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Abstract 

 

Data mining tools can be very beneficial for discovering interesting and useful patterns in 
complicated manufacturing processes. These patterns can be used, for example, to improve 
manufacturing quality. However, data accumulated in manufacturing plants have unique 
characteristics, such as unbalanced distribution of the target attribute, and a small training set 
relative to the number of input features. Thus, conventional methods are inaccurate in quality 
improvement cases. Recent research shows, however, that a decomposition tactic may be 
appropriate here and this paper presents a new feature set decomposition methodology that is 
capable of dealing with the data characteristics associated with quality improvement. In order to 
examine the idea, a new algorithm called BOW (Breadth-Oblivious-Wrapper) has been 
developed. This algorithm performs a breadth first search while using a new F-measure splitting 
criterion for multiple oblivious trees. The new algorithm was tested on various real-world 
manufacturing datasets, specifically the food processing industry and integrated circuit 
fabrication. The obtained results have been compared to other methods, indicating the superiority 
of the proposed methodology. 

 
 

1. Introduction 
Data mining is a collection of tools that explore data in order to discover previously unknown 
patterns. The accessibility and abundance of information today makes data mining a matter of 
considerable importance and necessity.  
 
One of the most practical techniques used in data mining is classification. The aim of 
classification is to build a classifier (also known as a classification model) by induction from a 
set of pre-classified instances. The classifier can be then used for classifying unlabelled 
instances. Given the long history and recent growth of the field, it is not surprising that several 
mature approaches to induction are now available to the practitioner. Decision tree induction is 
one of the most widely used approaches in data mining and machine learning for classification 
problems (see for instance Quinlan, 1993). Decision Trees are considered to be self-explained 
models and easy to follow when compacted. 
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In many modern manufacturing plants, data that characterize the manufacturing process are 
electronically collected and stored in the organization's databases. Thus, data mining tools can be 
used for automatically discovering interesting and useful patterns in the manufacturing 
processes. These patterns can be subsequently exploited to enhance the whole manufacturing 
process in such areas as defect prevention and detection, reducing flow-time, increasing safety, 
etc. The literature presents several studies that examine the implementation of data mining tools 
in manufacturing (Gardner and Bieker, 2000; Fountain et al., 2000; Kusiak and Kurasek, 2001; 
Kusiak, 2001 and Last and Kandel, 2001). 
 
This paper focuses on mining quality-related data in manufacturing. Quality can be measured in 
many different ways. Usually the quality of batches of products is measured and not that of a 
single product. The quality measure can either have nominal values (such as "Passed"/"Not 
Passed") or continuously numeric values (Such as the number of good chips obtained from 
silicon wafer or the pH level in a cream cheese). Even if the measure is numeric, it can still be 
reduced to a sufficiently discrete set of interesting ranges. In the cases that we examined, the 
goal was to find the relation between the quality measure (target attribute) and the input 
attributes (the manufacturing process data). 
  
Classification methods can be used to improve the learning curve both in the learning space, as 
well as in the target quality that is reached at the mature stage. The idea is to find a classifier that 
is capable of predicting the quality measure of a certain product or batch, based on its 
manufacturing parameters. Subsequently, the classifier can be used to set up the most appropriate 
parameters or to identify the reasons for the defects. 

The distinction of data mining for quality improvement should be clarified. As opposed to 
classical methods such as design of experiment, data mining is considered as a "secondary data 
analysis of large databases" (Hand, 1998). The term “secondary” emphasizes the fact that the 
primary purpose of the database was not data analysis. That is to say, there is no control 
whatsoever on the data collected. Other classical methods, such as control charts, aim to monitor 
the process and not to infer the relationship between the target attribute and the input attributes. 
 

The manufacturing parameters obviously include the characteristics of the production line (such 
as which machine has been used in each step, how each machine has been setup, etc.) and other 
parameters (if available) relating to the raw material that is used in the process; the environment 
(moistness, temperature, etc); the human resources that operate the production line (the 
experience level of the worker which have been assigned on each machine in the line, the shift 
number) and other such significant factors.  

Since the data accumulated in manufacturing plants has unique characteristics, conventional data 
mining methods are ineffective. More specifically, the following properties are considered 
problematic:  
 

1. Imbalanced Distribution: The quality measure (target attribute) has imbalanced 
distribution. This happens as most of the batches pass the quality assurance examinations 
and only a few are considered invalid.  On the other hand, the quality engineer is more 
interested in identifying the invalid cases (the less frequent class).  
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Traditionally, the objective of the classification method is to minimize the 
misclassification rate; i.e. to maximize accuracy. However, for the unbalanced class 
distribution, accuracy is not an appropriate metric. A classifier working on a population 
where one class ("not passed QA") represents only 1% of the examples can achieve a 
significantly high accuracy of 99% by just predicting all the examples to be of the 
prevalent class ("passed QA"). Thus, the goal is to identify as many examples of the "not 
passed QA" class as possible (high recall) with as little false alarms (high precision). 
Traditional methods fail to obtain high values of recall and precision for the less frequent 
classes, as they are oriented toward finding global high accuracy (Joshi, 2002). 

 
2. "Curse of Dimensionality": Usually in manufacturing plants there are many input 

attributes that may affect quality and the required number of labelled samples for 
supervised classification increases as a function of dimensionality (Jimenez and 
Landgrebe, 1998). The required number of training samples is linearly related to the 
dimensionality for a linear classifier and to the square of the dimensionality for a 
quadratic classifier.  

 
In terms of nonparametric classifiers, such as decision trees, the situation is even more 
severe. It has been estimated that as the number of dimensions increases, the sample size 
needs to increase exponentially in order to have an effective estimate of multivariate 
densities (Hwang et al., 1994). In quality engineering mining problems, we would like to 
understand the quality patterns as soon as possible in order improve the learning curve. 
Thus, the training set is usually too small relative to the number of input features. 
Bellman (1961), working on complicated signal processing, was the first to define this 
phenomenon as the "curse of dimensionality" . Techniques like decision trees that are 
efficient in low dimensions fail to provide meaningful results when the number of 
dimensions increases beyond a 'modest' size. Furthermore, humans generally more easily 
understand smaller classifiers, involving less features (probably less than 10). Smaller 
classifiers are also more appropriate for user-driven data mining techniques such as 
visualization. 

