
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Lemont, Illinois 60439

Derivative-Free Robust Optimization by Outer
Approximations1

Matt Menickelly and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P9004-1017

October 2017

Updates to this preprint may be found at
http://www.mcs.anl.gov/publications

1This material was based upon work supported by the U.S. Department of Energy, Office of
Science, Offices of Advanced Scientific Computing Research and Basic Energy Sciences under
Contract No. DE-AC02-06CH11357.

http://www.mcs.anl.gov/publications


Noname manuscript No.
(will be inserted by the editor)

Derivative-Free Robust Optimization by Outer
Approximations

Matt Menickelly · Stefan M. Wild

the date of receipt and acceptance should be inserted later

Abstract We develop an algorithm for minimax problems that arise in robust op-
timization in the absence of objective function derivatives. The algorithm utilizes
an extension of methods for inexact outer approximation in sampling a potentially
infinite-cardinality uncertainty set. Clarke stationarity of the algorithm output is
established alongside desirable features of the model-based trust-region subprob-
lems encountered. We demonstrate the practical benefits of the algorithm on a
new class of test problems.
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1 Introduction

We consider the robust optimization problem

min
x∈Rn

max
u∈U

f(x, u), (1)

where f : Rn × Rm → R and U ⊂ Rm is called the uncertainty set. The minimax
problem (1) can represent the minimization of the worst-case objective function
under deterministic uncertainty in the problem data u ∈ U [2, 4].

For any subset Û ⊆ U we define

ΨÛ (x) , max
u∈Û

f(x, u)

and use the shorthand Ψ , ΨU . Consequently, an equivalent representation of (1)
is the implicitly robustified form

min
x∈Rn

Ψ(x),
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which we note is not equivalent to the nominal optimization problem

min
x∈Rn

f(x, û),

where û ∈ U represents a nominal data value.
In this paper, we address the case where derivatives of the function f in (1)

(and hence the function Ψ) are unavailable or inaccurate. Such situations arise, for
example, when only a deterministic black-box (“zero-order”) oracle that computes
values of f(x, u) is available [3, 7, 10, 12, 13].

Central to our algorithmic development is an optimality measure for (1) and
its tractable approximation by using a finitely generated set. Section 2 states prop-
erties of this optimality measure, which is then used in Section 3 in an inexact
method of outer approximations as obtained by iteratively tightened relaxations of
the uncertainty set U [22]. This optimality measure relies on access to values of the
derivatives ∇f , which we relax in Section 4 by using model-based approximations
that can be constructed solely from values of the function f . The resulting algo-
rithm employs an iterative, model-building framework similar to that employed
by the manifold sampling of [19, 20].

In Section 5, we analyze the algorithm and establish Clarke stationarity of the
limit points obtained. Theoretical algorithms for robust optimization are known
to suffer from undesirable computational requirements [1, 5, 6, 8, 14, 17, 23]. We
address practical considerations for implementations of the proposed algorithm in
Section 6. Our implementation is then tested in Section 7, and we highlight some
of the additional expense incurred when operating without derivative values.

2 Optimality Measure

To set the stage, we state several assumptions concerning (1) that will be used
throughout and that mirror those in [22, Assumption 3.4.1].

Assumption 1 The following hold.

a. (Local Lipschitz continuity of f and ∇xf everywhere) The function f(·, ·)
and, for any u ∈ U , its partial gradient ∇xf(·, u) are Lipschitz continuous over

any bounded subset of Rn ×Rm and Rn, respectively.

b. (Compactness of U) U ⊂ Rm is a compact set.

c. (Solution existence) There exists a (finite) solution to (1).

We remark that Assumption 1.a relies on the derivative ∇xf , which we assume
exists but do not assume to be available for use by an algorithm for solving (1).
The uncertainty set U is a modeling choice, and thus Assumption 1.b is largely
nonrestrictive. Assumption 1.c may be difficult to verify a priori.

We first consider the following optimality measure for (1):

Θ(x) , min
h∈Rn

max
u∈U

{
f(x, u) + 〈∇xf(x, u), h〉+ 1

2
‖h‖2

}
− Ψ(x)

= min
h∈Rn

θ(x, h),
(2)

where

θ(x, h) , max
u∈U

{
f(x, u) + 〈∇xf(x, u), h〉+ 1

2
‖h‖2

}
− Ψ(x). (3)
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For a fixed u, the objective in the minimax problem in (2) corresponds to a second-
order convex approximation of f(·, u) at x. Thus, the minimax problem in (2)
represents a minimization over the upper envelope (described by U) of a family of
convex quadratics. The final term, −Ψ(x), can be viewed as shifting the optimality
measure (2). Since

min
h∈Rn

θ(x, h) ≤ θ(x,0) = max
u∈U

f(x, u)− Ψ(x) = 0,

we have the following proposition.

Proposition 1 Let Assumption 1 hold; then, for all x ∈ Rn, Θ(x) ≤ 0.

We now state additional properties of the optimality measure Θ(x); proofs can
be found in Appendix A.

For any Û ⊆ U , we define the set

Df,Û (x) , co

{[
ΨÛ (x)− f(x, u)
∇xf(x, u)

]
: u ∈ Û

}
, (4)

where co denotes the convex hull. We use ξ0 ∈ R and ξ ∈ Rn to denote a generic
element (ξ0, ξ) of the set in (4).

The following proposition establishes an equivalent definition of Θ(x), which
will be interpreted as the value of a dual problem used by our algorithm.

Proposition 2 Let Assumption 1 hold; then, for all x ∈ Rn,

Θ(x) = −min
ξ0,ξ

{
ξ0 +

1

2
‖ξ‖2 : (ξ0, ξ) ∈ Df,U (x)

}
. (5)

The next proposition establishes the biconditional relationship between the
optimality measure Θ and Clarke stationarity of Ψ .

Proposition 3 Let Assumption 1 hold; then, for all x ∈ Rn, 0 ∈ ∂Ψ(x) if and only if

Θ(x) = 0.

We rely on the following auxiliary result to prove convergence of our algorithm.

Proposition 4 Let Assumption 1 hold; then Θ(x) is a continuous function of x.

Having defined an optimality measure for (1) with its equivalent (dual) measure
(5), we also define, for Û ⊆ U , the approximate optimality measure

ΘÛ (x) , −min
ξ0,ξ

{
ξ0 +

1

2
‖ξ‖2 : (ξ0, ξ) ∈ Df,Û (x)

}
. (6)
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Algorithm 1: Inexact Method of Outer Approximations

1 Choose
{(
εk, Ω

k
)}∞
k=0

satisfying Assumption 2 and choose starting point x0 ∈ Rn.

2 Compute any u1 ∈ argmax
u∈Ω0

f(x0, u) and set U0 ← {u1}.

3 Set k ← 0.
4 while true do
5 Compute any xk+1 such that ΘUk (xk+1) ≥ −εk.

6 Compute any u′ ∈ argmax
u∈Ωk

f(xk+1, u).

7 Augment Uk+1 ← Uk ∪ {u′}.
8 k ← k + 1.

9 end

3 Inexact Method of Outer Approximations

Our approach is based on the method of outer approximations [22, Section 3.4.5],
which is a type of cutting-plane method (see, e.g., [9, 15, 16, 18]). 1 An inexact
method of outer approximation does not require exact solutions of the alternating
block subproblems (

min
x∈Rn

ΨÛ (x), max
u∈U

f(x̂, u)

)
.

In Algorithm 1 we state the inexact method from [22, Algorithm 3.4.26]. The
algorithm we propose in the next section can be viewed as a derivative-free exten-
sion of Algorithm 1. We note that an exact method of outer approximation may

be obtained by setting
(
εk = 0, Ωk = U

)
for all k.

Algorithm 1 entails the iterative solution of alternating block subproblems:
Line 5 is an εk-accurate unconstrained minimization subproblem over the variables
x, while the subproblem in Line 6 is an Ωk-constrained maximization over the
variables u. To prove a convergence result for Algorithm 1, we require the following

assumptions on the sequence
{(
εk, Ω

k
)}∞

k=0
.

Assumption 2 The following properties hold for the family of subsets {Ωk}∞k=0 and

the tolerances {εk}∞k=0:

a. Ωk ⊆ U for all k = 0, 1, . . . .
b. For all k = 0, 1, . . . and all x̂ ∈ Rn, the subproblem max

u∈Ωk
f(x̂, u) can be solved

exactly.

c. min
x∈Rn

max
u∈Ωk

f(x, u) has a solution for all k = 0, 1, . . . .

d. There exists a strictly positive, monotone decreasing function δ : N→ R satisfying

limk→∞ δ(k) = 0 and a constant κ0 > 0 such that for all u ∈ U , there exists

u′ ∈ Ωk such that ‖u− u′‖ ≤ κ0δ(k) for all k = 0, 1, . . . .
e. For all k = 0, 1, . . . , εk ∈ [0, 1] and limk→∞ εk = 0.

We note that Assumption 2.b is implicitly a statement on tractability and can
be satisfied when, for instance, |Ωk| < ∞ for all k = 0, 1, . . . . We also note that

1 Our selection of such an approach is informed by a recent study [5] highlighting merits of
cutting plane methods in various robust optimization settings.
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Assumption 2.c ensures that an analog of Assumption 1.c holds when U is replaced
by Ω.

