
Vienna University of Technology

Information Systems Institute

Distributed Systems Group

Identifying Incompatible
Implementations of Industry
Standard Service Interfaces for
Dependable Service-Based
Applications

Under Review for Publication in -

C. Inzinger, W. Hummer, B. Satzger, P. Leitner, S.
Dustdar
inzinger@infosys.tuwien.ac.at

TUV-1841-2012-1 6/7/12

In this paper we study fault localization techniques for identification
of incompatible configurations and implementations in service-based ap-
plications (SBAs). We consider SBAs with abstract service interfaces
that integrate multiple concrete service implementations from various
providers. Practice has shown that standardized interfaces alone do not
guarantee compatibility of services originating from different partners.
Hence, dynamic runtime instantiations of such SBAs pose a great chal-
lenge to reliability and dependability. The aim of this work is to monitor
and analyze successful and faulty executions in SBAs, in order to proac-
tively detect incompatible configurations at runtime. Our approach is
based on well-established machine learning techniques, and extends state-
of-the-art fault localization by explicitly addressing temporary and chang-
ing fault conditions. Moreover, the presented fault localization technique
works on a per-request basis and is able to take individual service inputs
into account. Considering not only the service configuration but also the
service input data as a parameter for the fault localization algorithm in-
creases the computational complexity by an order of magnitude. Hence,
our extensive performance evaluation is targeted at large-scale SBAs and
illustrates the feasibility and decent scalability of the approach.

Keywords: Fault Localization, Dependable Systems, Service-Based Ap-

plications

c©2012, Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
http://www.infosys.tuwien.ac.at/

Identifying Incompatible Implementations of

Industry Standard Service Interfaces for Dependable

Service-Based Applications

Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/

Abstract—

In this paper we study fault localization techniques for

identification of incompatible configurations and implementations

in service-based applications (SBAs). We consider SBAs with

abstract service interfaces that integrate multiple concrete service

implementations from various providers. Practice has shown that

standardized interfaces alone do not guarantee compatibility of

services originating from different partners. Hence, dynamic

runtime instantiations of such SBAs pose a great challenge

to reliability and dependability. The aim of this work is to

monitor and analyze successful and faulty executions in SBAs,

in order to proactively detect incompatible configurations at

runtime. Our approach is based on well-established machine

learning techniques, and extends state-of-the-art fault localization

by explicitly addressing temporary and changing fault conditions.

Moreover, the presented fault localization technique works on a

per-request basis and is able to take individual service inputs into

account. Considering not only the service configuration but also

the service input data as a parameter for the fault localization

algorithm increases the computational complexity by an order

of magnitude. Hence, our extensive performance evaluation is

targeted at large-scale SBAs and illustrates the feasibility and

decent scalability of the approach.

I. INTRODUCTION

Distributed and mission-critical enterprise applications are

becoming more and more reliant on external services, pro-

vided by suppliers, customers or other members of service

value networks [1] (SVNs). In many industries, the technical

interfaces of these services are nowadays governed by industry

standards, specified by bodies such as the TM Forum1 (TMF),

the Association for Retail Technology Standards2 (ARTS) or

the International Air Transport Association3 (IATA). Hence,

integration of services provided by different business part-

ners into a single service-based application (SBA) becomes

feasible. Additionally, as oftentimes a multitude of potential

partners are providing implementations of the same stan-

dardized interfaces, SBAs are enabled to dynamically switch

providers at runtime, i.e., dynamically select the most suitable

1http://www.tmforum.org/browse.aspx
2http://www.nrf-arts.org/
3http://www.iata.org/Pages/default.aspx

implementation of a given standardized interface based on

fluid business requirements.

Unfortunately, practice has shown that standardized inter-

faces alone do not guarantee compatibility of services orig-

inating from different partners. Many industry standards are

prone to underspecification, while others simply allow multiple

alternative (and incompatible) implementations to co-exist.

Additionally, and particularly for younger specifications, not

every vendor can be trusted to interpret each standard text in

the same way. Consequently, there are practical cases, where

SBAs, which should work correctly in the abstract, fail to

function because of unexpected incompatibilities of service

implementations chosen at runtime. Note that this does not

necessarily mean that any single one of the chosen service

implementations is faulty in itself – it merely means that

two or more chosen service implementations do not work

in conjunction (even though both may work perfectly in

combination with other services).

In this paper, we present a machine learning driven approach

to identify such incompatibilities of industry standard imple-

mentations. We analyze runtime event logs emitted by the

SBA using decision tree techniques and principal component

analysis, with the goal of suggesting combinations of ser-

vice implementations that should not be used in conjunction.

Our approach takes into account not only the actual service

implementations themselves, but also the received input and

the produced output data of implementations. We discuss our

approach based on an example industry standard from the

TMF, the Next Generation Operation Systems and Software

(NGOSS) [2] standard. Furthermore, we quantify the benefits

of our approach based on a numerical evaluation.

The remainder of the paper is structured as follows. In

Section II we introduce an illustrative scenario from the

telecommunications domain which highlights the characteris-

tics of SBAs as studied in this work. Section III discusses

related work in the field of reliable distributed systems and

fault localization in SBAs. The core part of the paper is

Section IV, where we establish a model for fault localization

in SBAs and describe our approach in detail. Section VII

covers a comprehensive experimental evaluation and discusses

strengths and limitations of the approach. Finally, Section VIII

concludes the paper and points to future research directions.

II. SCENARIO

The motivation for this paper is based on a scenario from the

telecommunications services domain. The enhanced Telecom

Operations Map (eTOM)4, which forms part of the NGOSS

program, is a widely adopted industry standard for implemen-

tation of business processes promoted by the TMF. MTOSI [3]

is an XML-based technology stack defined for NGOSS, which

consists of a set of unified, transport-independent interfaces for

network and service management. Our scenario is condensed

from the TMF’s Case Study Handbook [4] as well as two

eTOM-related IBM publications on practical application of

SOA in such systems [5], [6].

