we proposed social-crowds that collaboratively process tasks. We
designed extensions for BPEL4People to utilize crowds in process-centric enterprise
environments. We explained in detail various extensions to cope with quality issues.
Furthermore, we proposed a role detection algorithm to build up hierarchical social
networks. The presented social-crowd environment brings a number of benefits
including (1) increased task quality and (2) an increased number of successfully
finished activities as well as (3) a reduced number of overdue activities. We believe
that social-crowd environments have a great potential to make crowdsourcing more
reliable while increasing quality of task results.

Task costs in crowdsourcing have not been detailed in this work (see our previous
work in [37, 40]) but will be addressed in the context of B4P in future work. Also,
we plan to utilize Mechanical Turk for experiments with real people. Also, we will
investigate the integration of various XML-based standards and interfaces including
B4P, WS-HT, and MTurk’s API.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable
comments which helped to improve the quality of this paper. Furthermore, we would like to thank
Frank Leymann for discussions on extending Web service standards including WS-HumanTask and
BPEL4People.

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a service-
oriented implementation of dynamic flexibility in workflows. In: OTM Conferences (1), pp. 291-
308 (2006)

2. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in
social media. In: WSDM, pp. 183-194. ACM (2008)

3. Agrawal, A., et al.: Ws-bpel extension for people (bpeldpeople), version 1.0. (2007)

@ Springer

World Wide Web

N

10.
. Breslin, J., Passant, A., Decker, S.: Social web applications in enterprise. Social Semantic Web

12.

13.

14.

15.
16.

17.
18.
19.
20.

21.
22.

23.
24.

25.
26.

27.

28.
29.
30.
31
32.
33.
34.

35.

. Amend, M., et al.: Web services human task (ws-humantask), version 1.0. (2007)
. Andrews, T., et al.: Business process execution language for web services, version 1.1. (2003)
. Balthazard, P.A., Potter, R.E., Warren, J.: Expertise, extraversion and group interaction styles

as performance indicators in virtual teams: how do perceptions of it’s performance get formed?
Data Base 35(1), 41-64 (2004)

. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),

509-512 (1999)

. Benkler, Y.: Coase’s penguin, or linux and the nature of the firm. CoRR, ¢s.CY/0109077 (2001)
. Brabham, D.: Crowdsourcing as a model for problem solving: an introduction and cases. Con-

vergence 14(1), 75 (2008)
Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163-177 (2001)

48, 251-267 (2009)

Cozzi, A., Farrell, S., Lau, T., Smith, B.A., Drews, C., Lin, J., Stachel, B., Moran, T.P.: Activity
management as a web service. IBM Syst. J. 45(4), 695-712 (2006)

Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsistencies
and deviations in human-centered systems. ACM Trans. Softw. Eng. Methodol. 5(3), 191-230
(1996)

Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-Wide Web.
Commun. ACM 54(4), 86-96 (2011). doi:10.1145/1924421.1924442

Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. J. ACM 57, 25:1-25:27 (2010)
Dom, B., Eiron, 1., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise
analysis. In: DMKD, pp. 42-48. ACM (2003)

Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected
World. Cambridge University Press (2010)

Gentry, C., Ramzan, Z., Stubblebine, S.: Secure distributed human computation. In: EC ’05,
pp. 155-164. ACM (2005)

Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable pervasive flows—an emerging
technology for pervasive adaptation. In: Workshop on Pervasive Adaptation (PerAda) (2008)
Howe, J.: The rise of crowdsourcing. http://www.wired.com/wired/archive/14.06/crowds.html
(2006)

IBM: An architectural blueprint for autonomic computing (whitepaper) (2005)

Ipeirotis, P.G.: Analyzing the Amazon mechanical turk marketplace. SSRN eLibrary 17(2), 16—
21 (2010)

Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604-632 (1999)
Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51(11),
66-72 (2008)

Kosorukoff, A., Goldberg, D.E.: Genetic algorithms for social innovation and creativity. Techni-
cal report, University of Illinois at Urbana-Champaign (2001)

Kumar, A., W.M.Aalst, P.V.D., Verbeek, E.: Dynamic work distribution in workflow manage-
ment systems: how to balance quality and performance. J. Manage Inf. Syst. 18(3), 157-193 (2002)
Lampe, C., Resnick, P.: Slash(dot) and burn: distributed moderation in a large online conversa-
tion space. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI "04, pp. 543-550. ACM, New York, NY, USA (2004)

Liu, L., Thanheiser, S., Schmeck, H.: A reference architecture for self-organizing service-oriented
computing. In: ARCS, pp. 205-219 (2008)

Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In: ICSOC
’04, pp. 212-221. ACM (2004)

Mendling, J., Ploesser, K., Strembeck, M.: Specifying separation of duty constraints in
bpeldpeople processes. In: BIS’08, pp. 273-284. Springer Verlag (2008)

Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions
and their applications. Phys. Rev. E 64(5), 026118 (2001). doi:10.1103/PhysRevE.64.026118
Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98,
404-409 (2001)

Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc.
Natl. Acad. Sci. U.S.A. 99(Suppl 1), 2566-2572 (2002)

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to
the web. Technical report, Stanford Digital Library Technologies Project (1998)

Panteli, N., Davison, R.: The role of subgroups in the communication patterns of global virtual
teams. IEEE Trans. Prof. Commun. 48(2), 191-200 (2005)

@ Springer

file:doi.acm.org/10.1145/1924421.1924442
http://www.wired.com/wired/archive/14.06/crowds.html
http://link.aps.org/doi/10.1103/PhysRevE.64.026118

World Wide Web

36.
37.

