
Declarative Data Grounding Using a Mapping Language ∗

Miguel Garcı́a, José Marı́a Álvarez, Diego Berrueta and Luis Polo

R&D Department, Fundación CTIC
Parque Cientı́fico Tecnológico, 33203, Gijón, Asturias, Spain

Email: {miguelg.rodriguez,josem.alvarez,diego.berrueta,luis.polo}@fundacionctic.org

Abstract: Grounding is the process in charge of linking re-
quests and responses of web services with the semantic web
services execution platform, and it is the key activity to au-
tomate their execution in a real business environment. In this
paper, the authors propose a practical solution for data groun-
ding. On the one hand, we define a mapping language to relate
data structures from services definition in WSDL documents
to concepts, properties and instances of a business domain. On
the other hand, two functions that perform the lowering and
lifting processes using these mapping specifications are also
defined.
Keywords: service-oriented architectures, web services, se-
mantic webs, ontologies, data grounding, semantic web ser-
vices, mapping languages

1. Introduction

Web services are the base technology for Service Oriented Ar-
chitectures (SOA) on the Web. According to the architecture
and definitions by W3C [5], a web service is a software system
designed to support interoperable machine-to-machine inter-
action on the net. It has an interface described in a machine-
processable format (specifically WSDL). Other systems inter-
act with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-
related standards.

However, practical deployment of SOA architectures usu-
ally faces problems of integration due to the heterogeneity of
the services, in particular, integration of different data models.
Semantic Web Services (SWS) [1, 3, 13, 23] combine current
web services and the semantic web technology [2, 29]. More
specifically, SWS propose ontologies as common data models
to abstract the definition of services. Consequently two differ-
ent levels of service description appear [7, 8]: some tasks can
be automated at the semantic level (e.g. discovery of services)
while others can only be performed combining the semantic
and syntactic descriptions of the services (e.g. invocation). The
latter require a mechanism to translate data between this two
levels.

Data Grounding is the bidirectional process that down-
grades a semantic model to a syntactic level through a sub-
process called lowering and upgrades a syntactic model to a
semantic level through a subprocess called lifting, enabling

∗ This work is part of PRAVIA project, partially funded by the Principality
of Asturias, cod. IE05-172, and developed in conjunction with E2000 Nuevas
Tecnologı́as

actual invocation of web services in SWS environments, see
Fig. 1.

Figure 1. Grounding Process

We focus on data grounding [19] because it is the corner-
stone to deploy semantic web services in production environ-
ments. Data grounding allows to build a request from the in-
formation available in the semantic model and to process the
response from the service. In this paper, we present a new ap-
proach to data grounding based on a declarative mapping lan-
guage. We address the problem from a structural point of view,
i.e., independently from the logical foundations of ontologies.
Moreover, our proposal is restricted to the vertical transforma-
tions between different description levels of services. Horizon-
tal transformations such as data mediation are assumed to be
solved by other components of the SWS platforms, therefore
they are out of the scope of this paper.

This paper is structured as follows. Firstly, previous related
work is reviewed in the next section and we highlight our
main contributions in Section 3. Afterwards, Section 4 pro-
vides auxiliary definitions required to present our proposal
in Section 5. Next section introduces a short summary about
the project supporting this work. Our proposal is compared to
other grounding approaches in Section 7. Finally, last section
provides the main conclusions and future work.

2. Related work

Taking into account the current web technological stack, the
problem of data grounding in semantic web services consists
of a structural transformation between XML trees (SOAP Mes-
sages) and RDF [16] graphs (ontological data). Trees are spe-
cial kind of graphs, therefore algebraic approaches to graph
transformation, such as the double-pushout (DPO) and the
single-pushout (SPO), can be used [11]. Although these tech-
niques are a feasible solution from the formal point of view

3rd International Conference on Complex Distributed Systems (CODS 2009)
The Second SIWN Congress (SIWN 2009), Leipzig, Germany, 23-25 March 2009



they are too complex from a practical point of view. The partic-
ular structure of XML trees and RDF graphs make it possible
to devise specific solutions.