A. Service Delivery the eTOM Way

Figure 1 depicts the service delivery process in Business

Process Modeling Notation (BPMN). The process consists of

six activities (denoted i1, . . . , i6). We refer to these activities

as interfaces or abstract services. Each abstract service activity

has a set of sub-activities which we denote as concrete service

implementations (denoted c1, . . . , c14 in the figure). At runtime

the process selects and executes one concrete service for each

service interface. The data flow between the service interfaces

of the scenario process is illustrated in Figure 2.

��������
	�
����
����
��
�����
�

����������
�����
�
�
����������
�

	����������
�����
�
�
����������
�

�
�

�
�

�
�

�

�
�
�
�
��

�
�

�
�

�

�

��������	

��
���
�����
�

������������

�
����

������
������

�!����
���∀#∃%

�&����
���%�∀#

�����		����

�

����

�����
��������		���

�∋���∀
���
�
���

�
�

�∋!��#���
�����

�
�

�(��������������

��������	

��� 	
���
!���

�∋�����
����

�∀����#�
��∃��	��%

�∋)������∗	∀�

�+��∃,��−�
�

�.���∃/∃

�0��%���1�

�2��#������

�∋∋�����
����

�∋2��#������

Fig. 1. Service-Based Scenario Application, based on [5] and [6]

The process is initiated by the abstract service i1 (Handle

Customer Order) which is offered in two variants for standard

and premium users. Depending on the order input, the process

4http://www.tmforum.org/BusinessProcessFramework/1647/home.html

then configures a particular service (ADSL, IPTV or VoIP).

The third abstract service selects one among three partner

providers to allocate resources required for service deliv-

ery. Telecommunication services are typically associated with

Quality of Service (QoS) attributes, which are fine-tuned by

abstract service i4. For instance, this activity configures param-

eters in the ADSL device or sets the location URI (Uniform

Resource Identifier) of IPTV endpoints, in correspondence

with QoS requirements. If a problem is detected at runtime,

the optional reporting service is executed in activity i5. Finally,

the process terminates after storing billing information, either

for paying partner providers or for internal accounting if the

service was delivered in-house. Besides regular termination,

the process may also be interrupted by exceptions at any stage

of execution (not depicted in Figure 1). We assume that the

information whether the execution has terminated regularly or

exceptionally is available for each instance of the process.

����������	����
������

��������	�

��
�����������
�������������

�������

�����		�����

��
�����

�����������

 �		���

�!������	�

���∀	��
��#���

�∃����%�
�

&��	��

��������	
 �������
���

��������	

�����	

������� �������
���

������������

������������������������
�����	

���������

�����	
 ���������

�������

Fig. 2. Data Flow in the Scenario Process

One defining characteristic of eTOM and the presented

scenario is process decomposition, which means that business

processes are modeled at different levels of abstraction, from

the high-level business goals view down to the technical

implementation level. In our scenario this is illustrated by the

distinction between abstract and concrete services, though in

fact the number of abstraction levels can be higher than two.

B. Challenges for Reliable Service Delivery

The scenario outlined in Section II entails challenges to

reliability that are typically encountered in service-based ap-

plications. Interface standardization (such as MTOSI in the

case of our scenario) per se does not guarantee compatibility

of services originating from different partners. The interactions

among services contain complex dependencies and data flows.

The number of variations, i.e., possible instantiations of the

process, grows exponentially with the combination of concrete

services as well as the provided user input. Hence, comprehen-

sive upfront verification and validation in terms of integration

testing is not always feasible and can only cover a certain

percentage of the possible instantiations. Therefore, in addition

to rigorous testing methods, reliable operation of business-

critical SBAs requires proactive monitoring to analyze and

avoid incompatible configurations at runtime.

III. RELATED WORK

In this section we discuss existing approaches related to

reliability, fault detection, and fault localization in SBAs and

distributed systems in general.

A. Software Testing

Our work is related to the broad field of software testing

where a plethora of approaches for fault localization have been

proposed. Generally, software testing stands for the process

of executing a program or systems with the intent of finding

errors [7]. Testing approaches are often divided into white-

and black-box testing. In white-box (or logic-driven) testing

the internals of the software under test are visible to the

tester. Black-box (input/output-driven) testing has to get along

with no information about internal structure. In our problem

formulation, we are facing a black-box model in which we

can observe the system behavior but have no details about

the internals. In addition to testing the pure correctness of

software, important further aspects may be tested, such as

performance, reliability, and security. Formal verification of

software is an alternative to testing that is often employed in

highly safety-critical environments.

Canfora et al. [8] provide an extensive overview of testing

services and SBAs. The seminal work by Narayanan and McIl-

raith [9] was among the first to perform automated simulation

and verification based on a semantic model of Web services.

Another related approach has been presented by Hummer et al.

[10], which performs upfront integration testing with different

combinations of concrete service implementations. Due to the

huge search space, even in medium sized SBAs, their test

case generation approach is not able to consider the service

input and output data, whereas the efficient fault localization

algorithms used in this work allow us to do so. Concluding, in

software testing a system is actively executed to find problems;

in this work, however, we do not control the software but we

monitor its execution to localize faults and fault reasons at

runtime.

B. Software Fault Localization

Software fault localization helps to identify bugs in software

on the source code level. Oftentimes a two-phase procedure

is applied: 1) finding suspicious code that may contain bugs

and 2) examining the code and deciding whether it contains

bugs with the goal of fixing them. Research mainly focused

on the former, the identification of suspicious code parts with

prioritization based on its likelihood of containing bugs [11].