 
3. "Mixed-Type": Usually the input attributes in manufacturing data are of mixed type, 

namely some of the attributes are numeric (such as temperature or duration) while other 
are categorical (such as the machine's model used in the process). A suitable solution 
should be capable of addressing both types in the same model.  

 

There have been several attempts to address the class imbalance distribution problem. Most of 
these attempts are considered to be "external", namely the internal inducer (such as the decision 
tree algorithm) is not changed. Japkowicz and Stephen (2002) divide these "external" attempts 
into three categories: 
 

1. "Re-sampling" methods in which the under-represented class gets over- sampled so as to 
match the size of the other class (Nickerson, 2001; Chawla et al., 2002; Weiss and 
Provost, 2003; Estabrooks et al., 2004);  

2. "Downsizing" methods in which the over-represented class  is downsized to match the 
size of the under-represented class (Kubat and Matwin, 1997);  
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3. "Learning by recognition" methods in which one of the two classes is ignored.  With 
these methods, recognition-based, rather than discrimination-based schemas are used 
(Nugroho et al., 2002). 

 
Most methods for dealing with high dimensionality focus on feature selection techniques, i.e. 
selecting a single subset of features upon which the inducer (induction algorithm) will run, while 
ignoring the rest. The selection of the subset can be done manually using prior knowledge to 
identify irrelevant variables or feature selection algorithms. In the last decade, many researchers 
have shown increased interest in feature selection. Consequently many feature selection 
algorithms have been proposed, with some demonstrating remarkable improvements in accuracy. 
Since the subject is too wide to survey here, the reader is referred to Liu and Motoda (1998) for 
further reading. 

Despite the popularity of feature selection methodologies, there are several drawbacks in 
using them in overcoming the "Curse of Dimensionality":  

• The assumption that a large set of input features can be reduced to a small subset of 
relevant features is not always true; in some cases the target feature is actually 
affected by most of the input features and removing features will cause a significant 
loss of important information. 

• The outcome (i.e. the subset) of many algorithms for feature selection (for example 
almost any of the algorithms that are based upon the wrapper methodology) is 
strongly dependent on the training set size. That is, if the training set is small, the size 
of the reduced subset will be small also. Consequently, relevant features might be 
lost. Accordingly, the induced classifiers might achieve lower accuracy compared to 
classifiers that have access to all relevant features. 

• In some cases, even after eliminating a set of irrelevant features, the researcher is left 
with a relatively large number of relevant features. 

• The backward elimination strategy, used by some methods, is extremely inefficient 
for working with large-scale databases, where the number of original features is more 
than 100.    

 
A number of linear dimension reducers have been developed over the years including projection 
pursuit (Friedman and Tukey, 1973); factor analysis (Kim and Mueller, 1978); and principal 
components analysis (Dunteman, 1989). These methods are not aimed directly at eliminating 
irrelevant and redundant features, but are rather concerned with transforming the observed 
variables into a small number of "projections" or "dimensions". The underlying assumption in 
these methods is that the variables are numeric and the dimensions can be expressed as linear 
combinations of the observed variables (and vice versa). Each discovered dimension is assumed 
to represent an unobserved factor and thus provides a new way of understanding the data (similar 
to the curve equation in the regression models).   
 

The linear dimension reducers are enhanced constructive induction systems that use a set of 
existing features and a set of predefined constructive operators to derive new features 
(Pfahringer, 1994). These methods are effective for high dimensionality applications only if the 
original domain size of the input feature can be in fact decreased dramatically. There are several 
induction methods (such as support vector machines and neural networks) that deal directly with 
high dimensional data. However, the resulting classifiers are usually incomprehensible to end-
users. 
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Several researchers have shown that the decomposition methodology can be appropriate for 
mining manufacturing data (Kusiak, 2000; Maimon and Rokach, 2001). This paper focuses on 
feature set decomposition for generalizing the task of feature selection. Feature selection aims to 
provide a single representative set of features from which a classifier is constructed. On the other 
hand, feature set decomposition decomposes the original set of features into several subsets, and 
builds a classifier for each subset. Thus, a set of classifiers are trained such that each classifier 
employs a different subset of the original features set. Subsequently, an unlabelled instance is 
classified by combining the classifications of all classifiers. This method potentially facilitates 
the creation of a classifier for high dimensionality data sets without the above mentioned 
drawbacks of feature selection.  
 
Although the feature set decomposition methodology can be useful in the problem discussed 
here, there is no literature that seeks for the best feature set decomposition structure. Moreover, 
there is no feature set decomposition algorithm to explicitly cope with the imbalanced 
distribution property. The main contribution of this paper is a novel algorithm that automatically 
seeks for the best mutually exclusive feature set decomposition by employing a new F-measure 
splitting criterion suited for oblivious decision trees. The superiority of the suggested algorithm 
over other methods is illustrated on various real-world manufacturing datasets.    
 
 
2.  Problem Formulation 
In a typical classification problem, a training set of labelled examples is given and the goal is to 
form a description that can be used to predict previously unseen examples. The training set can 
be described in a variety of languages, most frequently, as a collection of records that may 
contain duplicates. Each record is described by a vector of attribute values. The notation A 
denotes the set of input attributes containing n attributes: },...,,...,{ 1 ni aaaA = -and y represents 
the class variable or the target attribute. Attributes (sometimes referred to as fields, variables or 
features) are typically one of two types: categorical (values are members of a given set), or 
numeric (values are real numbers). When the attribute ia  is categorical, it is useful to denote its 
domain values by },...,,{)( )(,2,1, iadomiiii vvvadom = , where )( iadom stands for its finite cardinality. 

In a similar way, },...,{)( )(1 ydomccydom = represents the domain of the target attribute. Numeric 
attributes have infinite cardinalities.  
 
The instance space (the set of all possible examples) is defined as a Cartesian product of all the 
input attributes domains: )(...)()( 21 nadomadomadomX ×××= . The Universal Instance Space 
(or the Labelled Instance Space) U is defined as a Cartesian product of all input attribute 
domains and the target attribute domain, i.e.: )(ydomXU ×= . 
The training set consists of a set of m records and is denoted as 1( , ,..., , )mS y y= < > < >1 mx x  
where X∈qx  and )(ydomyq ∈ .  
 