Assumption 2.d is discouraging in that it effectively requires the (potentially
finite) sample Ωk to be asymptotically dense in U . This requirement is inevitable
without further assumptions on f , however, since Line 6 of Algorithm 1 seeks an
approximation to the global maximizer over U of f(xk+1, u) in order to recover
the convergence results of the exact method of outer approximation [22]. Assump-
tion 2.d is also the assumption that inspires us to separate the roles of Ωk and Uk;
the latter forms the basis for our approximate optimality measure but need not
cover U asymptotically.

Because the convergence of our proposed algorithm, Algorithm 2, depends on
the convergence of Algorithm 1, we prove the following theorem.

Theorem 1 Suppose Assumptions 1 and 2 hold. Let x∗ be an accumulation point of the

sequence {xk}∞k=1 generated by Algorithm 1. Then Θ(x∗) = 0; thus, by Proposition 3,

0 ∈ ∂Ψ(x∗).

The proof, provided in Appendix B, shows that as Algorithm 1 progresses,

1. the sequence of finite max functions ΨΩk(x) are, uniformly over x ∈ Rn, arbi-
trarily good approximations of Ψ(x) and

2. the sequence of optimality measures ΘΩk(x) are, uniformly over x ∈ Rn, arbi-
trarily good approximations of the optimality measure Θ(x).

4 A New Derivative-Free Algorithm

The main challenge of creating a derivative-free extension of Algorithm 1 is in
computing sufficiently accurate approximations to ΘUk(xk) in the absence of ∇f
values. We show that by computing a parsimonious subset of sufficiently accurate
gradient approximations, as is done in the framework of manifold sampling [19, 20],
we are able to compute such approximations of ΘUk(xk). In particular, by using
a manifold sampling framework, we do not need to maintain gradient approxima-
tions corresponding to every element in Uk from Algorithm 1, potentially yielding
savings on the computational burden of function evaluations in a derivative-free
setting.

To develop a derivative-free variant of Algorithm 1, for which we proved conver-
gence in Theorem 1, our primary concern is in developing a suitable approximation
of Line 5 in Algorithm 1. We begin by introducing notation specific to our lack of
derivative information.

For the inner method used to approximate Line 5 in Algorithm 1, we index
iterations by t, while we continue to index the outer iterations of Algorithm 1 by
k. Moreover, to denote primal iterates within the inner method, we use yt instead
of xk, the latter being reserved for iterates of the outer method.

For a fixed uj ∈ Uk, where j ∈ {1, . . . , |Uk|}, we denote the jth local model in
the tth inner iteration by mt

j : Rn → R. Within the algorithm, we enforce that

mt
j(y) is a fully linear (see, e.g., [12]) model of f(y, uj) for all y ∈ B(yt,∆t), where

yt ∈ Rn is a primal iterate and ∆t > 0 is a trust-region radius.2

2 We note that the proposed algorithm and its analysis could also employ inexact gradient
values, provided that these gradients satisfy the approximation specified in Assumption 3.
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Assumption 3 Given ∆ > 0, yt ∈ Rn, and Uk ⊆ U , there exist constants κf > 0 and

κg > 0, independent of ∆, yt, and Uk, such that for all uj ∈ Uk

|f(yt + s, uj)−mt
j(y

t + s)| ≤ κf∆2 ∀s ∈ B(0,∆)

‖∇f(yt + s, uj)−∇mt
j(y

t + s)‖ ≤ κg∆ ∀s ∈ B(0,∆).

Additionally, the interpolation condition mt
j(y

t) = f(yt, uj) holds for all j = 1, . . . , |Uk|.

As in a manifold sampling algorithm, we employ in iteration t a set of generator

indices, Jt,k, corresponding to elements {uj ∈ Uk : j ∈ Jt,k}. At the end of this
section we discuss how Jt,k ⊆ {1, . . . , |Uk|} is selected in iteration t. Given Jt,k, we
define a matrix of model gradients and vector of function values, respectively, by

Gt ,
[
∇mt

σ(1)(y
t), . . . ,∇mt

σ(|Jt,k|)(y
t)
]
∈ Rn×|J

t,k|

F t ,
[
f(yt, uσ(1)), . . . , f(yt, uσ(|Jt,k|))

]>
∈ R|J

t,k|,

where σ : {1, . . . , |Uk|} 7→ {1, . . . , |Uk|} is a permutation such that ∪i=1,...,|Jt,k| σ(i) =

Jt,k.

We now define a natural approximation Θ̃Uk to the approximation ΘUk of Θ.
To this end, we define a set analogous to that in (4):

Dmt,Uk(yt) , co

{[
ΨUk(yt)−mt

j(y
t)

∇xmt
j(y

t)

]
: uj ∈ Uk

}
. (7)

Analogously to how we let (ξ0, ξ) ∈ R× Rn denote elements of Df,U (x) in (5), we
employ arbitrary elements (z0, z) ∈ R× Rn of Dmt,Uk(yt) in defining the approxi-
mate inexact measure

Θ̃tUk(yt) , −min
z0,z

{
z0 +

1

2
‖z‖2 : (z0, z) ∈ Dmt,Uk(yt)

}
. (8)

We remark that while (8) considers the convex set Dmt,Uk(yt) built on information

from all |Uk| models, we generally will not need to construct this many models, as
will be elucidated in our algorithm; in fact, we need to construct and ensure the
fully linear approximation of only |Jt,k| many models in inner iteration t.

The following lemma bounds the error made by Θ̃tUk(yt) in approximating
ΘUk(yt).

Lemma 1 Let Assumption 3 hold. For all (z0, z) ∈ Dmt,Uk(yt), there exists (ξ0(z0, z),

ξ(z0, z)) ∈ Df,U (yt) so that

z0 = ξ0(z0, z)
‖z − ξ(z0, z)‖ ≤ κg∆k.

Proof Since Dmt,Uk(yt) is convex and finitely generated (hence, compact), Caratheodory’s

theorem ensures that any (z0, z) ∈ Dmt,Uk(yt) can be expressed as a positive con-
vex combination of N ≤ n + 1 of its generators. Without loss of generality, let
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these generators correspond to the first N elements of Uk. That is, there exist
λ1, . . . , λN ∈ (0, 1] with

∑N
j=1 λj = 1 such that[

z0
z

]
=

N∑
j=1

λj

[
ΨUk(yt)−mt

j(y
t, uj)

∇xmt
j(y

t)

]
. (9)

By using the same λj as in (9), we let[
ξ0(z0, z)
ξ(z0, z)

]
=

N∑
j=1

λj

[
ΨUk(yt)− f(yt, uj)

∇xf(yt, uj)

]
and note that |z0 − ξ0(z0, z)| = 0.

By the definition in (4),[
ΨUk(yt)− f(yt, uj)

∇xf(yt, uj)

]
∈ Df,U (yt), j = 1, . . . , N,

and thus since Df,U (yt) is a convex set, we have that (ξ0(z0, z), ξ(z0, z)) ∈ Df,U (yt).
By applying Assumption 3 and the properties of λ, we thus have that

‖z − ξ(z0, z)‖ ≤
N∑
j=1

λj

∥∥∥∇xmt
j(y

t)−∇xf(yt, uj)
∥∥∥ ≤ κg∆t.

In the inner iteration t, our method employs a second-order model of the primal
problem suggested by (2) around a current iterate yt, but it replaces the uncer-
tainty set U by the finite set {uj : j ∈ Jt,k} ⊆ Uk. We then consider the extended
trust-region subproblem

min
(z,d)∈R×Rn

{
z +

1

2
d>Btd : F t − ΨUk(yt)e + (Gt)>d ≤ ze, ‖d‖ ≤ ∆t

}
, (P)

where e ∈ R|J
t,k| denotes the vector of ones and Bt ∈ Sn is an approximating

Hessian. We discuss in Section 6.1 a natural means for constructing Bt from in-
terpolation conditions; here we remark that we do not require Bt to be positive
definite for a given t but instead impose a uniform bound on ‖Bt‖ as an algorithmic
parameter κmh.

Our proposed algorithm applies a step acceptance test and a trust-region radius
update typical of trust-region methods. That is, given a(n approximate) minimizer
(zt, dt) of (P), and provided a certain condition (described below) on the generator
set {uj ∈ Uk : j ∈ Jt,k} holds, we define the ratio of the actual decrease witnessed
in ΨUk and the decrease predicted by the model in (P) by

ρt ,
ΨUk(yt)− ΨUk(yt + dt)

−(zt + 1
2d
t>Btdt)

. (10)

If ρt is sufficiently positive, then we accept the step dt and possibly expand the
trust-region radius; otherwise, the step dt is rejected, and the trust-region radius
is reduced.

We next discuss how to solve (P) approximately in order to achieve a sufficient
reduction in the primal model. A dual measure χ is discussed in [11] for constrained
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trust-region subproblems; for our particular subproblem (P), this dual measure is
readily shown to be

χt , min
λ

{
‖Gtλ‖+ λ>(ΨUk(yt)e− F t) : λ ≥ 0, e>λ = 1

}
. (11)

In Section 6.1, we employ the relation that χt can be computed as the negative
value of the Lagrangian dual to (P) when we set Bt = 0n×n and ∆t = 1.