According to [29] there are three approaches to data groun-
ding, see Fig. 2:

Figure 2. Approaches to Data Grounding. The upper half
represents data in WSML ontologies.

1.Transformations at the XML level are the first option to
travel between a semantic model (serialized as XML)
and a syntactic representation. The main advantage is that
this process is based on existing and robust technologies:
XSLT or XQuery, besides the serialization of a semantic
model to XML is simple, a priori (e.g. RDF/XML seri-
alization of a RDF graph). Nevertheless, there is a lack
of homogeneity. Existing ontology languages like RDF,
OWL or WSML-DL, etc. are based on graphs and they
have different ways to be serialized as XML. Mainstream
research is focused on this approach to implement groun-
ding [17, 28], e.g. WSMO initiative [18, 22].

2.Transforming at the ontology level involves building
an ad-hoc pseudo-ontology from the XML Schema of
WSDL [4]. The grounding is implemented using ontol-
ogy mediation [24] between that pseudo-ontology and the
domain ontology. This method is based on merging, align-
ing and mapping techniques [6]. The mappings are used
as a set of rules that are executed on a rule engine, e.g.
FLORA-21. The key point of this approach lies on the re-
liability and expressiveness of the built pseudo-ontology.
Anyway, tools available to realize this approach are still in
an early stage of maturity.

1 It is a logic-based object-oriented language (that relies on the XSB inference
engine) for building knowledge-intensive applications. It is based on F-logic,
HiLog and Transaction Logic. http://flora.sourceforge.net/

3.Direct transformations between elements from the XML
document to entities belonging to a domain. There are two
possible approaches: (a) ad-hoc transformation code that
must be manually programmed in a language such as Java
or XSPARQL [20]; (b) using declarative mappings rules
between XML Schema and the semantic model. In the
second case, the mapping rules are written in a particular
language and it is necessary to implement a processor to
perform the transformations. In this field, SAWSDL [15,
21] and its predecessor WSDL-S [1] are examples of this
approach, but the implementations are not yet available or
are committed to a particular project. Alternatively, OWL-
S extends both WSDL and OWL to specify grounding.

All described approaches require human intervention at de-
sign and validation time. In the first two options the human
intervention is more complex than in the third one. In the first
case, transformations are coded into programs, in the second
one mapping rules are declared via rules in complex repre-
sentational languages [25, 27]. Therefore we finally chose the
third option because it is more suitable for people not trained
in programming or knowledge engineering. It only needs hu-
man intervention to directly map entities with XML elements
at design time but knowledge about technologies (e.g. XSLT
or Flora2), operations (e.g. merging or aligning) or algorithms
(e.g. PROMPT or GLUE) are not required.

3. Main contributions

Our approach for data grounding is based on a direct map-
ping language M between the syntactic description of the
messages of a web service (XML Schema [14] inside WSDL)
and the semantic model built with ontology languages like
RDFS(S), OWL or WSML. These mappings are clear instruc-
tions to transform between the two different description levels.
Such transformations take place when a semantic agent needs
to exchange information with a web service. We propose two
functions to: 1. generate XML content for SOAP requests and
2. interpret XML content of SOAP responses to create a graph.

4. Preliminary concepts

This section reviews some concepts and technologies from
the two stacks: syntactic and semantic, see Fig. 3. On the
one hand, the Syntactic Level contains the technologies and
concepts related to web services from a syntactic point of
view. On the other hand, the Semantic Level is built with
the semantic technologies and concepts expected to enable
dynamic and scalable cooperation between different systems
and organizations.

Figure 3. Relation between syntactic and semantic
representations.



Data Structure.At the syntactic level, XML Information
Set [12] provides the abstract model to refer to the in-
formation in an XML document. An information set can
contain up to eleven different types of information items.
However, only Document Information Item, Element In-
formation Item and Character Information Items are nece-
ssary to define our mapping language and functions.
At the semantic level, the data model is the RDF one,
i.e., an unordered set of triples (s, p, o) ∈ (I ∪ B) ×
I × (I ∪ L ∪ B), where I is the universe of all possible
named resources, identified by a IRI, B is an infinite set
of pairwise different, unnamed resources, and L is the set
of all RDF literals. A set of RDF triples is structurally
interpreted as a graph G = (V,E), where V is a set
of vertex, V ⊆ (I ∪ B ∪ L), and E is a set of edges,
E ⊆ V × I × V . For each triple (s, p, o) of the RDF data
model there is a directed edge, labeled p, between vertices
s and o.