Usually, it is assumed that the training set records are generated randomly and independently 
according to some fixed and unknown joint probability distribution D over U. Note that this is a 
generalization of the deterministic case when a supervisor classifies a record using a function 

( )y f= x .  
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Consider a set of examples labeled positive and negative, and a classifier predicting the label for 
each example (the choice as to which class is called positive is usually arbitrary. In this case the 
"not passed QA" class will be considered as positive). A positive (negative) example that is 
correctly classified by the classifier is called a true positive (true negative); a positive (negative) 
example that is incorrectly classified is called a false negative (false positive). These numbers 
can be organized in a confusion matrix shown in Table 1. 
 
The accuracy measure that is usually employed for evaluating the performance of classifiers is 
defined as: 

True Positive True NegativeAccuracy
True Positive False Positive True Negative False Negative

+
=

+ + +
  (1) 

 
However when there are many negative examples (many examples that "passed QA") it is useful 
to measure the classification performance by ignoring the correctly predicted negative data. 
Well-known performance measures in this case are precision (P) and recall (R). Precision 
measures how many examples classified as "not passed QA" class are indeed "not passed QA". 
Recall measures how many examples of "not passed QA" class are correctly classified. 
Mathematically these measures are defined as: 
 

PositiveFalsePositiveTrue
PositiveTrueP
+

=
  (2) 

NegativeFalsePositiveTrue
PositiveTrueR
+

=
  (3) 

 
The notion of "precision" and "recall" are widely used in information retrieval (Van Rijsbergen, 
1979) and data mining (Weiss and Zhang, 2003).  Statistics uses complementary measures 
known as "type-I error" and "type-II error".  
 
Usually there is a tradeoff between the precision and the recall. Trying to improve one measure 
often results in a deterioration of the second measure. Figure 1 illustrates a typical precision-
recall graph. This two-dimensional graph is closely related to the well-known receiver operating 
characteristics (ROC) graphs in which the true positive rate (recall) is plotted on the Y-axis and 
the false positive rate is plotted on the X-axis (Ferri et al., 2002). However unlike the precision-
recall graph, the ROC diagram is always convex.   
 
Given a probabilistic classifier, this trade-off graph may be obtained by setting different 
threshold values. In a binary classification problem, the classifier prefers the class "not pass" 
over the class "pass" if the probability for "not pass" is at least 0.5. However, by setting a 
different threshold value other than 0.5, the trade-off graph can be obtained. 
 
The problem described here is in fact a multi-criteria decision-making (MCDM). The simplest 
and the most commonly used method to solve MCDM is the weighted sum model. This 
technique combines the criteria into a single value by using appropriate weighting. The basic 
principle behind this technique is the additive utility assumption. The criteria measures must be 
numerical, comparable and expressed in the same unit. Nevertheless, in the case discussed here, 
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the arithmetic mean can mislead. Instead, the harmonic mean provides a better notion of 
"average". More specifically, this measure is defined as (Van Rijsbergen, 1979): 
 
 

RP
RPF

+
⋅⋅

=
2   (4) 

 
The intuition behind the F-measure can be explained using Figure 2. Figure 2 presents a diagram 
of a common situation in which the right ellipsoid represents the set of all defective batches and 
the left ellipsoid represents the set of all batches that were classified as defective by a certain 
classifier. The intersection of these sets represents the true positive (TP), while the remaining 
parts represent false negative (FN) and false positive (FP).  An intuitive way of measuring the 
adequacy of a certain classifier is to measure to what extent the two sets match, namely to 
measure the size of the unshaded area. Since the absolute size is not meaningful, it should be 
normalized by calculating the proportional area. This value is in fact the F-measure: 
 

2 (  )Proportion of unshaded area = 
 +  +2 (  )

True Positive F
False Positive False Negative True Positve

⋅
=

⋅
  (5) 

 
The F-measure can have values between 0 to 1. It obtains its highest value when the two sets 
presented in Figure 2 are identical and it obtains its lowest value when the two sets are mutually 
exclusive. Note that each point on the precision-recall curve may have a different F-measure. 
Furthermore, different classifiers have different precision-recall graphs.  
 
The problem of decomposing the input feature set can be formally phrased as follows:  
Given a training set S with input feature set },...,,{ 21 naaaA = ,  and a target feature y  from an 
unknown distribution D over the labelled instance space, the goal is to maximize the value of the 
F-measure by combining a set of ω  ( 1ω ≥ ) classifiers, such that the feature subsets used by the 
classifiers are mutually exclusive. 
 
It should be noted that the optimal is not necessarily unique. Furthermore it is not obligatory that 
all input features will actually belong to one of the subsets. 
  
This paper focuses on decision trees classifiers which are combined using the Naive Bayes 
combination (Duda and Hart, 1973). The Naive Bayes combination assumes that each features 
subset used by a certain classifiers is independent of the rest given the value of the target 
attribute. Consequently an unlabeled instance x is assigned to class ci with probability of: 
 

1

ˆ( , )ˆ( ( ) ˆ( )
i k

i i
k i

P c I
P c ) P c

P c

ω

α
=

= ⋅ ⋅∏
) x

x    (6) 

where: 
• ˆ( )iP c is the a-priori probability to be assigned to class ci. ˆ ( )iP c can be easily estimated by 

counting the frequency with which the target value ci occurs in the training set. 
• ˆ( , )i kP c I x  is the probability of class ci given an instance x and a particular classifier Ik. 

In case of decision trees, it can be estimated by using the appropriate frequencies in the 
relevant leaf. However, using the frequency as is, will typically over-estimate the 
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probability. In order to avoid this phenomenon, it is useful to perform the Laplace's 
correction (Niblett, 1987).  

• α is a normalization factor that ensures that the conditional probabilities of all possible 
class labels sums up to 1. (In practice we do not need to explicitly evaluate this factor 
because it is constant for a given instance x). 

