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Abstract

After the outbreak of the financial crisis in 2007-2008 the level of non-performing
loans (NPLs) in the affected economies has significantly increased. However, while
in some countries this has been a transitory phenomenon, in others it still represents
a major threat for financial stability and economic recovery. The present work inves-
tigates the relationship between non-performing loans, systemic risk and resilience
of the financial system using a network-based approach. We develop a model with
two types of agents, banks and firms, linked one another in a two-layers structure
by their reciprocal claims. The model is studied analytically and via numerical sim-
ulations, and it allows to derive a synthetic measure of systemic risk and to identify
the maximum level of NPLs sustainable by the financial system before it collapses.
Finally, for illustrative purposes, we present an application of the model to Italy,
Germany, and United Kingdom, using firm-level data for the three countries.
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1 Introduction

Over the last 30 years world’s economy has experienced an unparalleled process of glob-
alization, which has lead to a reduction of the world’s effective size “from XXL to Small”
(Friedman, 2006). As for the financial sector, this phenomenon has been the consequence
of the pursuit for new investment opportunities and of a strain to diversification which
have increased the level of connectivity and complexity of the financial system, with the
result that today’s financial institutions are directly or indirectly much more connected
than ever before.

A non-negligible role in fostering this process has been played by the belief that in-
terconnection of financial markets would have lead to a greater financial stability, as risk,
for any single institution, would have been reduced via its spreading around the world.
However, the recent crisis has cast doubts on this idea (Stiglitz, 2010; Battiston et al.
, 2012a) and showed how diversification, rather than curtailing the overall level of risk,
has simply dispersed it, transforming risk from idiosyncratic into systemic. As pointed
out by Stiglitz, 1 the high number of interconnections between financial intermediaries
“facilitated the breakdown” and became “part of the problem”. Similarly Yellen high-
lighted that “interconnections among financial intermediaries are not an unalloyed good.
Complex interactions [...] may serve to amplify existing market frictions, information
asymmetries, or other externalities” (Yellen, 2013).

The crisis has forced scholars and policy makers to rethink financial stability focusing
on the role of interconnections among financial institutions, whose analysis is now consid-
ered crucial to gauge systemic risk and to prevent, or at least to dampen, future economic
meltdowns (Schweitzer et al. , 2009). This has led to an intense research activity aimed
at better understanding the role of pairwise interactions between the different actors of
the financial system in propagating and amplifying negative shocks. This field of research
goes back to Allen & Gale (2000) and Eisenberg & Noe (2001) and, over the past few
years, developed along essentially two complementary directions: part of the literature
focused primarily on theoretical models of networks (Gai & Kapadia, 2010; Gai et al. ,
2011; Battiston et al. , 2012b; Montagna & Lux, 2013; Elliott et al. , 2014; Acemoglu
et al. , 2015a,b; Chinazzi et al. , 2015)2 while another part devoted its attention to the
empirical analysis of financial networks (Soramäki et al. , 2007; Iori et al. , 2008; Bech &
Atalay, 2010; Beltran et al. , 2015).

The works from Gai & Kapadia (2010) and Montagna & Lux (2013) are the closest
to ours. Both studies analyze how unexpected exogenous shocks propagate through a
complex financial network where shocks can force a financial firm to default and not to
repay its debts. Gai and Kapadia develop a contagion model with homogeneous banks
and a random network structure. Their main conclusions are that the probability of expe-
riencing a default cascade is non-monotonic in connectivity (namely higher diversification
is not always good) and that the same shock can have very different consequences de-
pending on the point in which it hits the network. Montagna and Lux study systemic risk
in a scale-free network with heterogeneous banks. They use a fitness model to generate
the network with the aim of reproducing some of the frequently documented features of

1IMF conference “Interconnectedness: Building Bridges between Research and Policy”, May 2014,
http://www.imf.org/external/pubs/ft/survey/so/2014/RES052314A.htm (accessed on 1 July 2015)

2See Chinazzi & Fagiolo (2013) for a survey.
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interbank markets in terms of assortativity, degree distributions and size distributions.
Building on these works, our paper develops a theoretical model of contagion in fi-

nancial network and attempts to bring this framework to reality by calibrating it with
firm-level data. More in detail, we develop a network model which simulates how exoge-
nous shocks can affect the stability of a financial system in which two types of agents,
banks and firms, are linked by their claims and obligations. We first focus and study
analytically a simple version of the model with homogeneous agents, then by means of
computer simulations, we investigate the relationship between non-performing loans, sys-
temic crisis and resilience in the more realistic case of fully heterogeneous agents.

Unlike most of the literature in this field, we represent exogenous shocks as increases
in the aggregate level of non-performing loans (NPLs)3. We focused on NPLs for several
reasons. First, as repeatedly shown since the beginning of the crisis, NPLs are one of the
main causes for banks’ default. Moreover, using NPLs allows to measure the intensity of
the shock and anchor it to an easily observable variable, making our modelling framework
potentially useful for policy applications. Finally, in the countries most affected by the
crisis, the level on NPLs is still nowadays very high and constitutes a major treat to
economic growth and financial stability. Indeed during and after the financial crises,
the dynamic of the NPLs displayed different patterns among countries. Figure 1 shows
the percentages of non-performing loans to total gross loans granted by banks in several
European countries from 1997 to 2014. By looking at the data it is possible to distinguish
two groups of countries: a first group, shown in the left panel, where the financial crisis has
had only transitory effects of the level of NPLs, which increased right after the outbreak
of the crisis in 2008 and went back thereafter; and a second group, represented in the
right panel and coinciding mainly with the periphery countries of the Eurozone, where
the level of NPLs boomed after the crisis and remained well above levels prior to 2008.
In particular, it is worth noting how in countries like Italy, Greece and Portugal, still in
2014 NPLs are marked by an upward trend.