Before stating in Theorem 2 a sufficient decrease guarantee for (P), we show
that χt is an upper bound on −Θ̃tUk(yt), the negative approximate optimality
measure, provided certain conditions hold. We first define the relevant subset of
Dmt,Uk(yt) in (7) by

Dmt,Uk
Jt,k

(yt) , co

{[
ΨUk(yt)−mt

j(y
t, uj)

∇xmt
j(y

t)

]
: uj ∈ Uk, j ∈ Jt,k

}
. (12)

Proposition 5 For the convex subset Dmt,Uk
Jt,k

(yt) ⊆ Dmt,Uk(yt) in (12), provided

there exists (z0, z) ∈ Dmt,Uk
Jt,k

(yt) satisfying z0 + 1
2‖z‖

2 ≤ 1, then in the tth inner

iteration of Algorithm 2,

−Θ̃tUk(yt) ≤ χt.

Proof We have that

−Θ̃tUk(yt) = min
z0,z

{
z0 +

1

2
‖z‖2 : (z0, z) ∈ Dmt,Uk(yt)

}
≤ min

z0,z

{
z0 +

1

2
‖z‖2 : (z0, z) ∈ Dmt,Uk

Jt,k
(yt)

}
≤ min

z0,z

{
z0 +

1

2
‖z‖ : (z0, z) ∈ Dmt,Uk

Jt,k
(yt)

}
= χt,

where the last inequality comes from the assumption in the proposition statement,
and the last equality is immediate from the definitions of Dmt,Uk

Jt,k
(yt) and χt.

With this dual measure χt defined for our particular setting, we can now state
the following theorem (adapted from [11]), which ensures that we can use Algo-
rithm 3, provided in Appendix C, to obtain sufficient model reduction.

Theorem 2 Suppose Algorithm 3 is called to solve an instance of (P) with algorithmic

constants satisfying 0 < κubs < κlbs < 1, κfrd ∈ (0, 1), and κepp ∈ (0, 1
2 ). Then:

– Algorithm 3 terminates in a finite number of iterations, and

– [zt; dt] returned by Algorithm 3 satisfies the constraints in (P) and

−
(
zt +

1

2

(
dt
)>

Btdt
)
≥ κfcdχt min

{
χt
κmh

,∆t, 1

}
, (13)

where κfcd = min
{

1
2κubsκfrd, 2κubs(1− κlbs)

}
satisfies κfcd < 1.

As a result of Theorem 2, we are justified in making the following assumption.

Assumption 4 The constant κfcd ∈ (0, 1) is such that for any primal problem (P),

we can find a (zt, dt) satisfying the relation (13) and constraints in (P).
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As for the selection of a set Jt,k in inner iteration t and the mentioned criteria
for step acceptance, we make use of a manifold sampling loop as in [19, 20]. We
initialize Jt,k with the active index (indices) j∗(yt) in the finite maximum function
ΨUk(yt); that is,

j∗(yt) ∈ argmax
j

{
f(yt, uj) : uj ∈ Uk

}
.

We obtain a trial step (zt, dt) from the approximate solution of (P). Upon com-
puting the value of ΨUk(yt + dt), we consider the active index (indices) j∗(yt + dt)
in ΨUk(yt+dt). If j∗(yt+dt) ⊆ Jt,k, we stop and perform the step acceptance test.
Otherwise, we augment Jt,k by j∗(yt + dt) and compute a new trial step (zt, dt).
Because there are finitely many elements in Uk, this augmentation, which we refer
to as the manifold sampling loop, terminates in at most |Uk| steps.

We provide a full statement of the proposed derivative-free algorithm for the
solution of (1) as Algorithm 2, with algorithmic parameter assumptions appearing
in Assumption 5.

Assumption 5 The algorithmic parameters in Algorithm 2 satisfy the following: κmh >

0, γ > 1, η1 ∈ (0, 1), and η2 ∈ (0, 1/κmh).

A practical implementation of Algorithm 2 will be discussed in Section 6. A
careful reader will note that performing the acceptability test in Line 23 is waste-
ful in terms of function evaluations; within the manifold sampling loop of inner
iteration t, if a value of χt is encountered that will fail the acceptability test, then
inner iteration t is guaranteed to be unacceptable, since χt is monotonically non-
increasing as Jt,k is augmented. We have chosen to present the algorithm as is for
clarity in our convergence analysis.

5 Convergence Analysis

The ultimate goal of our analysis is to prove the following theorem, which can be
seen as a natural extension of Theorem 1.

Theorem 3 Let Assumptions 1, 2, 3, 4, and 5 hold. Let x∗ be an accumulation point

of the sequence {xk}∞k=0 generated by Algorithm 2. Then 0 ∈ ∂Ψ(x∗).

We proceed by analyzing Phase 1 of Algorithm 2, beginning in Line 9. Our
strategy for proving Theorem 3 is to demonstrate that, for each outer iteration
k, within a finite number of inner iterations t, we attain −Θ̃tUk(yt) ≤ χt < εk,
where we have made use of Proposition 5. Then, by upper-bounding the inexact
optimality measure −ΘUk(xk+1) used in Line 5 of Algorithm 1 in terms of the
approximate optimality measure −Θ̃tUk(xk+1), we will have proved the theorem,
given the otherwise-identical algorithmic behavior of Algorithm 1 and Algorithm 2.

We begin by demonstrating that if χt 6= 0 in Phase 1, then a successful iteration
must occur within a finite number of inner iterations.

Lemma 2 Let Assumptions 3, 4, and 5 hold. If Line 24 of Algorithm 2 is reached and

∆t < min

{
min

{
κfcd(1− η1)

3κf + 1
2κmh

, η2

}
χt, 1

}
,

then the test in Line 26 of Algorithm 2 is passed, and the inner iteration t is successful.
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Algorithm 2: Derivative-Free Method of Outer Approximations

1 Choose
{(
εk, Ω

k
)}∞
k=0

satisfying Assumption 2 and algorithmic parameters

(κmh, γ, η1, η2) satisfying Assumption 5.
2 Choose starting point x0 ∈ Rn, U0 ⊆ U , and trust-region radius ∆init > 0.
3 Set k ← 0.
4 while true do
5 t← 0.

6 yt ← xk, ∆t ← ∆init.
7 χt ←∞.
8 while χt > εk do
9 (Phase 1) Choose set Jt,k satisfying

argmax
j=1,...,|Uk|

f(yt, uj) ⊆ Jt,k ⊆ {1, . . . , |Uk|}.

10 while true do
11 (Manifold Sampling Loop) For each j ∈ Jt,k, construct a model mtj

such that mtj(s) is a fully linear model of f(y, uj) for all y ∈ B(yt,∆t).

12 Construct vector F t and matrix Gt with entries and columns, respectively,

corresponding to elements of Jt,k.
13 Choose an approximate Hessian Bt satisfying ‖Bt‖ ≤ κmh.

14 Obtain (zt, dt) satisfying the constraints in (P) and (13).

15 if j∗(yt + dt) ⊆ Jt,k then
16 Let j∗ ∈ j∗(yt + dt) be arbitrary.
17 break (Go to Line 22).

18 else
19 Jt,k ← Jt,k ∪ j∗(yt + dt).
20 end

21 end
22 ρt ← 0.
23 if ∆t < η2χt (acceptable iteration) then
24 Compute ρt as in (10).
25 end
26 if ρt > η1 (successful iteration) then
27 yt+1 ← yt + dt.
28 ∆t+1 ← γ∆t.

29 else
30 ∆t+1 ← γ−1∆t.
31 end
32 t← t+ 1.

33 end

34 xk+1 ← yt.

35 (Phase 2) Compute u′ ∈ argmax
u∈Ωk

f(xk+1, u).

36 Augment Uk+1 ← Uk ∪ {u′}.
37 k ← k + 1.

38 end

Proof Consider

|ρt − 1| =
∣∣∣∣ΨUk(yt)− ΨUk(yt + dt)

−(zt + 1
2d
>Btd)

− 1

∣∣∣∣
=

∣∣∣∣∣ΨUk(yt)− ΨUk(yt + dt) + zt + 1
2d
>Btd

−(zt + 1
2d
>Btd)

∣∣∣∣∣ , numt

denomt
.