 
3. The BOW Algorithm 
3.1 Overview 
In order to solve the problem defined in Section 2, we suggest using a hill-climbing, search 
procedure -- breadth-oblivious-wrapper (BOW). This heuristic algorithm begins with a single 
empty subset. Each iteration of the algorithm considers changing the current decomposition 
structure by adding an unused feature to one of the existing subsets or to a newly created subset.  
 
3.2 Classifier Representation 
Each subset is represented by an oblivious decision tree (ODT) in which all nodes at the same 
level test the same feature (Last et al. 2002). Figure 3 demonstrates a typical ODT with three 
input features: the slicing machine model used in the manufacturing process; the rotation speed 
of the slicing machine and the shift (i.e. when the item was manufactured); and the Boolean 
target attribute representing whether that item passed the quality assurance test. The arcs that 
connect the hidden terminal nodes and the nodes of the target layer are labeled with the number 
of records that fit this path. For instance, there are twelve items in the training set which were 
produced using the old slicing machine that was setup to rotate at a speed greater than 1000 RPM 
and that were classified as “good” items (i.e. passed the QA test).  
 
3.3 Search Space 
The algorithm iteratively searches for the best decomposition structure. Moving forward to the 
next iteration is performed in two phases. In the first phase, the algorithm enumerates overall 
attributes. For each attribute, it checks the feasibility of adding it to one of the existing subsets or 
to a newly created a subset. Adding an attribute to an existing subset is performed by adding a 
new layer in the suitable ODT and connecting it to the nodes of the last layer. The nodes of a 
new layer are defined as the Cartesian product combinations of the previous layer’s nodes with 
the values of the new added feature. In order to avoid unnecessary splitting, the algorithm splits a 
node only if it increases a certain performance measure. If no node has been split, then this 
attribute should not be added to that subset. 
 
In the second phase the algorithm compares the performance of all feasible changes. For each 
change, it evaluates the global performance measure obtained by the entire decomposition 
structure. That is to say, it compares the contributing effect of each change on the Naïve Bayes 
combination of all ODTs. The change with the best performance measure is selected for the next 
iteration. 
 
In order not to be trapped in a local optimum, the algorithm may select the best change and 
continue to the next iteration, even if the selected addition does not improve the global 
performance or even worsens it. The output of the algorithm is the structure with the highest 
performance found during the process and not necessarily the last structure. The search stops 
when there is no feature left. Nevertheless, if the computational resources are limited, then the 
search can be stopped when no improvement is achieved.   
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Figure 4 illustrates the search space of a 3-feature set decomposition. Note that each layer in this 
graph stands for a different iteration and that in each run, only one path starting from the root is 
examined. 
 
3.4 The F-measure Splitting Criterion 
As mentioned in the previouis section, the proposed algorithm begins with a single-node 
decision tree representing an empty set of input attributes. A node is split if it provides an 
increase in the F-measure. A new input attribute is selected to maximize the total increase of the 
F-measure as a result of splitting the nodes of the last layer. The nodes of the new layer are 
defined as a Cartesian product of split nodes of the previous layer and values of the new input 
attribute. 
 
Based on Equation 4 the maximum F-measure obtained by splitting the dataset S according the 
categorical values of the attribute ai for any threshold value is:  

2 ( , , , ) ( , , , )
( , , ) max _ ( , , , ) max

( , , , ) ( , , , )
ref ref

ref reft t
ref ref

P i S c t R i S c t
i S c F Measure i S c t

P i S c t R i S c t
κ

⋅ ⋅
= =

+
 (7) 

where: 
• S -  the dataset to be split  (the set of records belonging to the discussed node) 
• i -  index of the input attribute according to which the split is performed. 
• Cref - the referred class. In the context of this paper it is the "Not Passed QA" class. 
• ( , , , )refP i S c t  and ( , , , )refR i S c t  are the precision and recall obtained by splitting the 

training set according to values of dom(ai). These values may be calculated according to 
the following equations: 

,

,

, ,
( )

., ,
( )

( , , , , )
( , , , )

( , , , , )

ref

i j i

i j i

c i j ref
v dom a

ref
i j ref

v dom a

m i j S c t
P i S c t

m i j S c t
∈

∈

⋅Γ

=
⋅Γ

∑

∑
 (8) 

, ,

, ( )
( , , , , )

( , , , )
ref i j

i j i

ref

c ref
v dom a

ref
c

m i j S c t
R i S c t

m
∈

⋅Γ

=
∑

 (9) 

, , ., ,1
( , , , , )

0
c i j i jif m t m

i j S c t
otherwise

≥ ⋅
Γ = 


 (10) 

where: 
• 

refcm - The number of records in S satisfying y=cref 

• ., ,i jm - The number of records in S satisfying ai=vi,j 

• , ,refc i jm - The number of records in S satisfying y=cref  and ai=vi,j 

• t – The threshold for favoring a certain class. 
 
The denominator in Equation 8 represents the number of records in S that were classified as  
Cref  assuming threshold t and that S was split according to attribute ai. The nominators in 
Equation 8 and Equation 9 represent the number of records in S that belong to class Cref  and that 
were classified correctly assuming threshold t and that S was split according to attribute ai 
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An important issue arises when one of the above equations is not defined (the denominator is 
equal to zero). If the recall is not defined, then it means that there are no records that belong to 
the referred class. In other words, there is no use in splitting the node. If the precision is not 
defined (the threshold is too high), we simply set the F-measure to zero and by that the algorithm 
ignores this point. 
 
Table 2 presents a small dataset S having two categorical input attributes: a1 (slicing machine) 
and a2 (shift) and a binary target attribute which represents the quality measure. Note that in this 
case dom(a1)={"New","Old"}, dom(a2)={"Morning","Night"}, dom(y)={"Good","Bad"}. Figures 
5(a) and 5(b) present the tree obtained by splitting S according to a1 (slicing machine) and a2 
(shift) respectively. 
 