In order to provide a closer matching with reality, we calibrate the model with firm-
level data for Italy, Germany and United Kingdom, which are characterised by different
economic structure in terms of banks and firms size distribution, as well as different
level of capitalization of the banking system. Due to the lack of publicly available data
on bilateral exposures between banks and between banks and firms, we have to adopt
simplifying assumptions so that the results of the simulations should be intended only as
illustrative of the usefulness of the framework. However, as detailed in the next section,
the assumptions made and rooted into empirically observed regularities about the lending
behaviour of banks, therefore in our view they represent a plausible approximation of the
distribution of credits and debits among banks and firms, and hence an alternative way
to “fill the blanks” of the adjacency matrices representing the financial network4.

3Following the definition of the IMF “a loan is non-performing when payments of interest and principal
are past due by 90 days or more, or at least 90 days of interest payments have been capitalized, refinanced
or delayed by agreement, or payments are less than 90 days overdue, but there are other good reasons to
doubt that payments will be made in full” (Clarification and Elaboration of Issues Raised by the December
2004 Meeting of the Advisory Expert Group of the Intersecretariat Working Group on National Accounts,
International Monetary Fund, June 2005).

4On other ways to fill the adjacency matrix see for example Anand et al. (2015).
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Figure 1: Non-performing loans divided by the total value of the loan portfolio (including
non-performing loans before the deduction of specific loan-loss provisions). The loan
amount recorded as non-performing should be the gross value of the loan as recorded on
the balance sheet, not just the amount that is overdue (World Bank). Data are from 1997
to 2014 and cover different European countries. The left panel shows the countries where
the level of NPLs remained relatively stable before and after the crisis. The right panel
displays the countries where NPLs exploded after 2008 and are still today at levels higher
than the pre crisis period. In particular, NPLs in Italy, Portugal and Greece in 2014 still
show an upward trend. Source: elaboration of the authors on data from the International
Monetary Fund, Global Financial Stability Report.

2 The model

Consider an economy composed by N banks and M firms. They are nodes in a network,
linked one another through their balance sheets by credits and debits which result from
financial transactions: for any node, be it bank or firm, an incoming link is a credit
and an outgoing link is a debit. We assume that banks can lend and borrow from other
banks, but can only lend to firms; moreover we assume that firms cannot borrow from
each other, but only from banks. These assumptions imply that banks can have both
incoming and outgoing links with other banks, but only incoming links form firms. On
the other hand, firms can only have outgoing links toward banks and no links with other
firms. With this assumption, the two sets of nodes form a bipartite network organized in
two interconnected layers, where one comprises banks and the other firms, as shown in
Figure 2.

B1 B2 B3 B4

F1 F2 F3 F4 F5

Figure 2: Stylized example of a network.

Blue nodes and red nodes in Figure 2 represent respectively banks and firms. Nodes’ size
and links’ weight are ignored for simplicity. Following the literature and consistently with
bankruptcy law, we do not net interbank positions, so two banks can be linked with each
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Assets
−→

Liabilities
−→

Interbank assets
(AIB

i )
Interbank liabilities

(LIB
i )

External assets
(AF

i )
Deposits
(Di)

Capital
(Ki)

Total assets
(ATOT

i )
Total liabilities

(LTOT
i )

Table 1: Balance sheet structure. The arrows on the top of the figure indicate the direction
of links: incoming links represent an asset, outgoing links a liability. The shock affects
the portion of the assets held against firms. To cause the default of a node, the initial
shock must be higher than the net worth owned by that node. Elaboration of the authors
adapted from Haldane & May (2011).

other in both directions, as in the case of B1 and B2. In this example all banks and firms
have at least a link, however as in our model the formation of links is probabilistic, it
is possible to have completely disconnected banks or firms. The only constraint on the
structure of the network is that self-loops, namely links starting and ending in the same
node, are not allowed.

2.1 Balance sheet structure

Following Nier et al. (2007), we represent each bank via a simplified balance sheet struc-
ture as the one depicted in Table 1. The total assets of bank i are composed by the
interbank assets AIB

i , that is the total money lent to other banks, and by the external
assets, AF

i , that is the total money lent to firms, so that ATOT

i = AIB

i + AF

i . At the same
time, the banks liabilities are composed by money borrowed by other banks, LIB

i and
deposit, Di. Due to the double-entry bookkeeping system, the total assets are equal to
the total liabilities so that the capital (equity) of the bank, Ki, is defined as

Ki = AIB

i + AF

i − LIB

i −Di .

A generic firm j is uniquely described by its total assets Fj.
5

While banks in our model posses heterogeneous inter-bank assets, we make the sim-
plifying assumption that they share a constant portfolio composition and leverage ratio.
More precisely, we assume that a fraction θ ∈ (0, 1) of assets comes form inter-bank lend-
ing and a fraction 1− θ from lending to firms, while, at the same time, the leverage, i.e.

5We do not try to precisely model the balance sheet structure of firms since our focus is on the
consequences of shocks for the financial system.