Description of data structure.At the data structure level,
XML documents are trees and their structure is described
using XML Schema. The latter is a language to define reg-
ular tree grammars (RTG) from the theory of formal lan-
guages [10, 26]. This kind of grammars make it possible to
see XML documents as trees obtained by derivation using
the production rules. In the following, we interpret XML
documents as trees. A tree grammarG = (NT,Σ, S,R) is
composed of a setNT of non-terminal symbols, a set Σ of
terminal symbols, an initial symbol S with S ⊂ NT and
a set R of production rules of the form α −→ β where α,
β are trees of T (Σ∪NT ∪X) and X is a set of variables,
α contains at least one non-terminal. Moreover we require
that Σ ∩ X = ∅ and NT ∩ X = ∅. More specifically, a
RTG, G = (NT,Σ, S,R) is a tree grammar such that all
non-terminal symbols have arity 0 and production rules
have the form A −→ β , with A a non-terminal symbol of
NT and β a tree of T (Σ ∪NT ).
At the semantic level, two major SWS frameworks have
been proposed: WSMO [13] and OWL-S [23]. These SWS
frameworks describe services capabilities, i.e. what ser-
vices do, and their interfaces, i.e. how to communicate
with them by external agents. Additionally, SWS frame-
works are extended with domain ontologies to describe the
entities that take part of the precondition, postcondition,
effect and assumptions of a semantic web service descrip-
tion. More specifically, a particular request or response of
a web service is a dataset D described using an ontology
O.

Path.A path in a XML tree is the sequence of nodes from
a source node (Document Information Item or Element
Information Item) to a target node (Element Information
Item or Character Information Item).
In the graph world, let α = {p1, p2, . . . , pn}, where pi ∈
I , be a sequence of edge labels in a RDF graph G that
defines a path in G. We define the interpretation of a path,
[α]
G(v), as the set of vertex reached from the source

vertex v following path α. This interpretation function can
be computed recursively:

[∅]G(v) = {v}
[{p1, p2, . . . , pn}]G(v) =

⋃
{[{p2, . . . , pn}]G(v′)

/(v, p1, v
′) ∈ E}

Identifiers.QNames and IRIs are unique identifiers in the
XML and RDF realms respectively.

4.1 Relation between WSDL and RTG

XML Schema is used in WSDL documents to define the struc-
ture and elements of valid messages exchanged with the web
service. These messages are the input and output of the oper-
ations allowed by a web service. The payload of SOAP mes-
sages is built (in the request of the service) and parsed (in the
response of the service) according to the XML Schema gram-
mar defined in the WSDL document. We assume that XML
Schema is used for describing web services messages follow-
ing the best practices in order to improve practical interoperati-
blity [9]. Thus these messages are valid, well-formed and inter-
operable according to the formal definition of the web service.

The RTG G = (NT,Σ, S,R) of the XML Schema in a
WSDL document using XML Information Set can be obtained
as follows:

•NT is the set of non-terminal symbols. For each element
declaration e in the XML Schema there is oneNTe ∈ NT ,
where e is a QName.

•Σ is the set of terminal symbols. For each element declara-
tion e in the XML Schema there is one ELEMENTe ∈
Σ, where ELEMENTe is an Element Information Item
and e is a QName. The arity of ELEMENTe depends on
its declaration in the XML Schema. Additionally there is a
symbol LITERAL ∈ Σ with arity 0, that is a Character
Information Item.

•S is the initial symbol. It is different for each message.
•R is the set of production rules defined with XML Schema

following:
1.NTe −→ ELEMENTe (NT ∗), if the type of element
e is complex.