38.

39.

40.
41.
42.
43,
44,
45,
46.
47.
48.
49.
50.
s1.

52.
. Vukovic, M.: Crowdsourcing for enterprises. In: Proceedings of the 2009 Congress on Services,

54.
55.

56.

Petrie, C.: Plenty of room outside the firm. Internet Comput. 14, 92-96 (2010)

Psaier, H., Skopik, F., Schall, D., Dustdar, S.: Resource and agreement management in dynamic
crowdcomputing environments. In: EDOC (2011)

Reka, A., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47-97
(2002)

Russell, N., W.M.Aalst, P.V.D.: Evaluation of the bpeld4people and ws-humantask extensions
to ws-bpel 2.0 using the workflow resource patterns. Technical report, BPM Center Brisbane/
Eindhoven (2007)

Satzger, B., Psaier, H., Schall, D., Dustdar, S.: Stimulating skill evolution in market-based crowd-
sourcing. In: BPM. Lecture Notes in Computer Science. Springer (2011)

Schall, D.: Human interactions in mixed systems—architecture, protocols, and algorithms. PhD
thesis, Vienna University of Technology (2009)

Schall, D.: A human-centric runtime framework for mixed service-oriented systems. Distrib.
Parallel Databases 29(5-6), 333-360 (2011). doi:10.1007/s10619-011-7081-z

Schall, D.: Expertise ranking using activity and contextual link measures. Data Knowl. Eng 71(1),
92-113 (2012)

Schall, D., Skopik, F., Dustdar, S.: Expert discovery and interactions in mixed service-oriented
systems. IEEE Trans. Services Comput. 5, 233-245 (2012). doi:10.1109/TSC.2011.2

Schall, D., Truong, H.-L., Dustdar, S.: Unifying human and software services in web-scale collab-
orations. IEEE Internet Comput. 12(3), 62-68 (2008)

Shetty, J., Adibi, J.: Discovering important nodes through graph entropy the case of enron email
database. In: LinkKDD, pp. 74-81. ACM (2005)

Shi, X., Bonner, M., Adamic, L.A., Gilbert, A.C.: The very small world of the well-connected.
In: HT *08, pp. 61-70. ACM (2008)

Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic content creation. World
Wide Web 13, 33-59 (2010). doi:10.1007/s11280-009-0078-0

Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-
oriented systems. Inf. Syst. 35, 735-757 (2010)

Su, Q., Pavlov, D., Chow, J.-H., Baker, W.C.: Internet-scale collection of human-reviewed data.
In: WWW °07, pp. 231-240. ACM (2007)

Thomas, J., Paci, F., Bertino, E., Eugster, P.: User tasks and access control over web services.
In: ICWS °07, pp. 60-69. IEEE (2007)

von Ahn, L.: Games with a purpose. IEEE Comput. 39(6), 92-94 (2006)

pp. 686-692. IEEE Computer Society (2009)

Yang, J., Adamic, L., Ackerman, M.: Competing to share expertise: the taskecn knowledge sharing
community. In: International Conference on Weblogs and Social Media (2008)

Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and
algorithms. In: WWW, pp. 221-230. ACM (2007)

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., Yongchareon, S.: Implementing process views in
the web service environment. World Wide Web 14(1) 27-52 (2011)

@ Springer

http://dx.doi.org/10.1007/s10619-011-7081-z
http://doi.ieeecomputersociety.org/10.1109/TSC.2011.2
http://dx.doi.org/10.1007/s11280-009-0078-0

	Crowdsourcing tasks to social networks in BPEL4People
	Abstract
	Introduction
	Related work
	Service-oriented crowdsourcing
	Task-based crowdsourcing markets
	Approach outline

	Non-functional properties in B4P
	Human tasks in B4P
	Basic model and extensions

	Social aggregator
	Task segmentation and matching
	Hierarchical activities
	Social interactions
	Ranking coordinators

	Implementation and evaluation
	SOA-based crowdsourcing environment
	Human task creation and resolution of workers
	Reserve human task and initialize activity structure
	Task execution and escalation handling

	Social network generation
	Discussion
	General case---random graphs
	Specific case---preferential attachment graphs

	Overall findings

	Conclusion
	References