5



the asset equity ratio, is fixed to be 1/η. Formally one has

AIB

i = θATOT

i , AF

i = (1− θ)ATOT

i and Ki = ηATOT

i . (1)

With the assumptions above, the bank deposits are computed as a difference between
ATOT

i and LIB

i +Ki. Bank deposits can be both positive or negative. In the latter case,
they should be considered assets owned by the bank. In any case, they represent positive
or negative bank exposure to the risk-free part of the economy.6

2.2 Network creation and initialization

Each bank i = 1, ..., N is initialized with an amount of interbank assets AIB

i and each firm
j = 1, ...,M is assigned a value of total assets Fj. We take AIB

i and Fj as fitness parameters
of the linking function that we use to generate the network, according to the general idea
that larger banks and larger firms have an higher number of links. Specifically we assume
that the probability pIBi,j to generate a link between bank i and bank j is proportional to
a certain power of their inter-bank assets

pIBi,j ∼
(

AIB

i

)α (

AIB

j

)β
with α, β > 0 , (2)

while the probability pFi,j to generate a link between bank i and firm j is proportional to a
certain power of the total assets of the bank and of the total assets of the firm. Since we
have assumed that total asset ATOT is proportional to interbank asset AIB we can express
the probability in terms of the latter

pFi,j ∼
(

AIB

i

)φ
(Fj)

χ with φ, χ > 0 . (3)

The value of the exponents in 2 and 3 govern the degree of assortativity of the network
in terms of nodes’ size. In what follows we assume values for these parameters that allow
us to reproduce the frequently documented observation of disassortative behavior7 in the
interbank network (Iori et al. (2006), Soramäki et al. (2007)) and to create an assortative
behavior in the firms-banks network. The latter reflects the assumption that bigger firms
have higher possibilities to access credit and that, on average, tend to have more links
(i.e. more credit lines) (De Masi & Gallegati, 2007), see panel (c) in Figure 3.

In order to have a better control on the simulation parameters, we randomly generate
the network in a kinetic way: we start with N isolated nodes and connect two nodes at
time, according to the probabilities in (2) and (3). The obtained directed network can be
described by variables lIBi,j and lFi,k with i, j = 1 . . . N and k = 1 . . .M : the first takes value
one if a link exists from bank j to bank i and zero otherwise, the second takes value one if
a link exists from firm k to bank i and zero otherwise. By stopping the procedure at the
appropriate time, we can exogenously fix the final average degree of the interbank network
ADB,B =

∑N

i=1

∑N

j=1
lIBi,j/N , defined as the number of interbank links over the number

6In accordance with the current literature we label this variable “deposits”, however it must be noted
that this is just a convention and this variable has no direct relation with real banks’ deposits.

7Notice that for our factorized linking probability, the disassortative behavior is due to the finite size
of the network. This is the so-called structural cutoff in Catanzaro et al. (2005). According to Caldarelli
(2007), in the asymptotic case of an infinite number of nodes, in our model the average degree of nodes
linked to a specific node is expected to be independent upon the degree of the node itself.
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of banks, and the average degree of the bank-firm network ADB,F =
∑N

i=1

∑M

j=1
lFi,j/N ,

defined as the number of links between banks and firms over the number of banks.8

After having generated the network, we assign a weight to each link. The link rep-
resents the amount of money which is borrowed by a node (bank or firm) and lent by
another node (bank). For interbank links, the weight depends on the amount of interbank
assets of the creditor (AIB

i ) and of the debtor (AIB

j ), as well as on the number of incoming
links of the creditor. Formally, the amount of money bank j owns to bank i is

wIB

i,j = lIBi,j A
IB

i

AIB

j
∑N

k=1
lIBi,kA

IB

k

. (4)

Similarly, the weights of bank-firm links depend on the external assets of each bank AF

i ,
on the level of total assets of firms Fj and on the number of incoming links of the bank.
Formally the amount of money firm j owns to bank i is

wF

i,j = lFi,j A
F

i

Fj
∑M

k=1
lFi,kFk

. (5)

The weight above preserve the previously determined amount of interbank and external
assets,

∑N

j=1
wIB

i,j = AIB

i and
∑M

j=1
wF

i,j = AF

i and, at the same time, guarantees the very
natural condition that the amount involved in a financial transaction increases propor-
tionally with the size of the involved parties. This reflect the assumption that bigger firms
are able to get more credit from banks, which consider them as more trustworthy and less
risky. In other words, we distribute the amount of interbank assets and of external assets
of each bank proportionally to the size of the debtor.

Following this procedure we obtain a network that is bipartite, directed, and weighted
and whose structure depends on the distribution of banks’ and firms’ size9. Figure 3 shows
an example of the typical simulated network obtained using the previous procedure.

In our procedure, interbank liabilities of each bank are endogenously determined and
we are able to compute all the elements of banks’ balance sheet in Table 1. In particular
the interbank liabilities of bank i rest defined as

LIB

i = AIB

i

N
∑

j=1

lj,iA
IB

j
∑N

k=1
lIBj,kA

IB

k

and the deposit

Di = AIB

i

(

1− η

θ
−

N
∑

j=1

lj,iA
IB

j
∑N

k=1
lIBj,kA

IB

k

)

.

The latter expression can be interpreted as deposit if positive, or risk-free assets, for
instance household mortgages, if negative. The total exposition of the banking system

8This approach is alternative with respect to the static procedure described in Caldarelli et al. (2002)
and Caldarelli (2007) and adapted to interbank networks in Montagna & Kok (2013). The advantage of
the kinetic approach is the much lower number of replications necessary to collect a sufficient statistics
for the less probable values of average degree.

9For example, a power law distribution generates a scale-free type of network, as in the “Heteroge-
neous” case discussed in Section 3.
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(a) Bank-firm network representation
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P
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(b) Degree distribution of the interbank net-
work
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k̄
n
n
(k
)

(c) Disassortativity of the interbank network

Figure 3: In (a) Blue circles represent banks (N = 300), red circles firms (M = 500).
The size of the circles is proportional to the amount of interbank assets for banks and
total assets for firms. Red links represent links from firms to banks, blue links represent
links from banks to other banks. The exponents of the linking functions are as in Table 2.
For visualization purpose, it is useful to consider a rather dense network, then we set the
average degree of the interbank network at ADB,B = 50 and that of the bank-firm network
at ADB,F = 100. Notes that there are no links between firms and that, although it is not
possible to (clearly) show in the figure the direction of links, red links can only be directed
from firms (out) to banks (in), while blue links among banks can go in both directions
(in and out). In (b) and (c) we report the out-degree distribution P (k) and the average
out-degree of nearest neighbor k̄nn(k). The power law structure of the distribution and
the disassortative behavior generated by the finite-size effect are evident.
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to the riskless part of the economy is however positive and proportional to the overall
amount of interbank assets

N
∑

i=1

Di =
1− η − θ

θ

N
∑

i=1

AIB

i .