2.NTe −→ ELEMENTe (LITERAL), if the type of
element e is simple.

RTG grammars derived from the XML Schema in a
WSDL description that follows the best practices for inter-
operability are guaranteed to have, for each non-terminal,
exactly one production rule with that non-terminal in the
head.

4.2 Relation between Ontologies and RDF data model

Semantic Web Services frameworks operate with semantic
data defined by ontologies. Nowadays the logical formalism
of choice to build web ontologies is Description Logics. Web
languages like OWL-DL and WSML-DL are used to capture
domain knowledge used in the Semantic Web Services frame-
works. A DL ontology O are comprised of two major pack-
ages:

•The T -Box defines the domain vocabulary and the axioms
of the ontology.

•The A-Box defines the individuals of the domain.



As it will be explained afterwards, the terms of ontology vo-
cabulary will be used in the mapping rules between the seman-
tic and the syntactic description of a web service. On the other
hand, the A-Box contains the ontological data of the requests
(Drq) and responses (Drs) of a web service. The statements
of the A-Box can be expressed in the RDF model. This is the
information that will be transformed from and to XML.

5. Method to transform trees into graphs: use
case for Grounding

As defined in previous sections, data grounding is the process
of transforming data from the syntactic level to the semantic
representation and back. In order to bridge the gap between
syntactic and semantic levels, we need some kind of informa-
tion that describes how the semantic data can be represented in
XML and how the XML data returned from the service can be
interpreted using its semantic description.

Our approach for data grounding is based on a direct map-
ping language. Data structures of WSDL documents are di-
rectly mapped to entities of the ontology, in contrast to other
approaches such as [28] where intermediate entities are intro-
duced to write the mapping rules. Our mapping rules are clear
instructions to perform transformations between XML trees
and semantic data graphs. In our approach, we do not need
the logic formalism of O to implement the grounding process,
it is merely a structural process that executes a set of mapping
rules between non-terminals symbols in a grammar (elements
in XML) and the structure of objects descriptions.

Figure 3 summarizes the relations between semantic and
syntactic features of a web service. At design time, map-
ping rules between the RTG grammar (extracted from XML
Schema) and the domain ontology are created to link the syn-
tactic and semantic descriptions. At run time, these mapping
rules are applied in order to perform lowering and lifting op-
erations. To support the transformation at run time, only the
mapping rules and the RTG derived from the WSDL descrip-
tion is required. In other words, the semantic description of
the web service and the T -Box of the domain ontology are not
used during the actual transformation.

5.1 Mapping language

We propose a mapping language to realize data grounding. Our
approach is declarative in the sense that we focus in what data
must be transformed and not how to transform it.

Let G = (NT,Σ, S,R) be a regular tree grammar (RTG),
extracted from the syntactic description of a web service
(WSDL). Let O be a domain ontology used in the semantic
description of the same web service. A tuple m = (ctx, e, α)
is a mapping for grounding, where e ∈ NT , ctx ∈ NT ∗ (con-
text of e) and α ∈ IRI+. The mapping is the glue between the
semantic and syntactic description. Non-terminal symbols of
the grammar are mapped to paths in the graph.

The context of a non-terminal symbol n is the derivation
tree from the initial symbol S to n according to the production
rules in the grammar. As Sect. 4.1 indicates, there is a bijective
correspondence between production rules and non-terminal
symbols. Therefore, the sequence of production rules that de-

fine the context of a non-terminal symbols can be represented
using a sequence of the non-terminal symbols from the initial
symbol S. As we have aforementioned (see Sect. 4) our non-
terminal symbols are named after the XML elements defined in
the XML Schema and those are identified by QNames, there-
fore we can identify the non-terminal symbols using QNames.
Consequently, the context ctx cab be described by a sequence
of QNames.

The language of mapping rules for the grounding is defined
by the following expression:

M : QName∗ ×QName× IRI+

In the next section, we describe the transformation opera-
tions and how they are realized by the functions.