The seminal paper by Hutchins et al. [12] introduces an

evaluation environment for fault localization (often referred

to as the Siemens suite), consisting of seven base programs

(in different versions) that have been seeded with faults on

the source code level. Renieres et al. [13] present a fault

localization technique for identifying suspicious lines of a

program’s source code. Based on the existence of a faulty

run of the program and many correct runs they select the

correct run that is most similar to the faulty one. Proximity

is defined based on the program dependence graph. Then,

they compare the two runs and produce a report of suspicious

program lines. This general functionality is very common in

software fault localization. Guo et al. [14] propose a different

similarity metric based on control flow. The metric takes into

account the sequence of statement instances rather than just

the according set. Our work differs from traditional software

fault localization in that we do not analyze program code

but assume to only be able to observe the external behavior

of services. We also assume that the environment or service

implementations may change during runtime, in contrast to the

analysis of static code.

C. Monitoring and Fault Detection in Distributed Systems

Monitoring and fault detection are key challenges for im-

plementing reliable distributed systems, including SBAs. Fault

detectors are a general concept in distributed systems and aim

at identify faulty components. In asynchronous systems it is

in fact impossible to implement a perfect fault detector [15],

because faults cannot be distinguished with certainty from

lost or delayed messages. Heartbeat messages can be used

for probabilistic detection of faulty components; in this case a

monitored component or service has the responsibility to send

heartbeats to a remote entity. The fault detector presented in

[16] considers the heartbeat inter-arrival times and allows for

a computation of a component’s faulty behavior probability

based on past behavior. Lin et al. [17] describes a middleware

architecture called LIama that advocates a service bus that

users can install on existing service-based infrastructures. It

collects and monitors service execution data which enable to

incorporate fault detection mechanisms using the data. Such

a service bus can be used to collect the data necessary for

our analysis. The major body of research in the area of

monitoring and fault detection in SBAs deals with topics

like SLAs (service-level agreements) and service compositions

rather than compatibility issues [18].

D. Fault Analysis and Adaptation in Distributed Systems

Fault analysis derives knowledge from faults that have

been experienced. Adaptation tries to leverage this knowl-

edge to reconfigure the system to overcome faults. Zhou et

al. [19] have proposed GAUL, an problem analysis technique

for unstructured system logs. Their approach is based on

enterprise storage systems, whereas we focus on dynamic

service-based applications. At its core, GAUL uses a fuzzy

match algorithm based on string similarity metrics to associate

problem occurrences with log output lines. The aim of GAUL

differs from our approach since we assume the existence of

structured log files and focus on the localization of faulty

configuration parameters. Control of SOAs mostly relies on

static approaches, such as predefined policies [20]. Techniques

from artificial intelligence can be used to improve manage-

ment policies for SBAs during runtime. Markov decision

processes, for instance, represent a possible way for modeling

the decision-making problems that arise in controlling SBAs.

Markov decision processes and algorithms to solve them have

been shown effective in reducing the impact of defects in

service implementations by adapting the SBA at runtime [21].

In this work we focus on fault localization rather than on how

to react in the face of faults.

IV. BASIC FAULT LOCALIZATION APPROACH

This section discusses our novel fault localization technique.

In Section IV-A we establish a notion for the model of service-

based systems. Sections IV-B and IV-C discuss preprocessing

and machine learning techniques used to learn rules which

describe the reasons for faults based on the data contained in

the model.

A. System Model

We establish a generalized model which forms the basis

for the concepts presented in the paper. The core model

artifacts are summarized in Table I and briefly discussed in the

following. Where applicable, the table also contains examples

which refer back to the scenario in Section II.

A SBA consists of a set of industry standard service

interfaces I and a set of implementations (C). The mapping

between interface and implementation is defined by the func-

tion c : I → P(C), where P(C) denotes the power set

of C. P denotes the domain of possible input parameters,

each defined by name and value domain. Function p returns

all inputs required by an interface. The set F defines data

flows as pairs of interfaces (ix, iy), where the output of ix
becomes the input of iy . Transitive data flows spanning more

than two services can be derived from F . Moreover, we define

T as the sequence of logged execution traces (in chronological

order). Finally, the function r is used to express the result of

a trace, i.e., whether the trace represents a successful or failed

execution of the SBA.

Symbol Description

I = {i1, ..., in} Set of industry standard interfaces defined

by the SBA. Example: I = {i1, ..., i6}

C = {c1, ..., cm} Set of available concrete implementations

to interfaces. Example: C = {c1, ..., c14}

c : I → P(C) Function that returns all concrete can-

didate implementations for an interface.

Example: c(i2) = {i3, i4, i5}

P = [N ×D] Domain of service input parameters.

Each input parameter is defined

by a name (N) and a domain of

possible data values (D). Example:

P = {(′premium′, {true, false}),
(′serviceType′, String), . . .}

p : I → P(P) Function that returns all input parame-

ters for an interface. Example: p(i1) =
{(′customerID′, String)}

F ⊆ I × I Set of direct data flows (dependencies)

between two services. Example: F =
{(i1, i2), (i2, i3),(i2, i4), . . .}

tx : K → V,

K = I ∪ (I ×N),
V = S ∪D,

x ∈ {1, . . . , k}

Log trace representing one execution

of the SBA. The function maps from

a set of keys (K) to values (V).

In particular, interfaces (I) map to

implementations (S), and parameter

names (I ×N) map to parameter values

(D). Example: t1: a1 7→c2, i2 7→c3,

. . . , (i1,
′ customerID′) 7→′joe123′,

(i2,
′ premium′) 7→true, . . .

T = 〈t1, ..., tk〉 Sequence of logged execution traces.

r : {1, . . . , k} 7→
{success, fault}

Function that determines for an integer

x ∈ {1, . . . , k} whether the execution

represented by the trace tx was successful

or has failed.

ES ⊆ P(P(I → C)) Incompatible assignment. If the imple-

mentations in E are used in combination,

a fault occurs at runtime. Example: EC =
{{(i1 7→ c2)}, {(i2 7→ c4), (i3 7→ c8)}}.