2.3 Solvency and bankruptcy cascades

After having initialized the model, we perturb the system at time t = 1 with an exogenous
shock consisting in an increase in the level of NPLs due to firms default. The idea is that
when a firm defaults it is no longer able to repay its debt, so the banks who granted it
a loan mark it as non-performing and write-down the corresponding book value. Banks
exposed toward defaulted firms incur in a loss which erodes their capital, potentially
forcing them to default. In practice some of the credits provided by banks to firms are
transformed in bad loans and their value is set to zero. We do so by selecting firms at
random and assuming that they become unable to meet their obligations until we reach
the desired amount of NPLs. More in detail, given an amount x of NPLs, we select a firm
at random; again at random we go through its outgoing link one by one; we set the value
of the selected link equal to zero and we repeat until an amount of debt equal to x is
cancelled. If the total debt of the firm is greater than x, the last link considered is simply
reduced by the amount necessary to reach x. If instead the total debt of the firm is lower
than x, the procedure continues with another randomly selected firm, until the debts of all
the link cancelled is equal to x. Notice that this way of selecting firms at random makes
the distribution of firms’ size relevant. In general, small firms have an higher default (or
mortality) probability than big firms, a characteristic that matches empirical reality.

After this initial process is over, one or more banks have their external assets reduced
below the initial level, AF

i,1 < AF

i . If the amount of capital of bank i is reduced such that
it is unable the to meet the solvency condition

Ki = AIB

i + AF

i,1 − LIB

i −Di > ρATOT

i with ρ ≥ 0 , (6)

the bank becomes insolvent and it is set to default. Essentially we impose a minimum
capital requirement on banks expressed as a fraction ρ of their total assets. All defaulted
banks are assumed to default on all their liabilities and for all the amount (no partial
recovery).10

At this point a new round t = 2 starts. Assets corresponding to loans to previously
defaulted banks are set to zero and the interbank assets AIB of the creditor banks are
accordingly reduced. The solvency condition (6) is checked again and the banks that are
now unable to fulfill it are set to default. This process continues to iterate until no further
bank failures occur. In this way the initial firm-level shock transmits at interbank level
where failed banks are assumed to default on all of their interbank liabilities, eventually

10As pointed out in Gai & Kapadia (2010) “this assumption is likely to be realistic in the middle of
a crisis: in the immediate aftermath of a default, the recovery rate and the timing of recovery will be
highly uncertain and banks’ funders are likely to assume the worst-case scenario”. Anyway it would be
possible to relax this assumption and allow for a partial recovery, so that when a linked bank defaults,
the creditors do not lose all their asset, but get some fraction of it, for example a share of the remaining
assets proportional to the weight of creditors’ asset over all other liabilities of the defaulted bank.
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pushing neighbour banks into default. The initial shock can be either absorbed or am-
plified, eventually triggering a cascade of defaults able to cause a systemic crisis within
the financial network. Notice that liabilities are not adjusted following banks default.
This assumption reflects the consideration that the process of deleveraging is typically
much longer that the development of the default cascade and generally cannot help in
preventing the bankruptcy.

It is useful to analyze the role played by the portfolio composition parameter θ, and
the leverage parameter η, in starting and sustaining a default cascade. Consider a specific
bank i and let δ be the fraction of external assets that have become non-performing after
the initial shock, so that AF

i,1 = (1 − δ)AF

i . Since initial total assets are equal to total
liabilities, it is LIB

i +Di = ATOT

i −Ki and substituting (1) in (6) after little algebra one
has that the solvency condition simply becomes

δ < δ∗ with δ∗ = (η − ρ)/(1− θ) . (7)

The critical threshold δ∗ is the minimum level of initial shock on external assets that sets
a bank i into default. As expected, this is a decreasing function of the leverage 1/η and
an increasing function of the share of inter-bank assets θ. In subsequent rounds, assume
that bank i has lost a fraction δIB of its interbank assets. Using the same procedure, one
can rewrite the solvency condition as

θ

1− θ
δIB + δ < δ∗. (8)

A few comments are in order. First, notice that the parameter ρ enters into the definition
of δ∗ only as a modifier of the leverage η, thus without loss of generality we can assume
ρ = 0. This corresponds to the case in which a bank is considered insolvent when its equity
becomes zero or negative. Second, the role of the leverage is obvious, as it decreases the
resilience of the network: higher leverage levels (lower η) makes banks more exposed to
the failure of both firms and other banks. Conversely, the portfolio composition has two
opposite effects on the default cascade. On the one hand, a higher value of θ increases
δ∗ and shields banks from possible default in round 1, when firms loans becomes non-
performing. On the other, it increases the exposition of banks to the failure of other
banks in the successive rounds.

2.4 Homogeneous fully-connected case

To understand how the model works it is useful to study the case of fully connected
networks and homogeneous nodes, that is AIB

i = AIB and AF

j = AF for i = 1 . . . N and
Fj = F for j = 1, . . . ,M . In this case each firm owns an amount AF/M to each bank and
the aggregate external debt of banks is NAF. Let [x] denotes the integer part of x and
{x} = x− [x] its fractional part. One has the following

Proposition 2.1. Let δ be the fraction of initially defaulting loans, then

• if [δM ] ≥ δ∗M all banks initially default.