Assuming that Cref="Bad" and the threshold t=0.5, then the following values can be obtained for 
attribute a1 (slicing machine): 
 
 

2

" ",1,
1

2

.,1,
1

(1, , ," ",0.5)
2 0 3 1(1, ," ",0.5) 0.6
5 0 5 1(1, , ," ",0.5)

Bad j
j

j
j

m j S Bad
P S Bad

m j S Bad

=

=

⋅Γ
⋅ + ⋅

= = =
⋅ + ⋅⋅Γ

∑

∑
  

2

" ",1,
1

" "

(1, , ," ",0.5)
2 0 3 1(1, ," ",0.5) 0.6

5

Bad j
j

Bad

m j S Bad
R S Bad

m
=

⋅Γ
⋅ + ⋅

= = =
∑

 

2 (1, ," ",0.5) (1, ," ",0.5) 2 0.6 0.6_ (1, ," ",0.5) 0.6
(1, ," ",0.5) (1, ," ",0.5) 0.6 0.6
P S Bad R S BadF Measure S Bad

P S Bad R S Bad
⋅ ⋅ ⋅ ⋅

= = =
+ +

 

Assuming that Cref="Bad" and the threshold t=0.3 then the following values can be obtained for 
attribute a1 (slicing machine): 

2

" ",1,
1

2

.,1,
1

(1, , ," ",0.3)
2 1 3 1(1, ," ",0.3) 0.5
5 1 5 1(1, , ," ",0.3)

Bad j
j

j
j

m j S Bad
P S Bad

m j S Bad

=

=

⋅Γ
⋅ + ⋅

= = =
⋅ + ⋅⋅Γ

∑

∑
  

2

" ",1,
1

" "

(1, , ," ",0.3)
2 1 3 1(1, ," ",0.3) 1

5

Bad j
j

Bad

m j S Bad
R S Bad

m
=

⋅Γ
⋅ + ⋅

= = =
∑

 

2 (1, ," ",0.3) (1, ," ",0.3) 2 0.5 1 2_ (1, ," ",0.3)
(1, ," ",0.3) (1, ," ",0.3) 0.5 1 3
P S Bad R S BadF Measure S Bad

P S Bad R S Bad
⋅ ⋅ ⋅ ⋅

= = =
+ +

 

 
Assuming that Cref="Bad" and the threshold t=0.1 then the following values can be obtained for 
attribute a2 (shift): 
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2

" ",2,
1

2

.,2,
1

(2, , ," ",0.1)
2 1 3 1(2, ," ",0.1) 0.5
5 1 5 1(2, , ," ",0.1)

Bad j
j

j
j

m j S Bad
P S Bad

m j S Bad

=

=

⋅Γ
⋅ + ⋅

= = =
⋅ + ⋅⋅Γ

∑

∑
  

2

" ",1,
1

" "

(1, , ," ",0.1)
2 1 3 1(1, ," ",0.1) 1

5

Bad j
j

Bad

m j S Bad
R S Bad

m
=

⋅Γ
⋅ + ⋅

= = =
∑

 

2 (2, ," ",0.1) (2, ," ",0.2) 2 0.5 1 2_ (2, ," ",0.1)
(2, ," ",0.1) (2, ," ",0.1) 0.5 1 3
P S Bad R S BadF Measure S Bad

P S Bad R S Bad
⋅ ⋅ ⋅ ⋅

= = =
+ +

 

 
 
Actually there is no need to enumerate all possible thresholds. Each splitting branch (a certain 
value of the candidate input attribute) defines another possible threshold value. By sorting the 
thresholds, one can get the desired precision-recall diagram. For instance, if the dataset is divided 
according to a1, then the threshold values that must be checked are: 0.6=3/5 and 0.4=2/5. In this 
case: 

2_ (1, ," ",0.4)
3

F Measure S Bad =  

_ (1, ," ",0.6) 0.6F Measure S Bad =  
 
Resulting: 

2 2(1, ," ") max _ (1, ," ", ) max(0.6, )
3 3t

S Bad F Measure S Bad tκ = = =  

 
The default maximum F-measure obtained before splitting is defined as: 

*
*
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P S c
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⋅
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 (11) 

 
where: 

*( , ) refc
ref

m
P S c

S
=  (12) 

 
Note that the algorithm considers splitting the dataset S by the attribute ai only if: 
 

),(),,( *
refrefi cScSa κκ >  (13) 

 
For instance taking the case described in Table 2, the default maximum F-measure is 

*( ," ") 0.5S Badκ = . Because in this case (1, ," ") 2 3S Badκ = , then splitting according to a1 is 
considered to be a legitimate split. Note that the default maximum F-measure is always equal or 
less than the maximum F-measure obtained after splitting.  
 
The maximum F-measure presented in Equation 7 for categorical attributes can be extended for 
numerical attributes as specified in equations 14-18. The idea is to divide the continuous domain 
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into two sub-domains: vai > and vai ≤ . Although finding the optimal value of v can be 
performed in many ways, it is preferable to use a one-dimensional golden section search method. 
 

),,,,(),,,,(
),,,,(),,,,(2

max),,(
, vtcSaRvtcSaP

vtcSaRvtcSaP
cSa

refirefi

refirefi

vtrefi +
⋅⋅

=κ  (14) 

 
where: 
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     (18) 

 
where: 

• , ,c i vµ - The number of records in S satisfying y=c  and ai>v 
• ., ,i vµ  - The number of records in S satisfying ai>v 

 
The equations 7-18 assume that there is only a single ODT. However, in case of multiple ODTs 
as in the case of a feature set decomposition framework, it should be extended in order to 
evaluate its global effect on the entire constellation. In some cases, splitting a node by a certain 
attribute has a tremendous effect on the performance of the ODT in which the node is contained.  
It has no effect, however, on the entire decomposition performance. This situation occurs, for 
example, when there are redundant attributes. In such cases, two relevant attributes may explain 
the target attribute in the same way and each attribute can be used for describing the target 
attribute. However, using both of them in the same ODT or in two different ODTs does not 
improve performance. 
 
Rewriting the equations 7-10 we obtain: 
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where  1,..., 1I Iω− represents the existing ODTs classifier (not including the ODT to which the 
investigated node belong). Equation 19 represents the maximum F-measure value obtained by 
splitting S according to ai assuming that 1,..., 1I Iω− exists. 
 