EP ⊆ P(P(
(I → C) ∪
((I ×N) 7→ D)))

Incompatible assignment with

specific input data. Example: EP =
{{(i1 7→ c2)}, {((i2,

′ premium′) 7→
false), (i3 7→ c8)}}

TABLE I. Description of Variables

Summarizing the model, the core idea of our approach is

to analyze log traces of SBA executions for fault localization.

We consider two classes of properties as part of the traces:

1) runtime binding of interfaces to concrete implementations,

and 2) service input parameters, i.e., data provided by the user

to the application as well as data flowing between services.

B. Trace Data Preparation

Table II lists an excerpt of six exemplary traces for the

scenario application. We follow the terminology typically used

in machine learning and denote the column titles as attributes

and the rows starting from the second row as instances. The

first attribute (tx) is the instance identifier attribute, the last

attribute (r(x)) is denoted class attribute.

Evidently, the number of attributes and combinations of

attribute values can grow very large. To estimate the number of

possible traces for a medium sized application, let us consider

an imaginary SBA using 10 interfaces (|I| = 10), 3 candidate

implementations per interface (|c(ix)| = 3 ∀ix ∈ I), 3 input

parameters per service (|p(ix)| = 3 ∀ix ∈ I), and 100 possible

data values per parameters (|d| = 100 ∀ix ∈ I, (n, d) ∈ p(ix)).
The theoretical number of possible executions in this SBA

is 310 ∗ 1003
10

= 5.9049 ∗ 1064. Efficient localization of

faults in such large problem spaces evidently poses a huge

algorithmic challenge. Even more problematically, the problem

tx i1 i2 i3 .. tx(i1,′ customerID′) tx(i2,′ premium′) .. r(x)

t1 c1 c3 c7 .. ′joe123′ false .. success

t2 c2 c4 c6 .. ′aliceXY ′ true .. success

t3 c1 c5 c8 .. ′joe123′ false .. fault

t4 c2 c5 c8 .. ′bob456′ true .. success

t5 c2 c4 c7 .. ′aliceXY ′ true .. success

t6 c1 c4 c8 .. ′lindaABC′ false .. fault

..

TABLE II

EXAMPLE TRACES FOR SCENARIO APPLICATION

space becomes infinite if the service parameters use non-finite

data domains (e.g., String).

The first step towards feasible fault analysis is to reduce the

problem space to the most relevant information. We propose

a two-step approach to achieve this:

1) Identifying (ir)relevant attributes: The first manual pre-

processing step is to decide, based on domain knowledge

about the SBA, which attributes are relevant for fault

localization. For instance, in our scenario we can safely

say that the unique orderID attribute does not have

a direct influence on whether the execution succeeds or

fails. On the other hand, the parameter serviceType can

indeed have a direct influence on the result, namely if

one of the services ADSL, IPTV, or VoIP is faulty. Per

default, all attributes are deemed relevant, but removing

part of the attributes from the execution traces helps to

reduce the search space.

2) Partitioning of data domains: Research on software

testing and dependability has shown that faults in pro-

grams are often not solely incurred by a single input

value, but usually depend on a range of values with

common characteristics [22]. Partition testing strate-

gies therefore divide the domain of values into mul-

tiple sub-domains and treat all values within a sub-

domain as equal. As a simple example, considering

that a service has a parameter with type Integer (i.e.,

{−231, . . . ,+231−1}), a valid partitioning would be to

treat negative/positive values and zero as separate sub-

domains: {{−231, . . . ,−1}, {0}, {1, . . . ,+231 − 1}}. If

explicit knowledge about suitable partitioning is avail-

able, input value domains can be partitioned manually

as part of the preprocessing. However, efficient meth-

ods have been proposed to automatize this procedure

(e.g., [23]).

C. Learning Rules from Decision Trees

Using the preprocessed trace data, we strive to identify

the attribute values or combinations of attribute values that

are likely responsible for faults in the application. For this

purpose, we utilize decision trees [24], a popular technique in

machine learning. Note that decision trees are usually used for

classification, which means to learn rules from a set of training

instances with the aim of predicting the class attribute of a new

instance. However, our purpose is not classification because

in our problem formulation the value of the class attribute

(success or fault) is known for each trace instance; instead,

we are interested in learning a decision tree and obtaining the

rules which apply to a particular value of the class attribute

(fault).

��������	
�����

���������

�����
������� ����
��

�	�
 ����

����
�� �����

����
 �	�

��������	
�����

���

�����
���� ����
��

����� ��	�

����
�� �����

�� ��

����
��

��

�
����	 ���������	 �!����

Fig. 3. Exemplary Decision Tree in Two Variants

Figure 3 illustrates decision trees based on our scenario and

the example traces in Table II. The figure shows two variants

of the same tree which classifies non-premium services from

Provider 3 (tx(i3) = c8, see Figure 1). The inner nodes are

decision nodes which divide the traces search space, and the

leaf nodes indicate the trace results. The left-hand side of the

figure shows a regular decision tree where each decision node

splits according to the possible values of an attribute. The

right-hand side shows the same tree with binary split (i.e.,

each decision node has two outgoing edges).

Algorithm 1 Obtain Incompatibility Rules from Decision Tree

1: EI ← ∅
2: for all fault leaf nodes as n do

3: path← path of nodes from n to root node

4: Etemp ← ∅
5: for all decision node along path as d do

6: if condition of d is true along path then

7: Etemp ← Etemp∪
8: end if

9: end for

10: EI ← EI ∪ Etemp

11: end for

12: for all Ex, Ey ∈ EI do

13: if Ex is covered by Ey then

14: EI ← EI \ Ex

15: end if

16: end for

The decision tree with binary split is used to automatically

derive incompatible attribute values. Basically, the procedure

is to loop over all fault leaf nodes and to create a combination

of attribute assignments along the path from the leaf to the root

node. The detailed algorithm is presented in Algorithm 1.