• if δ∗M − 1 ≤ [δM ] < δ∗M exactly [N {δM}] banks initially default;
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• if δ∗M − 1− {N {δM}} ≤ [δM ] < δ∗M − 1 a single bank initially default;

• if [δM ] < δ∗M − 1− {N {δM}}, no banks initially default;

Proof. The number of completely defaulting firms is [δM ]. Their NPLs generate a loss
equal to [δM ]AF/M for each bank. According to (7), if [δM ]/M ≥ δ∗ then all banks
initially default and the first point is proved.

The following points can be proved analogously by observing that after the complete
default of the [δM ] firms, a faction of NPLs equal to NAF{δM}/M still has to default.
This generate a further loss of AF/M for [N{δM}] banks.

Finally, the last loan is affected by a partial default equal to AF{N{δM}}.

If some banks survive the initial NPLs shock, since they are all identical, for sym-
metry argument, only two possibilities arise: or they all default in the first round of the
bankrupcy cascade or they never default. Specifically one has the following

Proposition 2.2. If

[δM ] ≥ δ∗M −
θ

1− θ

M

N − 1
[N{δM}]

then all banks surviving the initial NPLs shock will default. Otherwise, no banks further
default after the first NPLs shock.

Proof. All banks not defaulting for the initial shocks absorb a further loss due to the
failing banks equal to AIB[N{δM}]/(N − 1), that is

δIB =
[N{δM}]

N − 1

using (8) the statement immediately follows.

The joint effect of Propositions 2.1 and 2.2 is that when N,M → ∞, the fully con-
nected model has an abrupt phase transition: for δ ≥ δ∗ all banks default, while for
δ < δ∗ none does. Introducing heterogeneity will change the picture, however, as dis-
cussed through numerical examples in the next section.

3 Simulation results

We start the numerical investigation of the model considering two cases: one with ho-
mogeneous banks and firms and one with fully-fledged heterogeneity. The values of the
parameters are reported in column “Homogeneous” and column “Heterogeneous” of Ta-
ble 2 respectively. They are derived from the ones usually assumed in the literature (Gai
& Kapadia (2010), Montagna & Lux (2013), Upper (2007), Nier et al. (2007)).

As seen in the previous section, in the homogeneous fully-connected case, if δ <
δ∗ − 2/M no bank default may occur, while if δ > δ∗ all banks default. Given the value
of the parameters it is δ∗ = 0.1, so that the whole transition from total safety to financial
mayhem happens when δ increases from 0.096 to 0.1. In order to investigate the role of
network topology, we consider instead the scenario in which all banks and all firms still
have the same size, that without loss of generality we can set equal to 1, but random
networks are generated with different average degree of the bank-bank and bank-firm
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networks. Remember that we adopt a kinetic approach to the generation of networks that
allows for a direct control of the number of links. The average degree of the bank-bank
and bank-firm network is a key parameter. It gives the average number of counterparts
of a node and, as such, it is a proxy for both the level of interconnectedness of a system
and the portfolio diversification of its node. We consider different combinations of ADB,B

and ADB,F , exploring all the range of possibilities from a collection of isolated nodes to
a fully connected network. For every pair of values we generate 200 realizations of the
network. Then, for each realization of the network, we shock the system by increasing
the level of NPLs as described by the algorithm in Section 2.

Since we are interested in the risk of a systemic crisis we want to exclude small chain
of defaults. For this reason, following Gai & Kapadia (2010), we define a systemic crisis
as the occurrence of the default of more than 5% of banks in the network. Given this
definition, we compute the frequency of a systemic crisis (F ) as the number of times
in which more than 5% of banks default over the 200 drawings and the extent of a
systemic crisis (D) as the fraction of defaulted banks conditional on contagion over the
5% threshold breaking out, which is therefore a measure of the magnitude of the systemic
crisis. These two quantities allow to define a synthetic statistics for measuring systemic
risk R = F × D, computed as the product between the frequency of contagion, F , and
the extent of contagion, D.

Figure 4 reports the result of the simulation in the homogeneous case. Even if we
consider random networks, the value δ∗ remains a relevant upper bound, because if δ > δ∗

all banks fail and we have a systemic event irrespective of the network average degree.
We then probe the model with δ in the interval (0, 0.1). On the x-axis and y-axis we
report respectively the bank-firm average degree ADB,F and the interbank average degree
ADB,B. Low values of ADB,F correspond to a poorly connected bank-firm network, while
higher values correspond to an highly connected network. The same applies for the values
of ADB,B in the interbank network. Different colors represent different levels of systemic
risk: as shown by the vertical bar on the right-hand side of the heat-map, colors towards
blue correspond to low levels, while colors toward red to high levels. Since we explore
cases for δ < δ∗, we know that if the connectivity of the netwoek increases enough, the
risk goes to zero. But for less connected network, the risk increases noticeably also for a
relatively small fraction of NPLs. What seems to play the major role, at least for relatively
large values of δ, is the bank-firm topology. This is not surprising as the average degree
of the bank-firm network is a measure of diversification of bank external assets. So we
simply observe that more diversified banks are more resilient to an abrupt increase in
NPLs. Conversely, the degree of connectivity in the bank-bank network appears to have a
marginal role, at least for δ ≥ 0.4. If banks are not diversified enough in their exposition
toward the risky firms, increasing the average degree of the interbank market will not save
them from default.