(14)
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By the constraints of (P),

zt = max
j∈Jt,k

{
F tj + (Gtj)

>dt
}
− ΨUk(yt), (15)

where F tj denotes the jth entry of F t and Gtj denotes the jth column of Gt. Let

j∗∗ ∈ Jt,k denote a maximizing index of the right-hand side in (15). Then, we can
bound the numerator of (14) by

numt =
∣∣∣F tj∗∗ +Gt>j∗∗d

t − ΨUk(yt + dt) + 1
2d
>Btd

∣∣∣
≤
∣∣∣F tj∗∗ +Gt>j∗∗d

t − f(yt + dt, uj
∗∗

)
∣∣∣

+
∣∣∣f(yt + dt, uj

∗∗
)− ΨUk(yt + dt)

∣∣∣+ ∣∣∣12d>Btd∣∣∣
≤
(
κf +

1

2
κmh

)
∆2
t +

∣∣∣f(yt + dt, uj
∗∗

)− ΨUk(yt + dt)
∣∣∣ ,

(16)

where in the last inequality we have used Assumption 3 and the bound on κmh

from Assumption 5. Now, let j∗ be shorthand for j∗(yt+dt) as defined before (i.e.,
j∗ is any maximizing index in ΨUk(yt + dt)). Observe that, due to Assumption 3
and the definition of j∗∗,

f(yt + dt, uj
∗∗

) + κf∆
2
t ≥ F tj∗∗ +Gt>j∗∗d

t ≥ F tj∗ +Gt>j∗ d
t ≥ f(yt + dt, uj

∗
)− κf∆2

t ,

from which we conclude that

f(yt + dt, uj
∗
)− f(yt + dt, uj

∗∗
) ≤ 2κf∆

2
t . (17)

Then, inserting (17) into (16), we obtain a bound on the numerator

numt ≤
(

3κf +
1

2
κmh

)
∆2
t . (18)

Combining (18) with the Cauchy decrease from Assumption 4, we can continue
the bound in (14) by

|ρt − 1| =

∣∣∣∣∣ΨUk(yt)− ΨUk(yt + dt) + zt + 1
2d
>Btd

−(zt + 1
2d
>Btd)

∣∣∣∣∣ ≤
(

3κf +
1

2
κmh

)
∆2
t

κfcdχt min{∆t, 1}
,

where we have used the fact that if Line 24 of Algorithm 2 is reached, then we
must have (by using Assumption 5) ∆t < η2χt <

χt
κmh

. Thus, by using the supposed
bounds on ∆t, we arrive at

|ρt − 1| ≤

(
3κf +

1

2
κmh

)
∆t

κfcdχt
< 1− η1;

and so, as desired, the test in Line 26 is passed.

We now show that for every pass through Phase 1, the sequence of trust-region
radii tends to zero.
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Lemma 3 Let Assumptions 4 and 5 hold. For each pass through Phase 1 beginning in

Line 8 in Algorithm 2, ∆t → 0 as t→∞.

Proof On successful (i.e., the test in Line 26 is passed) inner iterations t, we have
that

ΨUk(yt)− ΨUk(yt + dt) > η1[−(zt + 1
2d
>Btd)]

≥ η1κfcdχt min

{
χt
κmh

,∆t, 1

}
≥ η1κfcdχt min {∆t, 1}
> η1κfcd

η2
min

{
∆t,∆

2
t

}
,

where we have used the sufficient decrease from Assumption 4, the fact that η2 <

1/κmh from Assumption 5, and the acceptability of successful iterations. If there
are infinitely many successful iterations t, let them be indexed by {ti}∞i=0. Recall

that, by definition, for any uj
′
∈ Uk, ΨUk(xt) ≥ f(xt, uj

′
). Let j∗(t) be shorthand

for j∗(yt + dt), an arbitrary active index in ΨUk(yt + dt). Since ΨUk(·) is bounded
below by Assumption 2, having infinitely many successful iterations implies that

∞ >

∞∑
i=0

ΨUk(yti)− ΨUk(yti + dti) ≥ η1κfcd

η2

 ∑
i:∆ti≥1

∆ti +
∑

i:∆ti<1

∆2
ti

 .

Note that there can only be finitely many iterations such that ∆ti ≥ 1, since
otherwise the summation would be infinite, a contradiction. Thus, we can take

κ4 =
η1κfcd

η2

∑
i:∆ti≥1

∆ti <∞

and conclude that

∞ >

∞∑
i=0

ΨUk(yti)− ΨUk(yti + dti) ≥ κ4 +
η1κfcd

η2

∑
i:∆ti<1

∆2
ti .

It follows that ∆ti → 0 for any infinite subsequence of successful iterations. Since
∆ti increases by a factor of γ on successful iterations, for any successful iterate
ti, γ∆ti ≥ ∆t ≥ ∆ti+1 for all ti < t ≤ ti+1. Thus, when the number of successful
iterations is infinite, ∆t → 0.

If there are only finitely many successful iterations, then there is a last success-
ful iteration ti′ , and the algorithm monotonically decreases ∆t for all iterations
t > ti′ .

Thus, regardless of whether there are infinitely many or finitely many successful
iterations, ∆t → 0.

We now show that Phase 1 terminates in a finite number of iterations; that is,
the loop beginning in Line 9 terminates finitely, returning an iterate xk+1 satisfying
an approximate εk-stationarity condition.

Lemma 4 Let Assumptions 2–5 hold. For the sequence {yt,∆t} generated in the kth

outer iteration of Algorithm 2, there exists t(εk) such that −Θ̃t(εk)

Uk
(yt(εk)) ≤ χt < εk.
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Proof By Assumption 2.e, εk ≤ 1 for all k, and so we conclude from Proposition 5
that it suffices to show the existence of t(εk) such that χt(εk) < εk.

To arrive at a contradiction, suppose that χt ≥ εk for t = 0, 1, . . . . By Lemma 2,
any iteration satisfying ∆t ≤ min{1, κ3χt} is successful, where

κ3 = min

{
κfcd(1− η1)

3κf + 1
2κmh

, η2

}
.

Under the contradiction hypothesis, this implies that every iteration t such that
∆t ≤ min{1, κ3εk} is successful, and so∆t+1 = γ∆t ≥ ∆t. Thus,∆t ≥ γ−1 min{1, κ3εk}
for all t, contradicting Lemma 3.

We have now established in Lemma 4 that in each outer iteration k, Phase 1
terminates in a finite number of iterations t(εk). The following lemma describes
the relationship between Θ̃tUk(yt) and ΘUk(yt).

Lemma 5 Let Assumptions 2, 3, and 5 hold, and suppose that in the tth inner iteration

of Algorithm 2, χt ≤ εk for some εk ∈ (0, 1). Then,

−ΘUk(yt) ≤ εk + κgη2ε
2
k +

1

2
κ2
gη

2
2ε

2
k.

Proof By supposition,

min
z0,z

{
z0 +

1

2
‖z‖2 : (z0, z) ∈ Dmt,Uk(yt)

}
≤ εk;

let (z∗0 , z
∗) denote a minimizer of this convex quadratic over a (convex) compact

domain. By Lemma 1, there exists (ξ0(z∗0 , z
∗), ξ(z∗0 , z

∗)) ∈ Df,Uk(yt) such that

z∗0 = ξ0(z∗0 , z
∗)

‖z∗ − ξ(z∗0 , z∗)‖ ≤ κg∆t.

By the reverse triangle inequality and then squaring both sides, this implies

‖ξ0(z∗0 , z
∗)‖2 + ‖ξ(z∗0 , z∗)‖2 ≤ ‖z∗‖2 + 2κg∆t‖z∗‖+ κ2

g∆
2
t . (19)

Thus, we have

−ΘUk(yt) = min
ξ0,ξ

{
ξ0 +

1

2
‖ξ‖2 : (ξ0, ξ) ∈ Df,Uk(yt)

}
≤ ξ0(z∗0 , z

∗) + 1
2‖ξ(z

∗
0 , z
∗)‖2

≤ z∗0 + 1
2‖z
∗‖2 + κg∆t‖z∗‖+ 1

2κ
2
g∆

2
t by (5) and (19)

≤ εk + κg∆t‖z∗‖+ 1
2κ

2
g∆

2
t by definition of (z∗0 , z

∗)
≤ εk + κgη2χ

2
t + 1

2κ
2
gη

2
2χ

2
t since ∆k < η2‖z∗‖, ‖z∗‖ ≤ χt

≤ εk + κgη2ε
2
k + 1

2κ
2
gη

2
2ε

2
k by supposition,

which is what we intended to show.

We immediately obtain the desired proof of Theorem 3:

Proof (of Theorem 3) By Lemma 5, the iterate xk+1 returned at the end of Phase
1 of Algorithm 2 satisfies

−ΘUk(xk+1) ≤ ε′k , εk + κgη2ε
2
k +

1

2
κ2
gη

2
2ε

2
k.

Since {ε′k} → 0 by virtue that {εk} → 0 due to Assumption 2.e, the result holds
due to Theorem 1, where we simply replace {εk} with {ε′k}.
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6 Practical Considerations

We present here a number of considerations intended to facilitate practical imple-
mentation of Algorithm 2.

6.1 Strong Duality of Trust-Region Subproblem

We first complete a previous claim about the computability of our dual measure
χt in (11).

Consider the Lagrangian function of (P),

L(z, d, λ, µ) , z +
1

2
d>Btd+ λ>

(
F t − ΨUk(yt)e + (Gt)>d− ze

)
+
µ

2
(d>d−∆2

t ).

The dual function
g(λ, µ) , min

z,d
L(z, d, λ, µ) (20)

is unbounded below unless λ>e = 1 and Bt+µIn � 0. Provided that (λ, µ) satisfies
these dual constraints, (20) is equivalent to

g(λ, µ) = λ>(F t − ΨUk(yt)e)− µ
2∆

2
t + min

d

{
1

2
d>(Bt + µIn)d+ (Gtλ)>d

}
. (21)

From (21), we see that g(λ, µ) is unbounded below unless there exists d such that
(Bt + µIn)d = −Gtλ. One can easily show that when Bt + µIn � 0, then every
vector in the set D∗ , {d : (Bt+µIn)d = −Gtλ} is a global minimizer in (21); thus,
even if D∗ is a nontrivial subspace of Rn, it follows that g(λ, µ) is well defined.