V. COPING WITH TEMPORARY AND CHANGING FAULTS

So far, we have shown how trace data can be collected,

transformed into a decision tree, and used for obtaining rules

which describe which configurations have led to a fault. The

assumption so far was that faults are deterministic and static.

However, in real-life systems which are influenced by various

external factors, we have to be able to cope with temporary

and changing faults. Our approach is hence tailored to react

to such irregularities in dynamically changing environments.

A temporary fault manifests itself in the log data as a trace

t ∈ T whose result r(t) is supposed to be success, but the

actual result is r(t) = fault. Such temporary faults can lead

to a situation of contradicting instances in the data set. Two

trace instances t1, t2 ∈ T contradict each other if all attributes

are equal except for the class attribute:

{(k, v) | (k, v) ∈ t1} = {(k, v) | (k, v) ∈ t2},
r(t1) 6= r(t2).

Fortunately, state-of-the-art decision tree induction algo-

rithms are able to cope with such temporary faults which can

be considered as noise in the training data (e.g., [25]).

If the reasons for faults within an SBA change permanently,

we need a mechanism to let the machine learning algorithms

forget old traces and train new decision trees based on fresh

data. Before discussing strategies for maintaining multiple

decision trees, we first briefly discuss in Section V-A how

the accuracy of an existing classification model is tested over

time.

A. Assessing the Accuracy of Decision Trees

Let D be the set of decision trees used for obtaining

fault combination rules. We use the function rc : (D ×
{1, . . . , k})→ {success, fault}, where k is the highest trace

index (cf. Table I), to express how a desicion tree classifies a

certain trace. Over a subset Td ⊆ T of the traces classified by

a decision tree d, we determine four measures typically used

for assessing accuracy in information retrieval and machine

learning [26]:

• True Positives: TP (Td) = {tx ∈ Td | rc(d, x) = fault∧
r(x) = fault}

• True Negatives: TN(Td) = {tx ∈ Td | rc(d, x) =
success ∧ r(x) = success}

• False Positives: FP (Td) = {tx ∈ Td | rc(d, x) =
fault ∧ r(x) = success}

• False Negatives: FN(Td) = {tx ∈ Td | rc(d, x) =
success ∧ r(x) = fault}

From the four basic measures we obtain further metrics to

assess the quality of a decision tree. The precision expresses

how many of the traces identified as faults were actually faults

(TP/(TP + FP)). Recall expresses how many of the faults

were actually identified as such (TP/(TP + FN)). Finally,

the F1 score [27] integrates precision and recall into a single

value (harmonic mean):

F1(d) = 2 ∗ precision·recall

precision+recall

B. Maintaining a Pool of Decision Trees

In the following we discuss our approach to cope with

changing fault conditions over time, based on a sample ex-

ecution of the scenario application introduced in Section II.

Figure 4 illustrates a representative sequence of execution

traces ({t1, t2, t3, . . .}); time progresses from the left-hand

side to the right-hand side of the figure. In the top of

the figure the trace results (r(tx)) are printed, where “S”

represents success and “F” represents fault. As the traces

arrive with progressing time we utilize deduction algorithms

to learn decision trees from the data. At time point 1, the

decision tree d1 is initialized and starts the training phase.

The learning algorithm has an initial training phase which

is required to collect a sufficient amount of data to generate

rules that pass the required statistical confidence level. After

the initial training phase the quality of the decision tree rules

is assessed by classifying new incoming traces. In Figure

4 correct classifications are printed in normal text, while

incorrect classifications are printed in bold underlined font.

�� �� ��� � ���� �� �� ���� �� �� �� ���� �� �� �� ���

����

	
���

�� �� �� ��

�� �� ���� �� ���� �� �� ���� �� �� ��� ���� ���

�� �� ���� ��� ���� �������� ������������������ �� ����

�� ��������� ��� ����		�����������������
�� ������� ������! ��		�����������������

∀��������������� �
�#��∃	�%%�	��∃	�� � %����&�∋�∃	��

��

�� �� ��� �� � �� � � �� � �(��

�(

! ������∃	�� � %�#)���

	�
(�∗���

��
(���

�� ���� �� �� ���� �� ��� ��� ����� ��� ��

�� ���� �� �� �����+����++���++��� ���++�

�� �� ��� ����� ��� ��� ��� ����

�� �� �� ����� ���� ���������

	�
(�∗���

��
(���

#�	��������	���������,���−������.�)�	�∃	���

	�
(/∗���

��
(/��

Fig. 4. Maintaining Multiple Trees to Cope with Changing Faults

We have marked four particularly interesting time points

(a, b, c, d) in Figure 4, which we discuss in the following.

• In time point a the tree d1 misclassifies the trace ta as a

false positive. This misclassification triggers the parallel

training of a new decision tree d2 based on the traces

starting with ta.

• A false negative misclassification by d2 happens in time

point b. However, since this happens during the initial

training phase of d2, we simply regard the trace tb as

useful information for the learner and add it to the training

set. No further action is required.

• Time point c contains another false positive misclassifi-

cation of d1. In the meantime, F1(d1) had risen due to

some correct classifications, but now the score is pushed

down to 0.7. Again, as in time point a, the generation of

a new tree d3 is triggered.

• At time d the changing environment seems to have

stabilized and decision tree d3 reached a state with perfect

classification (F1(d3) = 1). At this point, the remaining

decision trees are rejected. The old trees are still stored

for reference, but are not trained with further data to save

computing power.

VI. IMPLEMENTATION

Our prototype implementation of the presented fault local-

ization approach is implemented in Java. We utilize the open-

source machine learning framework Weka5. Weka contains an

implementation of the popular C4.5 decision tree deduction

algorithm [28], denoted J48 classifier in Weka. C4.5 has been

applied successfully in many application areas and is known

for its good performance characteristics.