We then move to the case of heterogeneous nodes. Each bank i = 1, ..., N is initialized
with an amount of interbank assets AIB

i randomly drawn from a truncated power law
distribution with bounded support [5, 100] and exponent equal to 2.11 Similarly, to each
firm j = 1, ...,M is assigned a value of total assets Fj, distributed according to a truncated
power law with support [5, 100] and exponent 2. In this case, also to make the finer

11The truncated power law with exponent τ and support [a, b] has a distribution function F (x) =
(1 − aτx−τ+1)/(1 − (b/a)τ ).
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Level of systemic risk, δ=0.04
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Level of systemic risk, δ=0.06
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Level of systemic risk, δ=0.08
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Figure 4: The figure shows the level of systemic risk associated to different levels of initial
shock (δ) in the homogeneous case, as a function of the average degrees of the inter-
bank network (ADB,B) and of the bank-firm network (ADB,F ). Estimates are obtained
averaging over 200 independent realization of the model. Parameter values reported in
Table 2.
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Level of systemic risk, δ=0.025
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Level of systemic risk, δ=0.0375
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Level of systemic risk, δ=0.05
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Figure 5: The figure shows the level of systemic risk associated to different levels of initial
shock (δ) in the heterogeneous case, as a function of the average degrees of the inter-
bank network (ADB,B) and of the bank-firm network (ADB,F ). Estimates are obtained
averaging over 200 independent realization of the model. Parameter values reported in
Table 2.
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Figure 6: Fraction of defaulted banks for different levels of initial shock and different
combinations of average degrees in the heterogeneous benchmark case. Estimates are
obtained averaging over 200 independent realizations of the model. The average degree
is expressed as a fraction of bank nodes in the case of ADB,B and as a fraction of firm
nodes in the case of ADB,F .

details of the models more clearly apparent, we focus on a range of values for the average
degrees which is economically more reasonable, even if we probe a relatively large extent
of possible values. In fact, the real value of ADB,B and ADB,F is in general not know and
the few estimates of the interbank average degree present in the literature often refer only
to short term lending. For example Anand et al. (2015) finds that the average degree
for the German interbank network is 10.5, while Soramäki et al. (2007) finds an average
degree of 15.2 for the Fedwire interbank payment network.

The four panels in Figure 5 show the level of systemic risk associated with different
increases in the percentage of NPLs over total gross loans. The values of δ tested go from
1.25% to 5%, well below the critical threshold δ∗. As can be seen, when heterogeneity
is fully taken into consideration, the topology of the bank-bank network becomes more
relevant. In fact, the figure shows that, on both the axes, the levels of systemic risk first
increases and then decreases, showing a non-monotonic behaviour and peaking in the
bottom-left area of all the panels. Notice that the scale of these plots is reduced. When
ADB,B and ADB,F become larger the system converge to the fully connected case and the
systemic risk goes to zero.12 Also notice that an higher initial shock does not change the
general shape of the plot, but rather increases the overall level of risk for a maximum of
0.7 when δ = 0.025 to a maximum of 1 when δ = 0.05.

12Given the purely illustrative intent of the work we show only some selected charts in order not to
overload the reading. A full set of charts is available upon request.
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The role of the size of the initial NPLs shock can be better assessed by varying δ while
keeping fixed the average degrees of the interbank and bank-firm networks. Figure 6 shows
the fraction of defaulted banks as a function of the level of the shock. In all the panels is
evident the presence of a relatively steep phase transition, which implies that for certain
level of NPLs, a small change in the magnitude of the initial shock can have very different
consequences in terms of banks’ defaults. These transitions allow to identify a threshold
level of δ, which is an important measure of the resilience of the system to external shocks.
As expected this value is below δ∗ but the exact position of the transition varies slightly
depending on the values of ADB,B and ADB,F . Comparing the four panels of Figure 6
it is possible to see that, in line with the previous analysis, an increase in ADB,F moves
the transition to the right, making the banks more resilient to external shocks, while
an increase of ADB,B makes the curve higher, thus enhancing the disruptive effect of
bankrupcy cascades. It is worth highlighting that in the two top panels of Figure 6 the
number of defaulted banks tends to 1 without reaching it. This is due to the fact that for
very low values of the interbank average degree, some banks are completely disconnected
and hence, if they survive the initial shock, they never fail since they cannot be reached
by the contagion cascades.

4 Model calibration

In this Section we calibrate the model described in Section 2 and simulate it for the cases
of Italy, Germany and United Kingdom. We use firm-level data from Bankscope and
Amadeus, two databases produced by Bureau van Dijk collecting balance sheet informa-
tions on financial institutions and on public and private companies respectively. From
Bankscope we extract informations on banks’ interbank assets (AIB), total assets (ATOT)
and capital (K), while from Amadeus we obtain data about firms’ total assets (F ).

Bankscope contains data both on banks and other kinds of financial institutions, such
as funds and asset management companies. From the informations available it is not
possible to immediately identify the type of institution, therefore in order to extract a
sub-sample consisting only of banks, we match the data from Bankscope with the list of
authorised credit institutions (excluding branches) published by the European Banking
Authority (EBA Register of Credit Institutions)13.

As far as Amadeus is concerned, we restrict our focus on firms with more than 50
employees14, excluding NACE sectors 64.1 (Monetary intermediation) and 64.2 (Activities
of holding companies), so as not to include the banks among other firms and to focus on
firms whose activity is not just to own shares of other companies.

In the simulations that follows, the values of the parameters are calibrated on data
from 201315. While our dataset goes from 2000 to 2014 for what concerns Bankscope and
from 2005 to 2014 for what concerns Amadeus16, we use 2013 as the reference year so as
to have data which are both quite recent and with a sufficiently high coverage. Indeed,

13For more informations visit http://www.eba.europa.eu.
14We do so both because the quality of data for firms with less than 50 employees is lower, both because

small firms are likely to have small credit lines with banks and therefore a negligible impact.
15This also holds for the list of authorised credit institutions published by the EBA which we use to

filter the banks.
16Both for Bankscope and for Amadeus the cut off date for the observations is 31 March 2015.
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Parameters Homogeneous Heterogeneous Italy Germany United Kingdom

N 100 100 100 100 100
M 250 250 4500 1500 23600
η 8% 8% 9.2% 8.4% 18.8%
θ 20% 20% 6.5% 7.8% 8.6%
δ∗ 10% 10% 9.8% 9.1% 20.5%