Unlike classical splitting criteria (such as Information Gain, Gain Ratio, Gini Index, etc), the F-
measure criterion does not perform a comparison between the impurity of the parent node with 
the weighted impurity of the children after splitting. Nevertheless, as in the case of Information 
Gain and Gini Index, the proposed F-measure never reports a worse performance after trying a 
split than before splitting. Consequently, this criterion may not be appropriate for deciding when 
to stop growing the tree. 
 

The F-measure criterion can be also compared to the recently area under curve (AUC) splitting 
criterion proposed in  Ferri et al. (2002). The AUC criterion is based on the area generated under 
the ROC graph. The attribute that obtains the higher AUC criterion is selected as the splitting 
attribute. Note that for computing the area under the curve, it is sufficient to compute the area 
between two consecutive points, representing two different branches of the candidate attribute.  
 

In order to avoid over-fitting, the F-measure is not evaluated over the training set as is. Instead 
we apply the wrapper approach (John et al., 1994).  With this approach, the decomposition 
structure is evaluated by repeatedly sampling the training set and measuring the F-measure of the 
inducers obtained for this decomposition on an unused portion of the training. After the best 
change is selected, the suitable ODT is updated, this time using the entire training set.  
 
3.5 Making a classification 
In order to classify an unlabelled instance, the following steps should be performed 

A. For each ODT: 

• Locate the appropriate leaf for the unseen instance. 

• Extract the frequency vector (how many instances relate to each possible value of the 
target feature.) 

• Transform the frequency vector to a probability vector according to Laplace's law of 
succession. 
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B. Combine the probability vectors using the Naive Bayes combination. 

C. Select the target value according to what maximizes the Naive Bayes combination. 
 
4. Experimental Study 
4.1 Overview  
To illustrate the potential of the feature set decomposition approach in data mining quality 
assurance problems and to evaluate the performance of the proposed algorithm, a comparative 
experiment was conducted on three real-life datasets obtained from two manufacturers with an 
average yearly income of more than 1 billion dollars. The first dataset was obtained from a 
manufacturer of dairy products. The last two datasets were obtained from a wafer manufacturer.  
 

This experiment compares the BOW algorithm to the Naive Bayes and C4.5 (Quinlan, 1993) 
algorithms. The Naïve Bayes was chosen since it represents a specific point in the search space 
of the BOW algorithm. The C4.5 algorithm was selected because it is considered as a state-of-
the-art decision tree algorithm which is widely used in many other comparative studies. The 
following subsections describe each one of the case studies and the results. 
 
 
4.2  Manufacturing Cottage Cheese  
 
4.2.1 Objective 
Manufacturing cottage cheese is one of the most complicated processes in producing dairy 
products. The process, which may take up to 20 hours, usually involves many stages. In the 
first stage, milk is skimmed using a centrifuge. This phase also produces a cream which will 
be used later as the “dressing” to be added to the skimmed cheese. Once the skimmed milk is 
pasteurized, the milk is cooled and then transferred to a cheese vat. Here, lactic acid culture, 
to initiate a partial acidification process, and a coagulating enzyme are added.  
 

The milk is left for several hours to allow acidity development as well as curd formation. 
During this time, the pH level in the milk drops to the desired level and a coagulum (or curd) 
is formed. Longitudinal and vertical stainless still knives cut the curd to create small curd 
cubes. In the curd cutting, whey separates from the curd cubes.  
 

Prior to the next step, a slow scalding process, by steam injection of the entire double-jacket 
vat, the cubes are held for a short period of time enabling them to become firmer. During the 
scalding process, the curd cubes become more grain-like and more whey is released. At the 
end of this stage, the contents of the vat are transferred to the curd drainer where the curd 
grains are mechanically separated from the whey. The curd grains are then transferred to the 
washer-cooler where they are washed from the acid that developed during the acidification 
process and cooled by the cold water. The cold grains are then further moved to the creamer 
where fresh cream (“dressing”) and salt are added to form the final product -- fresh cottage 
cheese. The cheese is then pumped to the filling machine and the final packages are palletized 
and transferred to cold storage ready for distribution. During this long process, a few hundred 
parameters can be measured or adjusted. 
 



 15

As in every dairy product, there is a chance that a specific batch will be found sour when 
consumed by the customer, prior to the end of the product’s shelf-life. During its shelf-life, 
the product’s pH value normally drops. When it reaches a certain value, the consumer reacts 
to it as a spoiled product; even though there is no any bacteriological problem. For every 
batch manufactured, the dairy department performs randomly tests for pH as well 
organoleptic (taste) at the end of the shelf-life. The samples are kept in the laboratory at a 
temperature of 7ºC, compared to 4ºC, which is the recommended storage temperature in a 
home refrigerator. The higher laboratory temperature simulates abuse handling of the product 
along the cooling chain. The product shelf-life is determined by the dairy department 
(generally 12-14 days), assuming that the product retains its organoleptic properties to the end 
of its shelf-life. 
 

The aim of our study of this plant’s production processes was to identify batches (at the end 
of the manufacturing process) with a high probability of becoming sour (at the end of shelf-
life) based on the process variables. 
 
4.2.2 Data 
The training data set includes 800 records. Each record has 70 input attributes representing 
various manufacturing variables. Most of the parameters fall into one of the following classes: 
temperature, duration, raw material quantities and machines. For example we have used the 
following attributes: average cooling temperature, scalding duration, calcium quantity, culture 
quantity, etc. The target attribute represents the pH value after two weeks. It can have two 
values: "Tasty" (pH 4.9-5.3) and "Sour" (below pH 4.9).  
 
4.2.3 Results 
The BOW obtained four ODTs using totally 24 different attributes. In order to compare the 
results of BOW to other algorithms, we used the 10-fold cross-validation procedure. 
According to this procedure, the training set was randomly partitioned into 10 disjoint 
instance groups. Each instance group was used once in a test set and nine times in a training 
set. Since the F-measure and the accuracy on the validation instances is a random variable, the 
confidence interval was estimated by using the normal approximation. Table 3 shows the 
mean of the F-measure regarding the "Sour" class and the overall accuracy obtained by using 
10-fold cross-validation along with their confidence interval.  
 