Collecting these observations, we arrive at the Lagrangian dual of (P):

max
(µ,λ,v)∈R×R|Jt,k|×Rn

λ>(F t − ΨUk(yt)e) + 1
2v
>Gtλ− µ∆

2
t

2

subject to λ ≥ 0

µ ≥ 0

e>λ = 1
Bt + µIn � 0

(Bt + µIn)v = −Gtλ.

(D)

We remark that, in light of our comment on g(λ, µ) being well defined even when
D∗ is nonsingleton, maximizing over v ∈ Rn in (D) is equivalent to max

λ≥0,µ≥0
g(λ, µ).

We make the following important observation.

Proposition 6 The optimization problems (P) and (D) are strongly dual; that is,

their optimal values are attained and are equal.

Proof Let val(P ) denote the optimal value of (P), and let val(D) denote the op-
timal value of (D). Note that (P) is always feasible, as is evident from the fea-
sibility of (z, d) = (0,0). Moreover, a minimum is attained by Weierstrass’s the-
orem. By weak duality, we always have val(D) ≤ val(P ), so it suffices to show
val(P ) ≤ val(D).

Observe that the Mangasarian-Fromowitz constraint qualification holds for any
problem (P). Indeed, as an extreme case, suppose every constraint of (P) is active
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at a minimum (z∗, d∗); all other cases follow from similar analysis. The gradi-
ent of the trust-region constraint at (z∗, d∗) is [0, d∗]>, and the gradient of the
jth linear inequality is [−1, gj ]>. Then, letting ε > 0 be arbitrary, the vector

v =

[
max
j∈Jt,k

(−gj)>d∗ + ε, −d∗
]>

satisfies [0, d∗]>v < 0 and [−1, gj ]>v < 0 for

all j ∈ Jt,k. Thus, the Karush-Kuhn-Tucker conditions hold at (z∗, d∗); and so,
in particular, complementarity conditions hold at (z∗, d∗). The complementarity
conditions for (P) imply that

λ∗>
(
F t − ΨUk(yt)e +Gt>d∗ − z∗e

)
= 0 (22)

and

µ∗
(
d∗>d∗

2
− ∆2

t

2

)
= 0. (23)

So,

val(P ) = z∗ + 1
2d
∗>Btd∗

= z∗ + 1
2d
∗>(Bt + µ∗I)d∗ − µ

2 d
∗>d∗

= z∗ − 1
2d
∗>Gtλ∗ − µ∗

2 d
∗>d∗

= λ∗>(F t − ΨUk(yt)e +Gt>d∗)− 1
2d
∗>Gtλ∗ − µ∗

2 d
∗>d∗

by (22) and e>λ∗ = 1

= λ∗>(F t − ΨUk(yt)e) + 1
2d
∗>Gtλ∗ − µ∗

2 d
∗>d∗

≤ λ∗>(F t − ΨUk(yt)e) + max
v

{
1

2
v>Gtλ∗ : (Bt + µ∗I)v = −Gtλ∗

}
− µ∗

2
d∗>d∗

= λ∗>(F t − ΨUk(yt)e) + max
v

{
1

2
v>Gtλ∗ : (Bt + µ∗I)v = −Gtλ∗

}
− µ∗

2
∆2
t

= val(D),

where the second-to-last equality is because if µ∗ = 0, then the equality is trivially
true, while if µ∗ > 0, then d∗>d∗ = ∆2

t by (23).

By setting Bt = 0n×n and ∆t = 1 in (D), we obtain val(D) = −χt; this follows
by noting that for any λ∗ in this setting, the corresponding optimal value of µ is
µ∗ = ‖Gtλ∗‖. Thus, computing χt can be seen as a special case of solving (P).

Having established this equivalence, we believe that the following, listed in the
order in which they are reached in Algorithm 2, are three important considerations
in a practical implementation of Algorithm 2.

1. Selection of {Ωk}∞k=0

2. Computation of F t and Gt (i.e., construction of the models mt
j)

3. Selection of Bt

We address each of these items in the remainder of this section.

6.2 Selecting {Ωk}∞k=0

Although convenient for proving convergence, preselecting the sequence {Ωk}∞k=0

at the start of Algorithm 2 is not desirable. In practice, Ωk instead should be
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chosen adaptively, for example, based on function values {f(xk+1, u) : u ∈ Uk}
already obtained in Phase 1.

As a baseline, and in the interest of satisfying Assumption 2, we propose that
selection of Ωk include a variation of the following stochastic sampling scheme.

Let φ : U → R++ be a probability density function that is strictly positive on
its support U . Then, when Phase 2 is reached in the kth iteration of Algorithm 2,
we select a sample size sk ∈ N so that sk is O(k), and we set Ωk = {ω1, . . . , ωsk},
for samples ωi drawn according to φ for each i = 1, . . . , sk. We can easily show
that, because φ is strictly positive on U , Assumption 2.d is satisfied with probability
one. In Section 7, we experiment with combinations of stochastic and deterministic
selection schemes for adaptively selecting Ωk.

6.3 Constructing mt
j

We propose that incorporating second-order information be passed to a selection
of Bt and hence that mt

j simply be a linear model of f(yt, uj) that is formed

by interpolating on a set of sufficiently affinely independent points P ⊂ B(yt,∆t)
such that |P | = n + 1 and yt ∈ P . This is enough to satisfy Assumption 3; see,
for instance, [12, Theorems 2.11 and 2.12]. In practice we reuse previously eval-
uated points as much as possible. If n + 1 affinely independent points contained
in B(yt,∆t) are not available in our algorithm’s history for some uj ∈ Uk, then
we perform evaluations of f(pi, uj) for at most n additional points pi until we are
again assured that mt

j is a fully linear model of f(yt + s, uj) for all s ∈ B(yt,∆t)
(see, e.g., [24, Figure 4.2]).

Consequently, upon exiting Line 11 of Algorithm 2, we have a sufficiently
affinely independent set P ⊂ B(yt,∆t) such that |P | = n+ 1 and yt ∈ P , with the
additional property that we have already obtained function evaluations {f(pi, uj)}
for all pi ∈ P and for all j ∈ Jt,k. This will be valuable immediately in Section 6.4.

6.4 Choosing Bt

We propose to construct Bt in such a way that the model objective in (P) in-
terpolates (or regresses) the set of sample points P = {p1, p2, . . . , p|P |} used in
the construction of {mt

j : j ∈ Jt,k} in Line 11 of Algorithm 2. That is, given the

current iterate yt, letting pi = yt + si for i = 1, . . . , |P |, and letting ΦQ denote the
quadratic polynomial basis defined by

ΦQ(v) ,

[
1

2
v2
1 , . . . ,

1

2
v2
n, v1v2, . . . , v2v3, . . . , vn−1vn

]
,

we obtain coefficients αQ by solving (in the least-squares sense)

 ΦQ(p1)
...

ΦQ(p|P |)

αQ =


ΨU(Jt,k)(p

1)− max
j=1,...,|Jt,k|

{
F tj + (Gtj)

>s1
}

...

ΨU(Jt,k)(p
|P |)− max

j=1,...,|Jt,k|

{
F tj + (Gtj)

>s|P |
}
 , (24)
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where F tj denotes the jth entry of F t, Gtj denotes the jth column of Gt, and

U(Jt,k) = {uj ∈ Uk : j ∈ Jt,k}.
Such a Hessian fitting technique requires no additional function evaluations,

since all the necessary evaluations to compute ΨU(Jt,k)(p) for all p ∈ P were per-
formed in Line 11 of Algorithm 2. Replacing each instance of ΨU(Jt,k) in (24) with
ΨUk could involve many additional function evaluations, and we have found that
Hessian fitting via (24) performs well in practice.

7 Numerical Results

Here we present our results from testing a GNU Octave/Matlab implementation
of a variant of Algorithm 2.

We begin by outlining differences between our implementation and the theo-
retical algorithm. We use algorithmic parameters γ = 2, η1 = .001, κmh = 1000. In
a departure from the theory, we set η2 =∞ (i.e., we effectively do not perform an
acceptability test) because we found that performing an acceptability test hurts
efficiency as measured by the number of function evaluations. For all problems we
will consider, we set the default initial trust region as ∆init = 1 and define the
tolerance sequence by εk = 2−k.

In this implementation, we elect to solve (P) (and hence, by our remarks in
Section 6, the subproblem for the calculation of χt) via Matlab’s fmincon. We do
not perform a feasibility test.

When constructing Bt, we do as proposed in Section 6, with the following
caveat: If ‖Bt‖F > κmh, where ‖ · ‖F denotes the Frobenius norm of a matrix,
then we simply set Bt = 0n×n, effectively yielding a problem without curvature.
In future work we will seek a reasonable subproblem to replace that in (24), but
which appropriately constrains ‖Bt‖F so that this naive removal of curvature need
not occur.

7.1 Test Functions

We employ two classes of functions in order to illustrate features of Algorithm 2.
These functions are of low dimension, in keeping with the typical situation that
for high-dimensional problems, significantly more evaluations can be required by
derivative-free algorithms than are required by their derivative-based counterparts.