Table 2: Parameters used in the numerical simulations. N and M are respectively the
number of banks and firms in the network; η is the fraction of capital with respect to total
asset; θ is the fraction of interbank assets with respect to total assets. δ∗ is the solvency
critical threshold assuming the corresponding values of η and θ. For the exponents used
in the linking functions in equations 2 and 3 we keep the same values in all four scenarios,
namely α = 1, β = 0.25, φ = 1 and χ = 1.21

after filtering the banks using the EBA list, the data for 2013 are the most complete
in our dataset, and the coverage of banks’ interbank assets, total assets, capital and
firms’ total assets are respectively 0.92, 0.92, 0.92 and 0.88 for Italy, 0.97, 0.97, 0.97 and
0.50 for Germany, 0.92, 0.97, 0.97 and 0.93 for the United Kingdom17. Based on the
informations on assets and equity, for each country we obtain the empirical distribution
of the capital/total asset ratio η and the interbank assets/total assets ratio θ.

It should further be noted that Bankscope and Amadeus report financial information
about banks and firms at the consolidated level. In order to avoid double counting issues
and keep banking groups as much aggregated as possible, we selected data associated to
consolidation codes U1, C2 or C1 18. After this procedure, and considering only banks
and firms which have a value greater than 0 for all the variables considered, we finally have
1665 banks and 25855 firms for Germany, 527 banks and 23929 firms for Italy and 163
banks and 38521 firms for U.K. Notice that, as pointed out by Duprey (2012) in relation
to Bankscope, and the same holds for Amadeus, even after having considered consolidated
entities, it is still possible to incur in some double counting. This problem can be solved
only with information about firm ownership for all the years corresponding to the date at
which the observations have been recorded. These data are not available to us.19 In any
case, for the purposes of the present work, essentially based on distributional properties,
the possible occurrence of some double counting in the banks or firms sample is likely
to have a small and negligible effect. However, we observed that the number of banks
and firms in these national economies is too large to be simulated effectively. In order
to maintain the same proportionality observed in real data, the number of nodes in the
inter-bank sector is set to 100 and the number of firms proportionally adjusted.

Table 2 reports the adjusted number of banks and firms used in the simulations, as well

17The estimates for the other years in our dataset are anyway relatively similar to those obtained for
2013.

18See the guide provided by Bureau van Dijk for more information.
19Ownership data are provided by Bankscope, but they require an extra license; moreover ownership

data are in the cross-section for the current years, therefore in order to get the evolution over time of
ownership structure it is necessary to use the updated version of the database at that time.

21For simplicity the values of α, β, φ and χ are taken from the literature (see for example Montagna
& Lux (2013)) and chosen so as to replicate the often documented features of assortativity and disassor-
tativity, as discussed in Section 2.2. However, in presence of data on bilateral exposures they could be
empirically estimated.
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Figure 7: Empirical density (histogram) of interbank assets (panel a) and firms’ total
assets (panel b) for Italy, Germany and United Kingdom in 2013. Source: computations
of the authors based on data from Bankscope and Amadeus.

as the values of η and θ which have been computed as the modal values of the respective
distributions. As for the high value of the estimate of the capitalization level in UK,
this is roughly in line with the level of regulatory capital – Tier 1 and Tier 2 – reported
by the Bank of England. The annual average of the banking sector regulatory capital is
indeed about 17% in 2014, 18% in 2015 and 20% in 201622. Finally, the critical value
δ∗ is 9.8% for Italy, 9.1% for Germany and 10% for UK. The relatively higher value for
the latter is due to both a portfolio effect, with UK banks having a larger share of their
portfolio invested in interbank assets, and to a leverage effect, with UK banks being more
capitalized than Italian or German banks for the same level of total capital.

The empirical distributions of AIB and F in 2013 are reported in Figure 7. The initial
values for inter-bank assets and firm assets are randomly sampled without replacement
form these distributions.

For illustrative purposes in Figures from 8 to 10 we show the results of the simulations
for the cases of Italy, Germany and United Kingdom.

For each country, we probed a range of values for the initial NPLs shock δ from zero
to the respective δ∗. As expected when the size of the initial shock approach the critical
value, the risk becomes higher irrespective of the network structure. For lower values of
δ, the results obtained for the three countries are more “noisy” that the ones obtained
for the heterogeneous case. Given the high firms to banks ratio, in Italy and UK the
diversification aspect of banks portfolio has a central role. The average degree of the
bank-firm network is what mainly decides the level of risk, while the interbank network
is less relevant. In Germany this ratio is lower and the topology of the interbank network
has a more prominent role. What is common in all three cases is that the level of risk
cannot be, in general, effectively reduced increasing only the interbank or the bank-firm
avergae degree. The most efficient strategy is always to have banks that are at the same
time sufficiently diversified in their external lending and have sufficient connections with
other banks.

In Figure 11 we report the fraction of defaulted banks for different levels of initial

22Unfortunately no value for 2013 is available as the reports of the Bank of England start in 2014. For
more information visit http://www.bankofengland.co.uk/pra/Pages/regulatorydata/default.aspx
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shock and different combinations of average degrees in the case of the three countries.
As it can be seen, the overall effect of the average degree in the interbank and bank-
firm network is different for the different countries. Nevertheless, the same considerations
made for the heterogeneous apply also to the other three cases, both in terms on non-
monotonic behavior of the systemic risk (with levels and position varying in the ADB,B,
ADB,F space according to country characteristics) and for what regards the effects of an
increase in the average degrees on the fraction of defaulted banks over the total number
of banks. Moreover, heterogeneity reduces the amount of NPLs for which the critical
threshold occurs, as the transition to the default of the entire financial system occurs for
lower values of δ compared to the homogeneous fully-connected case.