5.2 Transformation operations

There are two main scenarios when data grounding runs:
1.Lowering: the mapping rules guide the process through

the semantic model to extract the parameters of the pre-
condition that are used to create the SOAP body of the
request. The mapping language supports several entities
of the semantic model being mapped to the same non-
terminal symbol. Lowering is restrictive with the gener-
ated output in order to ensure the creation of valid and
well formed XML documents.

2.Lifting: the mapping rules guide the process of parsing the
SOAP content and building a set of instances according to
postconditions (described using a semantic model) of the
web service.

5.3 Lowering function

Given a regular tree grammar, G, a semantic request Drq , and
a set of mappings M, we define the lowering process as the
transformation function of the semantic information, starting
in the node v, to a syntactic representation T (Σ)

Lowering : Drq ×G×M× v −→ T (Σ)

The lowering process starts from the initial symbol S and
follows the production rules of the grammarG to create a valid
XML Document T (Σ). It is driven by the mappings M that
decide how production rules must to be applied. Starting from
node v, mappings determine movements in the graph Drq.

Depending on the interpretation of a mapping, the produc-
tion rule may be applied several times to produce repeated
structure. A mapping can be ambiguous. If a non-terminal
symbol has been mapped to different paths and they are si-
multaneously possible in the graph, the mapping can not be
resolved and an error is raised.

5.4 Lifting function

Given a regular tree grammar, G, a syntactic response com-
prised by a tree of terminals T (Σ) and a set of mappingsM,
we define the lifting process as the transformation function of
the syntactic information to a semantic representation Drp:

Lifting : T (Σ)×G×M −→ Drp

The lifting process is realized by bottom-up processing of
T (Σ). For each terminal symbol its mapping is located and a



subgraph is created by instantiation of the mapping rule. The
subgraphs are merged recursively.

Similarly to the lowering process, the lifting process may
run into ambiguous cases. If a non-terminal symbol has several
mappings in a certain context then it is not possible to deter-
mine which subgraph must be instantiated, and consequently
an error is raised.

6. Experimentation: the PRAVIA project

E2000 Nuevas Tecnologı́as2 is the leading company in the
insurance broker sector in Spain. The PRAVIA project was
launched by E2000 in partnership with Fundación CTIC with
the goal of testing the applicability of semantic web services
to this business domain.

Everyday work of the insurance sector and the insurance
broker sector includes a huge set of administrative processes
for commercial activities, documentation, invoice manage-
ment, policies, claims... Nowadays, insurance companies ex-
pose some digital services to automate some of these pro-
cesses. Each company defines their own operations and data
structures that are interchanged in the transactions of these
services. As a result, different companies publish services with
different interfaces but with the same purpose.

All the dealers in the insurance sector need to efficiently
interchange information with as many insurance companies as
possible to perform business operations, such as looking for
the best offer for a new customer. A lot of time is lost when the
dealers need to enter repeatedly the same information to make
similar requests to different insurance companies. Time is also
lost to manually study and compare the responses, each one in
a different, incompatible format.

Figure 4. PRAVIA project architecture.

Therefore, it is necessary to use a service-oriented architec-
ture to create a bridge among the dealers and the companies.
Such bridge creates a unique access point for communication
with all the companies. Development, evolution and mainte-
nance of the bindings for such bridge requires ad-hoc work
for each company. As a consequence, they lack the flexibility
required to quickly integrate new services, and they create an
entry barrier for interface adaptation. The work of the bridge
mainly deals with adapting data structures using manual tech-
niques.

2 http://www.e2000.es

In this context, the grounding process and the use of a se-
mantic model (ontology) improve maintainability and scala-
bility. Using this paradigm, all the applications use the same
model, and the grounding process automatically adapts the
model for each particular web service. When a new company
joins the bridge, the only task to be done is to semantically de-
scribe its web services according to the semantic model. In a
similar fashion, if the operations or services change, the higher
abstraction level makes it easier to adapt the system.