��������	��
���
���
�������

����
	������������
	��
��
����������	
����
�	������
������
	����

���	�
�
����
��

����

����
������	��
��
��

���	���
�
�����

�
����
�������
�
�������

�
������
�������	�

��	���
��������

�

��������
�	�� !���

∀#∃
����������

��������	�
���	!���
�

%�!��
�
	���&��

∋
����	���
��
�������	�

Fig. 5. Prototype Implementation Architecture

Figure 5 outlines the architecture of the Fault Localiza-

tion Platform with the core components. Third-party compo-

nents (Weka) are depicted with light grey background color.

The service-based application submits its log traces (service

bindings plus input messages) to the Logging Interface and

provides a Notification Interface to receive fault localization

updates. The Trace Log Store receives trace data and for-

wards them to the Trace Converter. The Domain Partition

Manager maintains the customizable value partitions for input

messages. For instance, if a trace contains an integer input

parameter x = −173 and the chosen domain partition for

x is {negative, zero, positive} then the Trace Converter

5http://www.cs.waikato.ac.nz/ml/weka/

transforms the input to x = negative. The transformed traces

are put to the Weka Instances Store. The Decision Tree Pool

utilizes the Weka J48 Classifier to maintain the set of trees.

The Statistics Calculator determines quality measures for the

learned classifiers, and the Training Scheduler triggers the

adaptation of the tree pool to changing environments.

VII. EVALUATION

In the following we evaluate different aspects of our pro-

posed fault localization approach. We have set up a compre-

hensive evaluation framework as part of Indenica6, a research

project aiming at developing a virtual platform for service

computing. The framework generates realistic traces of large

service compositions, against which we run our fault detection

algorithms.

A. Evaluation Setup

The test composition traces are generated randomly, with

assumed uniform distribution of the underlying random gen-

erator. Table III shows six different SBA instances with

corresponding parameter settings which are considered for

evaluation. The table also lists for each setting the probability

that a fault occurs in a random execution of the SBA.

ID |I|, |c(i)|, |p(i)|, |d|, {|e|, e ∈ EI} Fault

i ∈ I i ∈ I (n,d) ∈ p(i) i ∈ I Probability

S1 5 5 10 20 {1} 4 ∗ 10−2

S2 5 5 10 20 {2} 2 ∗ 10−3

S3 5 5 10 20 {3} 1 ∗ 10−4

S4 5 5 10 20 {3, 3, 3} 3 ∗ 10−4

S5 10 10 10 100 {3, 4} 1.001 ∗ 10−6

S6 10 10 10 100 {4} 1 ∗ 10−12

TABLE III

FAULT PROBABILITIES FOR EXEMPLARY SBA MODEL SIZES

All tests have been performed on a machine with two Intel

Xeon E5620 quad-core CPUs, 32 GB RAM, and running

Ubuntu Linux 11.10 with kernel version 3.0.0-16.

B. Basic Properties of the Presented Approach

1) Trace Limits: First, we evaluate how many fault traces

are required by the J48 classifier to pass the threshold for

reliable fault detection. The scenario SBAs S1, S2, S3 (cf.

Table III) were used in Figure 6, 20 iterations of the test

were executed, and the figure contains three boxes representing

the range of minimum and maximum values. As shown in

Figure 6, the number of traces required to successfully detect

a faulty configuration depends mostly on the complexity (i.e.,

probability) of the fault with regard to the total scenario size.

A single fault configuration in the configuration S1 was on

average detected after observing between 90 and 190 traces.

6http://www.indenica.eu/

 10

 100

 1000

 10000

 100000

 0.0001 0.002 0.04

#
T

ra
c
e

s

Fault Probability

Fig. 6. Number of Traces Required to Detect Faults of Different Probabilities

If we multiply these values with the fault probability of 4 ∗
10−2, we get a range of 4 to 8 fault traces required for the

localization. Also with more complex (and hence unlikely)

faults the relative figures do not appear to change considerably.

With a fault probability of 2 ∗ 10−3 and 1 ∗ 10−4 the faults

are detected after observing 3/16 and 4/7 minimum/maxiumum

fault traces, respectively. The data suggest that there is a strong

relationship between the number of required fault traces and

the fault probability.

2) Noise Resilience: As discussed in Section V, we an-

ticipate the existence of temporary faults in the system.

Temporary faults create noise in the trace logs. Therefore, we

evaluate the performance of our approach using different noise

levels. In Figure 7 we analyze how the F1 score develops

with increasing noise ratio. The figure contains four lines, one

each for the scenario settings S1 − S4. To ensure that the

algorithm actually obtained enough traces for fault localization

(see limits in Section VII-B1), we executed the localization run

after 200000 observed traces.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02

F
1
 S

c
o
re

Noise Ratio

p=0.01
p=0.002

p=0.0003
p=0.0001

Fig. 7. Noise resilience of the fault localization mechanism. Our approach

is able to maintain reasonable accuracy in the presence of noisy data.

The results look quite promising and our fault localization

mechanism is able to maintain reasonable accuracy even in

very noisy environments, due to the high noise resilience of

the underlying C4.5 decision tree algorithm. Note that starting

from noise ratio 0.01 there are more spurious execution

traces than actual errors observable. Nevertheless, acceptable

localization accuracy is maintained, except for p = 0.0001,

where the environment noise affects ten times more traces

than the fault.

C. Changing Fault Conditions

As discussed in Section II, our fault localization approach is

able to cope with changing environments, which we show in

the following. Figure 8 shows the performance of our approach

in the presence of changing faults. The evaluation is set up

as follows: Initially a fault combination FC1 is active. At

trace 33000, the implementation that causes the fault FC1 is

repaired, but the fix introduces a new fault FC2 that is fixed

at trace 66000. At trace 66000, another fault FC3 occurs, and

an attempted fix at trace 88000 introduces an additional fault

FC4, while FC3 remains active. At trace 121000, both FC3
and FC4 are fixed, but two new faults FC5 and FC6 are

introduced to the system. The occurrence probability for each

of the fault combinations (FC1 − FC6) is set to 2 ∗ 10−3

(corresponding to scenario setting S2 in Table III).