Comparing the curves in Figure 11 Germany appears to be structurally the weakest of
the three countries, as the phase transition from a situation of low distress to a situation
of high distress occurs earlier (namely for lower values of δ) than the other two countries,
for all the combinations of average degrees. The United Kingdom appears to be the
most resilient among the countries considered for all the levels of connectivity, while
Italy places itself in the middle. These results reflect the structural characteristics of
the different economies and are based on the assumption that all the three countries are
exposed to the same exogenous shock. Clearly in practice the magnitude of the shock to
which countries are exposed is different and in this light the weakest country is obviously
Italy, as it is the only one of the three which experienced a sustained increase in the level
of NPLs, while Germany and United Kingdom registered a decline to levels equals or
lower than the pre-crisis period. To give and idea of the magnitude of the issue, in Italy
just from December 2012 to December 2013, NPLs increased from 124.973 millions euro
to 155.885 millions euro (+24,7%)23. The total stock of loans made by Italian banks to
the private and public sector (excluding interbank loans) at the end of 2012 was 1.927.861
millions euro, so the aggregate shock suffered by the banking system in 2013 was about
δ = 1.6%24.

5 Conclusions

In this paper we studied the relationship between NPLs, systemic risk and resilience of
the financial system in a network perspective. We developed a model with two types
of agents, banks and firms, linked one another in a network of credits and debits, and
we analyzed how an exogenous shock, represented by an increase in NPLs at firm level,
affects the financial system.

We first focused on a simple version of the model with homogeneous agents, which we
analyzed both analytically and numerically. Then, by means of computer simulations, we
studied the more realistic case of fully heterogeneous agents.

23Elaboration of the authors based on data from Bank of Italy and Italian bank-
ing association (ABI). For more information see https://www.abi.it/DOC Info/Comunicati-
stampa/Rapporto mensile maggio2014.pdf (in italian).

24This is clearly a rough estimate, as it assumes that all the new NPLs come from loans made before
the end of 2012 (a fraction of them could come from new loans made during 2013, although likely very
small), but still it gives a sense of the magnitudes at play. It would also be possible to extend the horizon
to the post-crisis period and consider the cumulated increase in NPLs, for example from 2007 to 2013,
but more detailed data would be required in order to give an estimate reasonably accurate.
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To bring the model to reality and show its practical application we also calibrated
it using firm-level data on banks and firms for the cases of Italy, Germany, and United
Kingdom.

We found that the level of systemic risk varies with the level of interconnectedness
of the financial network in a non-monotonic way and that in order to effectively reduce
the risk, banks should at the same time diversify their external portfolio and increase the
number of their neighbours in the interbank market. In terms of resilience, we showed
how it is possible to derive analytically the maximum amount of NPLs sustainable by a
system of homogeneous and fully connected banks. Instead when we introduced hetero-
geneity it was not possible to find a closed form solution and we had to rely on numerical
approximations. The simulations confirmed the existence of a phase transition effect, so
that small variations in the magnitude of the initial shocks can have very different conse-
quences in terms of fraction of defaults. The results of the simulations also showed that
heterogeneity reduces the amount of NPLs for which the critical threshold occurs.

Although the model presented is a simplified representation of the dynamics that lead
to the emergence of systemic risk, we argue that in presence of data on bilateral exposures
between banks and firms it can help assess the level of risk to which the financial system
is exposed and evaluate its resilience, providing useful guidance to policy makers. For
example, it would be possible to quantify whether the level of NPLs in an economy
is getting critical and actions to preserve financial stability should be taken; whether
the structure of the economy is such that it exposes the system to excessive risk and
incentives/disincentives for diversification are advisable so as to modify the location of
the system in the average degrees space; whether the level of capitalization of banks is too
low or whether the amount of assets which have other financial institutions as counterpart
are too high and create negative externalities for the whole system.

This paper represents a first attempt to link together the financial and the real side
of the economy. We believe that the theoretical framework provided can be extended
in several ways. First, a deeper investigation of the process of network formation is
certainty an interesting area of research. Second, an empirical analysis of whether the
network generated by our algorithm is a good approximation of reality is advisable and
it might be facilitated by the growing amount of data on banks’ exposures collected
by regulators at international level. Third, our results abstract from the international
dimension, which is obviously crucial and was central in spreading globally the crisis in
2007-2008. Including cross-countries credit relationships would allow to take into account
also the international propagation of shocks. One relatively straightforward way to do
so, is to draw from the gravity models developed in the trade literature and modify the
linking functions used to generate the network accordingly. In our view this is a promising
and potentially fruitful direction of research, which so far has not been investigated in the
financial network literature and whose exploration is left for future work.
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Level of systemic risk, δ=0.09
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Figure 8: The figure shows the level of systemic risk associated to different levels of initial
shock (δ) in the Italy case, as a function of the average degrees of the inter-bank network
(ADB,B) and of the bank-firm network (ADB,F ). Estimates are obtained averaging over
200 independent realizations of the model.
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Level of systemic risk, δ=0.09
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Figure 9: The figure shows the level of systemic risk associated to different levels of
initial shock (δ) in the Germany case, as a function of the average degrees of the inter-
bank network (ADB,B) and of the bank-firm network (ADB,F ). Estimates are obtained
averaging over 200 independent realizations of the model.
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Figure 10: The figure shows the level of systemic risk associated to different levels of initial
shock (δ) in the U.K. case, as a function of the average degrees of the inter-bank network
(ADB,B) and of the bank-firm network (ADB,F ). Estimates are obtained averaging over
200 independent realizations of the model.
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Figure 11: Fraction of defaulted banks for different levels of initial shock and different
combinations of average degrees. The average degree is expressed as a fraction of bank
nodes in the case of ADB,B and as a fraction of firm nodes in the case of ADB,F .
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