For the sake of simplicity, only two business processes and
two service providers were chosen. This sample has proven
enough to create a realistic environment with non-trivial web
services (see Fig. 4). The WSMX platform, the WSMO on-
tology and the WSML language were selected to deploy the
semantic web services technology in this controlled environ-
ment. The grounding process provided by the WSMX Commu-
nication Manager was found to be in an early stage of develop-
ment, and it could not address the requirements of the business
environment. Therefore, it was replaced with an extended com-
ponent with the same interface. The new component uses the
mapping language and implements the transformation func-
tions described in this paper, and it is one of the outcomes of
the PRAVIA project. This experiment has shown the feasibility
of our approach for data grounding to fulfill the requirements
of a business scenario.

6.1 Annotations in XML Schemas of WSDL Documents

Our approach to data grounding in semantic web services takes
into account just the data structure definition (using XML
Schema) of the whole WSDL description of a web service. In
order to introduce the mapping rules in the XML Schema, we
use the elements xsd:annnotation and xsd:appinfo
and its attribute source.

Each annotation is interpreted as one or more mapping
rules. The non-terminal symbol of the mapping rule is the sym-
bol labeled after the xsd:element, see Sect. 4.1. The con-
text is obtained as the list of non-terminal symbols between
the current xsd:element declaration and the opening dec-
laration of an XML Schema type. The content of an annotation
in the source attribute is a graph path, described by a list of
IRIs separated by whitespaces. By using xsd:appinfo, it is
possible to introduce multiple mappings associated to the same
element.

6.2 Annotations using SAWSDL

Our approach to introduce mappings as annotations in the
WSDL Document is similar to the SAWSDL one, although
SAWSDL also addresses other entities from the WSDL de-
scription, such as types, operations and interfaces.

We initially discarded SAWSDL and decided to use the an-
notation feature described above due to: 1. temporary lack of
support for SAWSDL in the tools, and 2. difficulties to cre-
ate multiple mappings for the same element. The former is no
longer a problem because SAWSDL is now stable and gain-
ing support from tool and framework vendors. Until SAWSDL
became a W3C Recommendation, using XML Schema anno-



Table 1. Comparative study of data grounding approaches.

Feature Our approach SAWSDL Ad-hoc Imple-
mentations (Java,
XSPARQL, etc.

Use of XML Schema annotations yes, xsd:annotations no, new attributes no
Programming skills required no yes yes
Complete solution yes Runtime semantics

undefined
yes

Usable by domain experts yes yes no
Easy Maintenance and Evolution (changes in on-
tologies or services)

yes yes no

Support for REST Web Services no no yes
Able to perform data mediation no yes yes
Dependence on modeling language yes yes yes

tations was the only standards-compliant approach to decorate
a WSDL description with semantic annotations.

Regarding the second issue, it is not obvious how the rules
from our mapping language could be integrated in WSDL
descriptions using the SAWSDL attributes. The data model
of the SAWSDL attributes allows just a list of IRIs (graph
path) for each element, and we would like to associate multiple
mapping rules to the same element, each one with its own
graph path.

7. Comparative study

A qualitative analysis of different approaches to data groun-
ding is shown in Table 1. Firstly, our approach provides a
complete solution for data grounding using a full declarative
method in a WSDL+SOAP environment. It does not require
programming skills, thus improving the maintenance and evo-
lution of the system when changes occur. It also reuses the
annotation elements provided by XML Schema to introduce
mappings. On the contrary, SAWSDL proposes a partial solu-
tion based on a set of WSDL extensions to annotate WSDL
Documents with references to semantic entities. There is not
any defined semantics to interpret SAWSDL annotations. Both,
our solution and SAWSDL, allow business experts to write the
mapping rules without a deep knowledge of technology. Fi-
nally, all of the revised approaches depend on the semantic
modeling language used to build the knowledge base. We re-
mark that our solution lacks support for data mediation while
ad-hoc implementations can perform data grounding and me-
diation in a single step.

8. Conclusions and future work

Our proposal for data grounding relies on a mapping language
that describes relations as mapping rules. We pursue a domain-
independent and systematic solution that reduces to the mini-
mum the human intervention. These are some remarks about
our proposal for data grounding:

•It requires human intervention on design time. The dif-
ference falls in which tasks are required and who can do
them. Our solution only needs some simple work to map
syntactic descriptions with semantic entities. This opera-
tion can be carried out by non-technical people, probably

using a simple graphical user interface. More specifically,
it does not require programming skills.