The first function we consider is a two-dimensional polynomial:

g(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 − 6.4x3

1 − 4.7x2
1 + 6.2x1 + x6

2 − 11x5
2 + 43.3x4

2

−74.8x3
2 + 56.9x2

2 − 10x2 − 0.1x2
1 + x2

2 + 0.4x2
1x2 + 0.4x2

2x1 − 4.1x1x2.
(25)

A now-standard (to our knowledge, first appearing in [7]) robust optimization
problem is obtained by considering g in (25) in the presence of implementation

errors; that is, we consider the problem

min
x∈R2

ΨUα(x) , min
x∈R2

max
u:‖u‖2≤α

f(x, u) , min
x∈R2

max
u:‖u‖2≤α

g(x+ u),

where α ≥ 0 is a parameter, with α = 0.5 being the value considered by a number
of robust optimization studies (e.g., [6, 7, 13]); see Figure 1. We remark that



18 Matt Menickelly, Stefan M. Wild

Fig. 1 For the function (25), contour plots of (left) the nominal function g(x) = f(x, 0) and
(right) ΨUα (x) for α = 0.5. Local minima are labeled by the letters A,B,C,D and E,F,G,H for
the nominal and robust problems, respectively. We remark that A and H are global minimizers
of the nominal and robust problems, respectively.
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Fig. 2 For fixed L̂, b̂, contours of ΨUα(L̂,b̂)(x) in (26) for α = 0, 0.125, 0.5, 2 (top left, top right,

bottom left, bottom right, respectively).

implementation errors are a special type of uncertainty; in particular, if we have
previously evaluated a point y ∈ R2 (i.e., we have computed the value g(y)), then
for any x ∈ R2, we automatically obtain f(x, y − x) = g(x + (y − x)) = g(y). An
efficient algorithm would exploit this fact; since this paper addresses general robust
problems of the form (1), we deliberately treat f : R2 × R2 → R as a black-box
function.
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The second family of functions we consider are the biquadratics defined in
the following way. Let L̂ ∈ Rn×n denote a lower-triangular matrix with nonzero
diagonal entries, and let b̂ ∈ Rn. With this data (L̂, b̂) we define the minimax
problem

min
x∈Rn

ΨUα(L̂,b̂)
(x) , min

x∈Rn
max

(L,b)∈Uα(L̂,b̂)

1

2
x>L>Lx+ b>x, (26)

where, for α > 0, the uncertainty set Uα(L̂, b̂) is defined by{
(L, b) ∈ Rn×n ×Rn : |Lij − L̂ij | ≤ α, ∀i ≥ j; Lij = 0, ∀i < j; |bi − b̂i| ≤ α,∀i

}
.

Problems defined by (26) have several appealing properties. First, by using
x = 0 in (26), it follows that ΨUα(L̂,b̂)

(x) ≤ 0 for all α ≥ 0. Moreover, because

the nominal problem defined by (L, b) = (L̂, b̂) is a strictly convex quadratic,
ΨUα(L̂,b̂)

(x) is bounded below. It follows that the family of functions satisfies As-

sumption 1. Furthermore, (26) is a useful benchmark for Line 6 of Algorithm 1;
for fixed x, the solution u′ to the subproblem in Line 6 with Ωk = Uα(L̂, b̂) can
be obtained, for instance, from a solution to the bound-constrained convex maxi-
mization problem

max
(`,b)∈Rn2×Rn

{
1

2
`>
(
In ⊗ xx>

)
`+ x>b : (mat(`), b) ∈ Uα(L̂, b̂)

}
, (27)

where mat(`) denotes the matrix L obtained from “unrolling” the vector ` and ⊗
is the Kronecker product of matrices. The particular structure of (27) allows for
a globally optimal solution to be obtained efficiently, despite the fact that (27)
is a convex maximization problem; we provide details on the solution of (27) in
Appendix D. Moreover, problems of the form (26) are useful for benchmarking
because the function ΨUα(L̂,b̂)

is convex (a maximum of convex functions). Since

the stationarity measure ΘUα(L̂,b̂)
is intractable to compute and nontrivial to ap-

proximate, here we use values of ΨUα(L̂,b̂)
to measure progress.

Figure 2 shows a two-dimensional example of (26), where we have fixed a
random (L̂, b̂) and varied the parameter α.

7.2 Illustrative Results

We first illustrate in Figure 3 desirable properties of our implementation.
We initialize our implementation from the four local minima of the nominal

function (25) shown in Figure 1. We initialize U0 as {±0.5ei : i = 1, 2}, where ei
denotes the ith column of the identity matrix I2. We note that with this initial-
ization, the iterates of our implementation manage to identify the basin of the
global minimizer (“H”) of ΨUα(x). In all four cases, in the generation of Figure 3,
a budget of 250 evaluations of the function f was imposed.

We now consider the biquadratics of the form (26) in a “low-dimensional”
setting, in which the dimension of x is n = 2 (and so Uα ⊂ R5), and in a “high-
dimensional” setting, in which n = 8 (and so Uα ⊂ R44). We randomly generate
nominal parameters L̂ and b̂ in the following way. Each entry of L̂ is drawn from a
uniform distribution on [−1, 1]; by inspection, we ensure that all generated values
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Fig. 3 Trajectories of our implementation initialized at local minimizers of the nominal func-
tion (25) (compare with Figure 1).

are nonzero. We then randomly generate b̂ from the subspace spanned by the
eigenvectors of L̂>L̂ corresponding to eigenvalues greater than 0.01. This procedure
ensures that the system L̂>L̂x = b̂ is sufficiently well-conditioned; thus, we can set
x0 as the optimal solution to the nominal problem without encountering excessively
large initial values of ΨUα(L̂,b̂)

(x0). In these experiments, we set U0 as the nominal

values of the parameters, (L̂, b̂).
In each of our two settings (n = 2, n = 8), we choose the parameter α = 1

n and
then generate 30 random instances and run variants of our implementation. As
described below, these variants differ only in the way that Phase 2 is performed
and are meant to test the recommendations made in Section 6.2.

– (Gaussian RBF) If there are fewer than m+1 points in Uk, then we perform a
rank-revealing QR decomposition to complete Uk into an affinely independent
set Ūk. We obtain a model mf (u) by interpolating a Gaussian radial basis
function (RBF) with a linear tail on the set of points {(xk+1, u) : u ∈ Ūk};
see, for example, [25]. We remark that if |Uk| ≥ m + 1, then the function
values {f(xk+1, u) : u ∈ Uk} will already have been performed in Phase 1,
and so no function evaluations are performed in this step. If |Uk| < m + 1,
then we perform an additional m + 1 − |Uk| function evaluations. We then
set Ωk to be an approximate solution (as found by fmincon, initialized at

argmaxu∈Ūk f(xk+1, u)) to the problem max
u∈Uα

mf (u).

– (Uniform Random Sampling) We set Ωk to be a set of dβme random samples
uniformly generated from Uα, where β > 0. After some tuning, we determined
β = 2 was a good value for these problems.

– (Optimal Phase 2) Although clearly not an option in general black-box opti-
mization, we set Ωk to be the solution to (27). This is strictly for benchmarking
purposes.

For a performance metric, we can compute Ψ(x) in postprocessing exactly
at every successful trial step visited by our implementation by solving (27). In
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Fig. 4 Trajectories of Ψ(x) as a function of the number of function evaluations for solving

(26) with the same (L̂, b̂) as shown in the bottom left of Figure 2. We compare Gaussian
RBF (left), uniform random sampling with β = 2 (middle), and Optimal Phase 2 (right). The
vertical dashed lines indicate the end of a pass through Phase 1.
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Fig. 5 Data profiles for Ψ(x) for low-dimensional (n = 2,m = 5, α = 0.5) biquadratics (26).
Levels of accuracy shown are τ = 10−1 and τ = 10−5 in the left and right plots, respectively.
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Fig. 6 Data profiles for Ψ(x) for low-dimensional (n = 8,m = 44, α = 0.125) biquadratics
(26). Levels of accuracy shown are τ = 10−1 and τ = 10−5 in the left and right plots,
respectively.

Figure 4, we demonstrate that our choice of budget is appropriate by showing true
values of Ψ(x) produced for the α = 0.5 instance shown in Figure 2 as a function
of the number of function evaluations.

In Figures 5 and 6, we show the results of these experiments by using data
profiles [21]. Data profiles show the empirical distribution function, in terms of
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the number of evaluations of f , of the problems solved by each solver. Following
[21], we consider a problem to be solved to a level τ ≥ 0 provided that a x is
evaluated satisfying

ΨU (x0)− ΨU (x) ≥ (1− τ)
(
ΨU (x0)− ΨU (xbest)

)
,

where x0 is a starting point common to all of the solvers and ΨU (xbest) denotes
the best ΨU value obtained by any of the solvers within the computational budget
provided.

In the case of uniform random sampling, we performed 30 trials; we show here
the empirical cumulative distribution across all these trials and problems.

We observe in Figures 5 and 6 that while some efficiency is lost by not being
able to perform Phase 2 optimally, the Gaussian RBF interpolation strategy is
reasonable in a derivative-free setting, particularly in the lower accuracy tests
represented by τ = 10−1.
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A Optimality Measure Properties

Here we collect proofs for Section 2.

A.1 Proof of Proposition 2

For fixed x̂ ∈ Rn, we have that θ(x̂, h) from (3) can be written as

θ(x̂, h) = max
(ξ0,ξ)∈E(x̂)

(−ξ0 + Ψ(x̂)) + 〈ξ, h〉+
1

2
‖h‖2 − Ψ(x̂)

= max
(ξ0,ξ)∈E(x̂)

−ξ0 + 〈ξ, h〉+
1

2
‖h‖2,

which is a maximization of a linear function over

E(x̂) , ∪u∈U
[
Ψ(x̂)− f(x̂, u)
∇xf(x̂, u)

]
⊆ coE(x̂) = Df,U (x̂) ⊆ Rn+1.