 0

 0.2

 0.4

 0.6

 0.8

 1

F1 Score

0 40000 80000 120000 160000 200000

#Traces

Active Range of Fault Combination 6

Active Range of Fault Combination 5

Active Range of Fault Combination 4

Active Range of Fault Combination 3

Active Range of Fault Combination 2

Active Range of Fault Combination 1

Fig. 8. Fault Localization Accuracy for Dynamic Environment with Changing

Faults

This scenario is designed to mimic a realistic situation, but

serves mainly to highlight several aspects of our solution. After

about 4000 observed execution traces the localizer provides a

first guess as to the cause of the fault, but the classification is

not yet correct. After around 5200 observed execution traces,

the localizer was able to analyze enough error traces to provide

an accurate localization result. Note that at that time, only

about 6 error traces have been observed, yet the algorithm al-

ready produces a correct result. At trace 33000, the previously

detected fault FC1 disappears and is replaced by FC2. Due to

the pool of decision trees maintained by our localizer, FC2
can again be accurately localized roughly 6000 traces later.

Similarly, after FC2 disappears, FC3 is localized roughly

5000 traces after its introduction. The decision tree pool allows

for the effective localization of new faults introduced to the

system at any time. At trace 88000, FC4 is introduced,

and can again be accurately localized after observing around

5000 traces. FC3 and FC4 disappear at trace 121000 and

are replaced by simultaneously occurring errors FC5 and

FC6. This situation is more challenging for our approach,

as seen in the rightmost 80000 traces in Figure 8. The

spikes between trace 121000 and 150000 represent different

localization attempts that are later invalidated by contradicting

execution traces. Finally, however, the localization stabilizes

and both faults FC5 and FC6 are accurately detected.

D. Runtime Considerations

In the following we provide insights into the runtime per-

formance in different configurations and discuss strategies for

fine-tuning the performance depending on the target machine.

Due to the nature of the tackled problem, as well as the

usage of C4.5 decision trees to generate rules, there are some

practical limitations on the number of traces and scenario sizes

that can be analyzed using our approach within a reasonable

time. Figures 9 and 10 show the time needed to localize faults

for various trace window sizes using different exemplary base

scenarios on our evaluation machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 250000 500000 750000 1e+06

L
o
c
a
liz

a
ti
o
n
 T

im
e
 (

m
s
)

#Traces

5 Values per Input Part
10 Values per Input Part
50 Values per Input Part

100 Values per Input Part

Fig. 9. Localization Time for different trace window sizes in the scenario

S1 for input sizes |d| = {5, 10, 50, 100}.

Figure 9 shows the time needed for localization runs with

the base scenario S1 for input sizes |d| = {5, 10, 50, 100}.
We observe satisfactory computational scaling properties for

our approach, showing an approximately linear increase of

localization time with rising number of traces analyzed.

Figure 10 shows the required localization time for the base

scenario S5 for input sizes |d| = {5, 10, 50, 100}. The figures

shown above illustrate that the time needed for a single local-

ization run increases roughly linearly with increasing window

sizes. Larger trace windows allow the algorithm to find more

complex faults. If fast localization results are needed, the

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 250000 500000 750000 1e+06

L
o
c
a
liz

a
ti
o
n
 T

im
e
 (

m
s
)

#Traces

5 Values per Input Part
10 Values per Input Part
50 Values per Input Part

100 Values per Input Part

Fig. 10. Localization Time for different trace window sizes in the scenario

S5 for input sizes |d| = {5, 10, 50, 100}.

window size must be kept adequately small, at the cost of

the system not being able to localize faults above a certain

complexity.

Furthermore, the frequency of localization runs must be

considered when implementing our approach in systems with

very frequent incoming traces (in the area of hundreds or

thousands of traces per second). Evidently, there is a natural

limit to the number of traces that can be processed per

time unit. Figure 11 shows the localization speed as number

of traces processed per second compared to different fault

localization intervals (i.e., number of traces after which fault

localization is triggered periodically) for different window

sizes (|T |, i.e., number of considered traces).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

c
e
s
s
e
d
 T

ra
c
e
s
 p

e
r

S
e
c
o
n
d

Fault Localization Interval (# Traces)

Window Size = 50000 Traces
Window Size = 100000 Traces
Window Size = 200000 Traces
Window Size = 300000 Traces

Fig. 11. Localization performance in traces per second for different fault

localization intervals and window sizes, using scenario S6

The data in Figure 11 can be seen as a performance

benchmark for the machine(s) on which the fault localization

is executed. Executing this test on different machines will

result in different performance footprints, which serves as a

decision support for configuring window size and localization

interval. For instance, if our application produces 1500 traces

per second (i.e., processes 1500 requests per second), a local-

ization interval greater than 400 should be used. Currently, the

selection happens manually, but as part of our future work we

investigate means to fine-tune this configuration automatically.

VIII. CONCLUSION

In this paper we describe a fault localization technique that

is able to identify which combinations of service bindings and

input data cause problems in SBAs. The analysis is based on

log traces, which accumulate during runtime of the SBA. A

decision tree learning algorithm is employed to construct a tree

from which we extract rules, describing which configurations

are likely to lead to faults. For providing a fine-grained

analysis we do not only consider the service bindings but also

data on message level. This allows to find incompatibilities that

go beyond “service A has incompatibility issues with service

B” leading to rules of the form “service A has incompatibility

issues with service B for messages of type C”. Such rules

can help to safely use partial functionality of services. We

present extensions to our basic approach that help to cope

with dynamic environments and changing fault patterns. We

have conducted experiments based on a real-world industry

scenario of realistic size. The results provide evidence that

the employed approach leads to successful fault localization

for dynamically changing conditions, and is able to cope with

the large amounts of data that accumulate by considering fine-

grained data on message level.