•It depends on the web service and semantic technologies.
We only support WSDL (document based) 1.1 and SOAP
1.x. On the other hand, it is also dependent from the on-
tology language. We support the current web standards for
knowledge representations systems.

•It positively contributes to the maintainability, reliability,
robustness, time to repair and cost of the SOA architec-
tures, as a consequence of removing the need of ad-hoc
developments. This is a distinctive feature of our approach
with respect to manually implementing data grounding us-
ing languages such as XSLT, XSPARQL or Java.

•It must not be confused with data mediation. Although
some shared transformation patterns can be identified, data
mediation and data grounding are conceptually different,
and their responsibilities should be clearly separated in a
successful semantic web services platform.

•It is not a complete solution for semantic web services
grounding. Data grounding is able to build requests and to
process responses, but that is just a part of SWS grounding.
There are other issues that must be addressed separately
(e.g., authentication).

•It is a viable solution for data grounding of semantic web
services. Without data grounding, SWS platforms can not
invoke real web services. However, we can not assure that
all SOAP-based web services will be compatible with our
solution because heterogeneities are always present due to
tools, extensions in specifications, etc.

We reused the experience of previous work (SAWSDL,
WSDL-S or OWL-S) in the semantic web services area. Our
solution was embedded into WSMX to put it under test in
a real environment (non-trivial web services that implement
business processes). The results confirm that it is possible to
specify data grounding of web services using a mapping lan-
guage. Anyway, real web services are not limited to those ac-
cepting SOAP messages and described by WSDL. Therefore,
we are working to extend our solution to support other kinds
of service (message protocol and description format), such as
REST services, WSDL 2.0, etc. We also study the alignment of
our solution with other proposals and recommendations from
W3C and OASIS.



In this paper, we have only focused in the description of
a mapping language for data grounding. Details of the algo-
rithms of the lifting and lowering functions together with a
complete example and execution trace will be the subject of
a subsequent publication.

References
[1] R Akkiraju, J Farrell, J Miller, M Nagarajan and M T S et al.,

Web Service Semantics-WSDL-S, W3C member submission,
W3C, 2005, http://www.w3.org/Submission/WSDL-S/.

[2] D Anicic, M Brodie, J D Bruijn, D Fensel, S Heymans, J Hoff-
mann, M Kerrigan, J Kopecky, R Krummenacher, H Lausen,
A Mocan, I Toma and M Zaremba, Semantically enabled service
oriented architectures: A manifesto and a paradigm shift in com-
puter science, Tech. rep., In Proceedings of WICI International
Workshop on Web Intelligence (WI) meets Brain Informatics
(BI) (WImBI 2006), 2006.

[3] S Battle, A Bernstein, et al., Semantic Web Services Frame-
work (SWSF), W3C member submission, W3C, 2005,
http://www.w3.org/Submission/SWSF/.

[4] H Bohring and S Auer, Mapping XML to OWL Ontologies..
Leipziger Informatik-Tage 2005, K P Jantke, K P Fähnrich, and
W S Wittig, Eds., Vol. 72 of LNI, GI, pp. 147–156.

[5] D Booth, H Haas, F McCabe, E N (until October 2003), M
C (until March 2003), C F (until March 2003) and D O (until
March 2003), Web Services Architecture, W3C working group
note, W3C, 2004, http://www.w3.org/TR/ws-arch#introduction.

[6] J d Bruijn, M Ehrig, C Feier, F Martı́n-Recuerda, F Scharffe
and M Weiten, Ontology mediation, merging and aligning, In
Semantic Web Technologies. Wiley, 2006.

[7] M H Burstein, C Bussler, M Zaremba, T W Finin, M N Huhns,
M Paolucci, A P Sheth and S K Williams, A Semantic Web
Services Architecture.. IEEE Internet Computing, Vol. 9, No. 5,
2005, pp. 72–81.