Thus, its optimal value is equal to the optimal value of

max
(ξ0,ξ)∈Df,U (x̂)

−ξ0 + 〈ξ, ĥ〉+
1

2
‖ĥ‖2 (28)

since an extreme point of Df,U (x̂), which is necessarily in E(x̂) by definition of the convex hull,
is an optimal solution of (28). Thus, we have established that

Θ(x̂) = min
h∈Rn

max
(ξ0,ξ)∈Df,U (x̂)

−ξ0 + 〈ξ, h〉+
1

2
‖h‖2. (29)

Letting b(h, (ξ0, ξ)) , −ξ0 + 〈ξ, h〉+
1

2
‖h‖2, the function involved in the minimax expression

of (29), we note that
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– b(h, (ξ0, ξ)) is continuous on Rn × Rn+1;

– b(h, (ξ̂0, ξ̂)) is strictly convex in h for any (ξ̂0, ξ̂) ∈ Df,U (x̂);

– b(ĥ, (ξ0, ξ)) is concave in (ξ0, ξ) for any ĥ ∈ Rn;

– Df,U (x̂) is, by definition, a convex set; and

– b(h, (ξ0, ξ))→∞ as ‖h‖ → ∞ uniformly in (ξ0, ξ) ∈ Df,U (x̂).

Thus, the conditions of von Neumann’s theorem apply, and so we conclude that (29) is equiv-
alent to

Θ(x̂) = max
(ξ0,ξ)∈Df,U (x̂)

min
h∈Rn

−ξ0 + 〈ξ, h〉+
1

2
‖h‖2. (30)

Now, for a fixed (ξ̂0, ξ̂) ∈ Df,U (x̂), the solution to the unconstrained convex inner minimization

problem of (30) satisfies (by sufficient and necessary first-order conditions) h = −ξ̂. Thus, the

inner minimization in (30) can be replaced with −ξ̂0 −
‖ξ̂‖2

2
, yielding the desired result

Θ(x̂) = max
(ξ0,ξ)∈Df,U (x̂)

−ξ0 −
1

2
‖ξ‖2.

A.2 Proof of Proposition 3

Clearly, ξ0 = Ψ(x̂)− f(x̂, u) ≥ 0 for all (ξ0, ξ) ∈ Df,U (x̂). Combined with the nonnegativity of
norms, it follows immediately from the definition of Θ(x̂) in (5) that Θ(x̂) = 0 if and only if
0 ∈ Df,U (x̂). Thus, it suffices to show that 0 ∈ ∂Ψ(x̂) if and only if 0 ∈ Df,U (x̂).

Suppose that 0 ∈ ∂Ψ(x̂). Let u∗(x̂) ∈ U∗(x̂), where we have defined

U∗(x̂) , argmax
u∈U

f(x̂, u).

Then, for any such u∗(x̂), Ψ(x̂)− f(x̂, u∗(x̂)) = 0. It follows that the set

D∗(x̂) , {(ξ0, ξ) : ξ0 = 0, ξ ∈ ∂Ψ(x̂)}

satisfies D∗(x̂) ⊆ E(x̂) ⊆ Df,U (x̂). Thus, 0 ∈ Df,U (x̂).

Now suppose that 0 ∈ Df,U (x̂). By Caratheodory’s theorem and the convex hull definition

of Df,U (x̂) in (4), there exist q ≤ n+ 2; u1, . . . , uq ∈ U ; and {λ ∈ Rq+ : λ1 + · · ·+λq = 1} such
that

0 =

q∑
j=1

λj

[
Ψ(x̂)− f(x̂, uj)
∇xf(x̂, uj)

]
. (31)

Clearly, Ψ(x̂) − f(x̂, û) = argmax
u∈U

f(x̂, u) − f(x̂, û) ≥ 0 for all û ∈ U . Thus, projecting the

convex combination (31) into its first coordinate, we must have that all q vectors satisfy
Ψ(x̂)− f(x̂, uj) = 0; that is,

uj ∈ argmax
u∈U

f(x̂, u) for j = 1, . . . , q. (32)

Likewise, projecting (31) into its last n coordinates,

0 =

q∑
j=1

λj∇xf(x̂, uj). (33)

Together, (32) and (33) imply that 0 ∈ ∂Ψ(x̂).
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A.3 Proof of Proposition 4

For completeness, we state the definition of a continuous set-valued mapping.

Definition 1 Consider a sequence of sets {Sj}∞j=0 ⊂ Rn.

1. The point x∗ ∈ Rn is a limit point of {Sj} provided dist(x∗, Sj)→ 0.
2. The point x∗ ∈ Rn is a cluster point of {Sj} if there exists a subsequence K such that

dist(x∗, Sj)→K 0.
3. We denote the set of limit points of {Sj} by lim inf Sj and refer to it as the inner limit.
4. We denote the set of cluster points of {Sj} by lim supSj and refer to it as the outer limit.

Definition 2 We say that a set-valued mapping Γ : Rn → 2R
m

is

1. outer semicontinuous (o.s.c.) at x̂ provided for all sequences {xj} → x̂, lim supΓ (xj) ⊆
Γ (x̂),

2. inner semicontinuous (i.s.c.) at x̂ provided for all sequences {xj} → x̂, lim inf Γ (xj) ⊇
Γ (x̂), and

3. continuous at x̂ provided Γ is o.s.c. and i.s.c. at x̂.

Without proof, we state Corollary 5.3.9 from [22].

Proposition 7 Suppose that g : Rn × Rm → Rp is continuous and that Γ : Rn → 2R
m

is a
continuous set-valued mapping. Then, the set-valued mapping G : Rn → 2R

p
defined by

G(x) , co {g(x, u) : u ∈ Γ (x)} (34)

is continuous.

By using Proposition 7, we get the following intermediate result needed to prove continuity
of Θ.

Proposition 8 Let Assumption 1 hold; then, the set-valued mapping Df,U (·) : Rn → 2R
n+1

is continuous.

Proof We look to (34) in Proposition 7 as a template. In the definition of Df,U (·), Γ (x) = U
for all x ∈ Rn, and as such, U is trivially a continuous set-valued mapping. We have only to
show that D : Rn × Rm → Rn+1 defined by

D(x, u) ,

[
Ψ(x)− f(x, u)
∇xf(x, u)

]
is continuous. Continuity follows since, by Assumption 1, Ψ(x)−f(x, u) is a continuous function
on Rn × U , and ∇xf(x, u) : Rn × U → Rn is a Lipschitz continuous function on Rn × U .

We can now prove Proposition 4:

Proof Consider the equivalent form of Θ from Proposition 2 in (5),

Θ(x̂) = max
(ξ0,ξ)∈Df,U (x̂)

q(ξ0, ξ),

where we have defined the concave quadratic q(ξ0, ξ) , −ξ0 −
1

2
‖ξ‖2.

Let x̂ be arbitrary, and let {xj}∞j=0 be an arbitrary sequence satisfying xj → x̂. For

j = 0, 1, . . . , let (ξj0, ξ
j) be any (ξj0, ξ

j) ∈ Df,U (xj) such that Θ(xj) = −ξj0 −
1

2
‖ξj‖2.

The sequence {xj}∞j=0 is bounded (it is convergent by assumption); we can also show that

despite the arbitrary selection, there exists M ≥ 0 such that ‖(ξj0, ξj)‖ ≤M uniformly for j =

0, 1, . . . . To see this, suppose instead that ‖(ξj0, ξj)‖ → ∞. Then, sinceDf,U (x̂) is a compact set,
there exists M ≥ 0 such that max

(ξ0,ξ)∈Df,U (x̂)
‖(ξ0, ξ)‖ = M . By our contradiction hypothesis,
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there exists j sufficiently large so that ‖(ξj0, ξj)‖ > 2M for all j ≥ j. From Proposition 8, Df,U (·)
is a continuous set-valued mapping. Thus, for any ε > 0, there exists j(ε) ≥ j sufficiently large

so that dist
(

(ξj0, ξ
j),Df,U (x̂)

)
< ε for all j > j(ε); this means that ‖(ξj0, ξj)‖ ≤ M + ε. This

is impossible for all ε ∈ [0,M ], yielding a contradiction.