Table 3 also shows the number of features used by each algorithm.  This table indicates that 
of  the relatively low values that the three algorithms obtained for the F-measure,  BOW 
obtained the highest. Although the proposed method does not mean to improve accuracy but 
rather the F-measure, it is interesting to note that it obtained the highest accuracy as well. This 
implies that using the F-measure criterion has not negatively affected overall accuracy.  
Moreover, BOW employed a much greater number of features than a single decision tree.  
This implies that the proposed decomposition method can address high dimension problems 
by letting more relevant input features affect the classification model. The Naïve Bayes 
classifier uses all available input features including irrelevant features. 
 
Figure 6 presents two ODTs obtained for the above problem. In the first ODT there are three 
layers representing the parameters: CW_WASH_DUR (Cold Water Wash Duration); 
FINAL_COOLING_TEMP; and AVG_COOLING_TEMP. Each leaf is specified with the 
most frequent class (Tasty/Sour) and the appropriate probability vector.  
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Figure 7 presents the precision-recall diagram. This figure indicates that BOW and Naïve 
Bayes are more efficient than the C4.5, with BOW more efficient than Naïve Bayes in most of 
the graph. There are a few points in which Naïve Bayes obtains better results. However, the 
superiority of Naïve Bayes in these points is negligible. By analysing the precision-recall 
tradeoff graph, one notices that the precision obtained for a recall value of 100% is identical 
for all methods. This precision value indicates that the dataset is seriously imbalanced. 
 
It is worth mentioning that the theoretical complexity of the BOW algorithm is identical to the 
complexity of other oblivious decision algorithms (such as IFN). However, because the 
current implementation of the BOW algorithm continues until all input attributes are used (in 
order to avoid local optimum), the actual execution time of BOW is slightly longer than the 
time required to build a single decision tree. 
 
4.3 Yield of IC manufacturing 
4.3.1 Objective 
An integrated circuit (IC) is a miniature electric circuit containing large numbers of electronic 
devices packaged on a single chip made of semiconductor material. Manufacturing an IC 
begins with the production of a semiconductor wafer. An area on the wafer containing a 
single discrete device or IC is called a chip. Depending on the dimensions of the wafer and 
the dies, several hundred chips are formed on a single wafer.  
 
While the number and variety of process steps may change from manufacturer to 
manufacturer, fabricating a wafer usually contains more than 100 steps (Van Zant, 1997). The 
wafer manufacturing process is largely mechanical. Measurements (for instance flatness, 
surface quality verification, visual inspection) are taken at various stages of the process to 
identify defects induced by the manufacturing process, to eliminate unsatisfactory wafer 
materials and to sort the wafers into batches of uniform thickness to increase productivity.  
 
After the wafer is manufactured, integrated circuits are fabricated on its surface with a single 
wafer bearing several integrated circuits, all produced at the same time. Each lot undergoes 
hundreds of individual processing steps, in which different parts of the ICs are etched in thin 
layers of material grown or deposited on the working surface of the wafers. Each process step 
must be tightly controlled to ensure dimensional tolerances. After a high-precision diamond 
saw cuts the wafers into chips, they are mounted onto packages.  
 
Fabrication of a single lot requires several months. The data are accumulated for each 
fabrication tool at both the wafer and lot level, using an information system known as 
“manufacturing execution system”. IC manufacturing lines provide many data-mining 
opportunities. In IC manufacturing, data-mining could have tremendous economic impact, 
raising profitability by increasing throughput and reducing costs, consequently (Fountain  et 
al., 2000). 
 
For this paper we examined two different datasets obtained from a wafer manufacturer 
providing design support, manufacturing and turnkey services for integrated ICs on silicon 
wafers in geometries from 1.0 to 0.18 microns. 
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The main goal of data mining in IC manufacturing databases is to understand how different 
parameters in the process affect the line throughput.  The throughput of IC manufacturing 
processes is measured by “yield,” which is the number of good products (chips) obtained 
from a silicon wafer.   Since the capability of very expensive microelectronics equipment 
usually limits the number of wafers processed per time unit , the yield is the most important 
criterion in determining the effectiveness of an IC process.   
   
 
4.3.2  Data 
The training dataset includes only 70 records. Each record represents a single wafer and has 
257 input attributes labelled p1,…,p257 that represent the setting of various parameters used 
in the manufacturing process of this wafer. The target attribute represents the yield, which the 
manufacturer's quality engineer has manually divided into two groups: High and Low. More 
than half of the attributes are numeric. The input attributes specify several machine 
parameters (for instance, the rotation speed of the slicing machine or the slicing machine 
model ) that may affect the yield. A distinctive value (in case of categorical attributes) or the 
mean value (in case of numeric values) replace missing values. Due to the high commercial 
confidentiality of the process data, we will not explain here the specific meaning of the 
measured parameters. 
 
4.3.3  Results  
Running the BOW on the dataset resulted in five subsets. The average subset size was 3.2 
attributes.   Table 4 presents the F-measure regarding the “Low” yield and the overall 
accuracy. The results indicate that the BOW achieved better results in both F-measure and 
accuracy compared to the C4.5 and Naïve Bayes. Moreover, as in the first case study, the 
BOW algorithm employed a greater number of features than C4.5. Setting the process 
parameters according to the classifier obtained by BOW can improve yields by up to 10%. 
 
4.4 The IC test 
4.4.1  Objectives 
The fabricated ICs undergo two series of exhaustive electric tests that measure the operational 
quality. The first series of tests, which is used for reducing costs by avoiding packaging 
defective chips, is performed while ICs are still in wafer form. The second series of tests, 
which is used for quality assurance of the final chip, is carried out immediately after the 
wafers are cut into chips and mounted onto packages. 
 
The electric tests are performed by feeding various combinations of input signals into the IC. 
The output signal is measured in each case and compared to the expected behavior. There are 
wafers that perform well on the first series but fail later in the second series. The goal is to 
check whether the results of the first series can be further analyzed in order to predict the 
outcome of the second series. This can be used to reduce the number of wafers that are 
unnecessarily sliced and packed, eliminating the need for a second series of exhaustive 
electric tests for most of the devices. 
 