[8] L Cabral, J Domingue, E Motta, T R Payne and F Hakimpour,
Approaches to Semantic Web Services: an Overview and
Comparisons. ESWS 2004, pp. 225–239.

[9] J Calladine and P Downey, Xml Schema and Web Services.
W3C Workshops on XML Schema 1.0 User Experiences 2005.

[10] H Comon, M Dauchet, R Gilleron, C Löding, F Jacquemard,
D Lugiez, S Tison and M Tommasi, Tree Automata Techniques
and Applications, 2007, release October, 12th 2007.

[11] A Corradini, U Montanari, F Rossi, H Ehrig, R Heckel and
M Loew, Algebraic Approaches to Graph Transformation, part
I: Basic Concepts and Double Pushout Approach, Tr-96-17,
Università di Pisa, Dipartimento di Informatica, 1996.

[12] J Cowan and R Tobin, XML Information Set (Second Edition),
W3C recommendation, W3C, 2004, http://www.w3.org/TR/xml-
infoset/.

[13] J de Bruijn, C Bussler, J Domingue, D Fensel, et al., Web Service
Modeling Ontology (WSMO), W3C member submission, W3C,
2005, http://www.w3.org/Submission/WSMO/.

[14] D C Fallside and P Walmsley, XML Schema Part 0:
Primer Second Edition, W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xmlschema-0/.

[15] J Farrell and H Lausen, Semantic Annotations for WSDL
and XML Schema, W3C recommendation, W3C, 2007,
http://www.w3.org/TR/sawsdl/.

[16] G Klyne and J J Carroll, Resource Description Framework
(RDF): Concepts and Abstract Syntax, W3C recommendation,
W3C, 2004, http://www.w3.org/TR/rdf-concepts/.

[17] J Kopecký, Simple RDF to XML Data Grounding (slides), 2005.
[18] J Kopecký, M Moran, T Vitvar, D Roman and A Mocan, Eds.,

D24.2v0.1. WSMO Grounding 2007, WSMO.
[19] J Kopecký, D Roman, M Moran and D Fensel, Semantic Web

Services Grounding.. AICT/ICIW 2006, IEEE Computer Society,
p. 127.

[20] J Kopecký and A Schütz, D1.2.1 WSMO grounding in

SAWSDL, SOA4All deliverable d1.2.1, European Project-FP7,
2008, http://www.soa4all.eu.

[21] J Kopecký, T Vitvar, C Bournez and J Farrell, SAWSDL:
Semantic Annotations for WSDL and XML Schema.. IEEE
Internet Computing, Vol. 11, No. 6, 2007, pp. 60–67.

[22] I Marinchev and G Agre, Semantically Annotating Web
Services Using WSMO Technologies. CYBERNETICS AND
INFORMATION TECHNOLOGIES, Vol. 5, 2005, p. 12.

[23] D Martin, M Burstein, et al., OWL-S: Semantic Markup
for Web Services, W3C member submission, W3C, 2004,
http://www.w3.org/Submission/OWL-S/.

[24] A Mocan and E Cimpian, Eds., D13.3v0.2 WSMX Data
Mediation 2005, WSMO.

[25] A Mocan and E Cimpian, WSMX Data Mediation, WSMX
working draft, Deri, 2005, http://www.wsmo.org/TR/d13/d13.3/.

[26] M Murata, D Lee and M Mani, Taxonomy of XML Schema
Languages using Formal Language Theory. Extreme Markup
Languages Montreal, Canada, 2001.

[27] F Noy and A Musen, Evaluating Ontology-Mapping Tools:
Requirements and Experience, 2002.

[28] K Pantschenko, O Noppens and T Liebig, Grounding Web
Services Semantically: Why and How?. W3C Workshop on
Frameworks for Semantics in Web Services 2005.

[29] D Roman, J de Brujin, A Mocan, I Toma, H Lausen, J Kopecký,
C Bussler, D Fensel, J Domingue, S Galizia and L Cabral,
Semantic Web Technologies. Trends and research in ontology-
based systems, Wiley, 2006.