As future work we plan to extend our approach beyond the

pure fault localization aspects; in particular, we will use the

extracted rules for guiding automated reconfiguration when a

fault occurs. Furthermore, we intend to integrate test coverage

mechanisms that help to actively investigate faults. This can be

used for systematic test execution of insightful configurations

and input requests which further narrow down the search space

of possible fault reasons.

ACKNOWLEDGMENT

The research leading to these results has received fund-

ing from the European Commission’s Seventh Framework

Programme [FP7/2007-2013] under grant agreement 257483

(Indenica).

REFERENCES

[1] B. Blau, J. Kramer, T. Conte, and C. van Dinther, “Service value

networks,” in Commerce and Enterprise Computing, 2009. CEC ’09.

IEEE Conference on, 2009, pp. 194–201.

[2] M. J. Creaner and J. P. Reilly, NGOSS Distilled: The Essential Guide

to Next Generation Telecoms Management. TeleManagement Forum,

2005.

[3] F. Caruso, D. Milham, and S. Orobec, “Emerging industry standard

for managing next generation transport networks: TMF MTOSI,” in

Network Operations and Management Symposium, 2006. NOMS 2006.

10th IEEE/IFIP, april 2006, pp. 1–15.

[4] T. Forum, “Case study handbook,” December 2009.

[5] M. Fiammante, “Dynamic soa and bpm: From simplified integration

to dynamic processes,” Dynamic SOA and BPM: Best Practices for

Business Process Management and SOA Agility, 2009.

[6] S. M. Glen and J. Andexer, “A practical application of soa,”

http://www.ibm.com/developerworks/webservices/library/ws-soa-

practical/, October 2007.

[7] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,

Third Edition, 3rd ed. Wiley, 2011.

[8] G. Canfora and M. Di Penta, “Testing services and service-centric

systems: challenges and opportunities,” IT Professional, vol. 8, no. 2,

pp. 10 –17, march-april 2006.

[9] S. Narayanan and S. A. McIlraith, “Simulation, verification and auto-

mated composition of web services,” in 11th International Conference

on World Wide Web (WWW). ACM, 2002, pp. 77–88.

[10] W. Hummer, O. Raz, O. Shehory, P. Leitner, and S. Dustdar,

“Test coverage of data-centric dynamic compositions in service-based

systems,” in Proceedings of the 2011 Fourth IEEE International

Conference on Software Testing, Verification and Validation, ser. ICST

’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 40–49.

[Online]. Available: http://dx.doi.org/10.1109/ICST.2011.55

[11] W. E. Wong and V. Debroy, “Software fault localization,” Part of the

IEEE Reliability Society 2009 Annual Technology Report., 2009.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the

effectiveness of dataflow- and controlflow-based test adequacy criteria,”

in 16th International Conference on Software Engineering, 1994, pp.

191–200.

[13] M. Renieres and S. Reiss, “Fault localization with nearest neighbor

queries,” in 18th IEEE International Conference on Automated Software

Engineering, 2003, pp. 30–39.

[14] L. Guo, A. Roychoudhury, and T. Wang, “Accurately choosing execution

runs for software fault localization,” in CC, 2006, pp. 80–95.

[15] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable

distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[16] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A new adaptive

accrual failure detector for dependable distributed systems,” in SAC,

Y. Cho, R. L. Wainwright, H. Haddad, S. Y. Shin, and Y. W. Koo, Eds.

ACM, 2007, pp. 551–555.

[17] K.-J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S.-H. Chang, “Building

accountability middleware to support dependable soa,” Internet Comput-

ing, IEEE, vol. 13, no. 2, pp. 16 –25, march-april 2009.

[18] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-

oriented computing: State of the art and research challenges,” Computer,

vol. 40, no. 11, pp. 38 –45, nov. 2007.

[19] P. Zhou, B. Gill, W. Belluomini, and A. Wildani, “Gaul: Gestalt analysis

of unstructured logs for diagnosing recurring problems in large enter-

prise storage systems,” in 29th IEEE Symposium on Reliable Distributed

Systems (SRDS), 2010, pp. 148 –159.

[20] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers, “A survey

of policy-based management approaches for service oriented systems,”

in 19th Australian Conference on Software Engineering, 2008, pp. 392–

401.

[21] C. Inzinger, B. Satzger, W. Hummer, P. Leitner, and S. Dustdar,

“Non-intrusive policy optimization for dependable and adaptive service-

oriented systems,” in Proceedings of the 2012 ACM Symposium on

Applied Computing (SAC’12), Trento, Italy, 2012, p. (to appear).

[22] E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE

Transactions on Software Engineering (TSE), vol. 17, no. 7, pp. 703–

711, 1991.

[23] M. R. Chmielewski and J. W. Grzymala-Busse, “Global discretization

of continuous attributes as preprocessing for machine learning,” Inter-

national Journal of Approximate Reasoning, vol. 15, no. 4, pp. 319 –

331, 1996.

[24] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

pp. 81–106, 1986.

[25] D. W. Aha, “Tolerating noisy, irrelevant and novel attributes in instance-

based learning algorithms,” Int. J. Man-Mach. Stud., vol. 36, no. 2, pp.

267–287, Feb. 1992.

[26] R. Baeza-Yates and R.-N. Berthier, Modern information retrieval. ACM

Press, Addison-Wesley, 1999.

[27] G. Hripcsak and A. S. Rothschild, “Technical brief: Agreement, the f-

measure, and reliability in information retrieval,” JAMIA, vol. 12, no. 3,

pp. 296–298, 2005.

[28] J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., 1993.