4.4.2  Data 
The training data set includes 395 records. Each record has 220 input attributes labeled 
p1,…,p220 representing the electric result values obtained in the first series of tests. Most of 
the input features represent voltage levels. The target attribute is binary representing "pass" 
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and "not pass" devices according to the functionality of the device in the second testing series. 
Similar to the yield problem, a distinctive value or the average value replaces missing values 
depending on the data type. 
 
4.4.3  Results 
Running the BOW algorithm on the above data has created 7 ODTs containing 26 electronic 
tests that can be used as indicators for the results of the second series of tests. Table 5 shows 
the mean of the F-measure regarding the "no pass" class and the overall accuracy obtained by 
using 10-fold cross-validation along with their confidence interval (with a confidence level of 
95%). As in the case of the yield dataset, the BOW algorithm obtained the most encouraging 
results.  
 

Figure 8 presents the precision-recall diagram for each algorithm. The graph shows that BOW 
and Naïve Bayes have similar performance and that both are much more efficient than C4.5. 
The graph also shows that a precision value of 100% can be obtained for a recall value of 
67%.  In other words, 67% of the defected devices can be identified in the first series of tests 
without having any false alarm (no high-quality devices will be lost). 
 
5. Conclusion 
Classification problems in quality assurance are characterized by many contributing features 
relative to the training set size and the imbalanced distribution of the target attribute. This 
paper presents a new, mutually exclusive feature set decomposition methodology designed 
specifically for these circumstances. The basic idea is to decompose the original set of 
features into several subsets, build a decision tree for each projection, and then combine them. 
 
This paper proposes the BOW algorithm for discovering the appropriate decomposition 
structure. It was tested with over three real-life datasets. The results show that this framework 
tends to outperform other comparable methods in the accuracy and the F-measure. The above 
leads to the conclusion that feature set decomposition can be used for solving classification 
problems in quality assurance. 
 
One limitation with the suggested algorithm is that it has no backtracking capabilities (for 
instance, removing a single feature from a subset or removing an entire subset). Furthermore, 
the search currently begins from an empty decomposition structure, which may be the reason 
why the number of features in each subset is relatively small. It might be useful to start the 
search from a better position.  
 

Additional issues to be further studied include: examining how the feature set decomposition 
concept can be implemented using other inducers like support vector machines and by 
examining other techniques to combine the generated classifiers (like voting). 
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Actual \ Classification Classified as Positive  Classified as Negative 

Actually Positive True Positive False Negative 

Actually Negative False Positive True Negative 

Table 1: Confusion Matrix for Binary Classification Problem 
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a1 
Slicing Machine 

a2 
Shift 

y 
Quality Measure 

New Morning Good 
New Night Bad 
Old Night Bad 
New Night Good 
Old Night Bad 
Old Morning Good 
New Morning Bad 
Old Night Good 
Old Morning Bad 
New Night Good 

Table 2: Illustrative Dataset with two categorical input attributes and a binary target attribute. 
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Criterion Naïve Bayes C4.5 BOW 

Accuracy 77.81%±2.8% 77.52%±2.8 85.92%±0.5% 

F-measure 31.32%±3.5% 26.91%±2.6% 39.4%±2.1% 

# of Features Used 70 12±3.1 24±4.8 

Table 3   The accuracy and the F-measure for the Cottage-Cheese dataset  
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Criterion Naive Bayes C4.5 BOW 

Accuracy 84.28%±2.1% 78.85%±3.6% 92.86%5.3% 

F-measure 64.5%±4.9% 17.4%±7.2% 82.8%±4.3% 

# of Features Used 257 4±1.4 16±7.9 

Table 4:   The accuracy and the F-measure for the yield dataset 
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Criterion Naïve Bayes C4.5 BOW 

Accuracy 92.82%±2.5% 89.24%±1.9% 96.81%±0.6% 

F-measure 90.3%±3.2% 83.8%±1.6% 95.4%±0.9% 

# of Features Used 220 9±3.2.  26±2.7 

Table 5: The accuracy and the F-measure for the IC-Test dataset 



 26

 

Figure 1:  A Typical precision-recall diagram 

Precision 

Recall 
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Figure 2: A graphic explanation of the F-measure 
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Figure 3:  Oblivious Decision Tree for Quality Assurance 
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Figure 4:  Breadth first search for a 3-feature set decomposition 
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Figure 5: Tree obtained by splitting dataset in Table 2 according to Slicing Machine and Shift.  
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Figure 6:  The first two ODT obtained by BOW for the Cottage Cheese Manufacturing 

ODT # 1: 
-------- 
 
CW_WASH_DUR <= 286 
|   FINAL_COOLING_TEMP <= 5.9 
|   |   AVG_COOLING_TEMP <= 10.1: Tasty (0.864,0.136) 
|   |   AVG_COOLING_TEMP > 10.1: Sour (0.323,0.674) 
|   FINAL_COOLING_TEMP > 5.9 
|   |   AVG_COOLING_TEMP <= 12.3: Tasty (0.682,0.318) 
|   |   AVG_COOLING_TEMP > 12.3: Sour (0.286,0.714) 
CW_WASH_DUR > 286: Tasty (0.906,0.094) 
 
 
ODT # 2: 
-------- 
 
POOL_CODE = 501: 0 (124.35/17.0) 
POOL_CODE = 502: 0 (121.35/18.0) 
POOL_CODE = 503: 0 (120.34/16.0) 
POOL_CODE = 504 
|   DELAY_AFTER_COOK <= 49.3: 0 (55.18/5.0) 
|   DELAY_AFTER_COOK > 49.3 
|   |   ACIDIFICATION_DURATION<= 100: 0 (22.06/2.0) 
|   |   ACIDIFICATION_DURATION > 100 
|   |   |   CUT_END_TEMP <= 27.4: 0 (26.07/6.0) 
|   |   |   CUT_END_TEMP > 27.4: 1 (25.06/9.06) 
POOL_CODE = 505: 0 (93.27/14.0) 
POOL_CODE = 506: 0 (115.33/9.0) 
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Recall Vs. Precision
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Figure 7: The precision-recall diagram in Cottage Cheese Manufacturing 
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Recall vs. Precision

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

R
ec

al
l Naïve Bayes

BOW
C4.5

 

Figure 8: The precision-recall diagram in IC Test Problem 

 