Thus, since ‖(ξj0, ξj)‖ ≤ M for j = 0, 1, . . . and because q(·) is a continuous function of

(ξ0, ξ), lim sup
j→∞

q(ξj0, ξ
j) exists by the Bolzano-Weierstrass theorem. Let K denote a subsequence

witnessing

lim
j∈K

q(ξj0, ξ
j) = lim sup

j→∞
q(ξj0, ξ

j),

and let (ξ̂0, ξ̂) = lim
j∈K

(ξj0, ξ
j) denote the corresponding accumulation point. Again using the

fact that Df,U (·) is o.s.c., we conclude that (ξ̂0, ξ̂) ∈ Df,U (x̂). Using the definition of Θ(x̂), we
have

Θ(x̂) ≥ q(ξ̂0, ξ̂) = lim
j∈K

q(ξj0, ξ
j) = lim sup

j→∞
q(ξj0, ξ

j) = lim sup
j→∞

Θ(xj). (35)

As written, (35) means that Θ(·) is upper semicontinuous. We now demonstrate that Θ(·) is
also lower semicontinuous, which will complete the proof of the continuity of Θ(·). To establish
a contradiction, we suppose that there exist x̂ ∈ Rn and a sequence {xj}∞j=0 satisfying xj → x̂

such that Θ(xj) exists for all j and

lim
j→∞

Θ(xj) < Θ(x̂). (36)

Let (ξ̂0, ξ̂) ∈ Df,U (x̂) satisfy Θ(x̂) = q(ξ̂0, ξ̂). Since Df,U (x̂) is a continuous set-valued map-

ping by Proposition 8, there exists a (ξj0, ξ
j) ∈ Df,U (xj) satisfying Θ(xj) = q(ξj0, ξ

j) for

all j = 0, 1, . . . such that (ξj0, ξ
j) → (ξ̂0, ξ̂). Since q(·) is a continuous function in (ξ0, ξ),

lim
j→∞

q(ξj0, ξ
j) = q(ξ̂0, ξ̂). Thus, by using the contradiction hypothesis (36), we have

q(ξ̂0, ξ̂) = lim
j→∞

q(ξj0, ξ
j) = lim

j→∞
Θ(xj) < Θ(x̂) = q(ξ̂0, ξ̂),

the desired contradiction.

B Convergence of Inexact Method of Outer Approximation

We now establish intermediate results needed to prove Theorem 1.
For brevity of notation, we use the following shorthand for the quadratic objective that

appears in the definition of the optimality measure (6):

qÛ (x, h) , max
u

{
f(x, u) + 〈∇xf(x, u), h〉+

1

2
‖h‖2 : u ∈ Û

}
. (37)

Consistent with our previous notation, we write q(x, h) in (37) in the case where Û = U .

Lemma 6 Let S ⊂ Rn be a bounded subset. Suppose Assumptions 1 and 2 hold, and let
L ∈ [0,∞) be a Lipschitz constant valid for f(·, ·) and ∇xf(·, ·) on S × U . Then, there exists
κ1 <∞ such that for all x ∈ S and for all k = 0, 1, . . . ,

|ΨΩk (x)− Ψ(x)| ≤ κ1δ(k).

Moreover, for the δ : N→ R from Assumption 2, there exists κ2 ∈ (κ1,∞) such that

|ΘΩk (x)−Θ(x)| ≤ κ2δ(k).
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Proof Since Ωk ⊆ U , we have that ΨΩk (x̂) ≤ Ψ(x̂) for all x̂ ∈ S and all k = 0, 1, . . . .
Fix x̂ ∈ S and u∗(x̂) ∈ U∗(x̂). Then, by definition of Ψ , Ψ(x̂) = f(x̂, u∗(x̂)). By Assump-

tion 2, for all k, there exists [u∗(x̂)]′ ∈ Ωk and κ0 > 0 such that ‖u∗(x̂)− [u∗(x̂)]′‖ ≤ κ0δ(k).
Thus,

ΨΩk (x̂) ≥ f(x̂, [u∗(x̂)]′) ≥ f (x̂, u∗(x̂))− Lκ0δ(k) = Ψ(x̂)− Lκ0δ(k), (38)

proving the first part of the lemma, with κ1 = Lκ0.
For the second part, let x̂ ∈ S and ĥ ∈ Rn be arbitrary. By the definition of q in (37),

min
h∈Rn

qΩk (x̂, h) ≤ qΩk (x̂, ĥ) ≤ q(x̂, ĥ)

for any k = 0, 1, . . .. Since ĥ was arbitrary, we can replace it with a minimizer of the convex
q(x̂, ·); that is,

min
h∈Rn

qΩk (x̂, h) ≤ min
h′∈Rn

q(x̂, h′). (39)

Observing that Θ in (2) and ΘΩk in (6) can be written, respectively, as

Θ(x̂) = min
h∈Rn

q(x̂, h)− Ψ(x̂)

ΘΩk (x̂) = min
h∈Rn

qΩk (x̂, h)− ΨΩk (x̂),

we conclude from (38) and (39) that

ΘΩk (x̂) = min
h∈Rn

qΩk (x̂, h)− ΨΩk (x̂)

≤ min
h∈Rn

q(x̂, h)− ΨΩk (x̂)

= Θ(x̂) + Ψ(x̂)− ΨΩk (x̂)
≤ Θ(x̂) + Lκ0δ(k).

(40)

Denote the minimizer of the ΘΩk (x̂) by

hk(x̂) , argmin
h∈Rn

qΩk (x̂, h)− ΨΩk (x̂).

Then, from the dual characterization of ΘΩk (x̂) in Proposition 2, we have that

hk(x̂) ∈
{
−ξ : (ξ0, ξ) ∈ Df,Ωk (x̂)

}
=
{
−∇f(x̂, u) : u ∈ Ωk

}
. (41)

By Assumption 1 and since we supposed S and Ωk are bounded, ∇xf(·, u) is continuous over
S for each u ∈ Ωk; furthermore, by (41), there exists M ∈ [0,∞) such that ‖hk(x)‖ ≤ M for
all x ∈ S. Let u∗(x̂) ∈ U be a maximizer in the definition of q (x̂, hk(x̂)) in (37) such that

q (x̂, hk(x̂)) = f (x̂, u∗(x̂)) + 〈∇xf (x̂, u∗(x̂)) , hk(x̂)〉+
1

2
‖hk(x̂)‖2. (42)

By Assumption 2, for all k, there exists [u∗(x̂)]′ ∈ Ωk such that ‖u∗(x̂)− [u∗(x̂)]′‖ ≤ κ0δ(k).
Combining that with the Lipschitz continuity of Assumption 1, we obtain both∣∣f (x̂, u∗(x̂))− f

(
x̂, [u∗(x̂)]′

)∣∣ ≤ Lκ0δ(k)

and

|〈∇xf (x̂, u∗(x̂))−∇xf(x̂, [u∗(x̂)]′), hk(x̂)〉| ≤ ‖∇xf (x̂, u∗(x̂))−∇xf(x̂, [u∗(x̂)]′)‖ ‖hk(x̂)‖
≤ MLcδ(k).

Combining these Lipschitz bounds with (42), we obtain

qΩk (x̂, hk(x̂)) ≥ f(x̂, [u∗(x̂)]′) + 〈∇xf(x̂, [u∗(x̂)]′), hk(x̂)〉+
1

2
‖hk(x̂)‖2

≥ q(x̂, hk(x̂))− (M + 1)Lκ0δ(k).
(43)
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Using the definition of ΘΩk (x̂), we can rewrite (43) as

ΘΩk (x̂) + ΨΩk (x̂) ≥ q(x̂, hk(x̂))− (M + 1)Lκ0δ(k). (44)

Likewise, by using the fact that Θ(x̂) = argmin
h∈Rn

q(x̂, h) − Ψ(x̂) ≤ q(x̂, hk(x̂)) − Ψ(x̂), (44) is

equivalent to

ΘΩk (x̂) ≥ Θ(x̂) + Ψ(x̂)− ΨΩk (x̂)− (M + 1)Lκ0δ(k). (45)

Inserting the bound from (38) into (45), we obtain

ΘΩk (x̂) ≥ Θ(x̂)− (M + 2)Lκ0δ(k). (46)

Combining the bounds in (40) and (46), we have proved the second part of the lemma, with
κ2 = (M + 2)Lκ0, since κ2 > κ1 = Lκ0.

The next lemma demonstrates that, under our assumptions, the accumulation points x∗

of a sequence {xk} generated by Algorithm 1 satisfy (on the same subsequence K defining the
accumulation) ΨUk (xk)→K Ψ(x∗).

Lemma 7 Suppose that Assumptions 1 and 2 hold and that both

1. {xk}∞k=0 ⊂ Rn and

2. Uk ⊆ Ωk are constructed recursively with U0 6= ∅, U0 ⊆ U , and Uk+1 = Uk ∪ {u′}, where
u′ ∈ (Ωk+1)∗(xk+1).

If x∗ is an accumulation point of {xk}∞k=0 (i.e., for some infinite subset K ⊂ N, xk →K x∗),

then ΨUk (xk)→K Ψ(x∗).

Proof For any k ∈ {1, 2, . . . }, let k , max{k′ ∈ K : k′ ≤ k}. Then, by our recursive construc-
tion, for any k, uk ∈ Uk. Since Uk ⊆ U for k = 0, 1, . . . ,

Ψ(xk) ≥ ΨUk (xk) ≥ f(xk, uk). (47)

By the triangle inequality,

|ΨΩk (xk)− Ψ(x∗)| ≤ |ΨΩk (xk)− Ψ(xk)|+ |Ψ(xk)− Ψ(x∗)|. (48)

Because xk →K x∗ and because Ψ(·) is a continuous function as a result of Assumption 1, the
second summand in (48) satisfies |Ψ(xk) − Ψ(x∗)| → 0. By Lemma 6 and the continuity of
Ψ(·), we also conclude that the first summand in (48) satisfies |ΨΩk (xk)− Ψ(xk)| → 0. Thus,

ΨΩk (xk)→ Ψ(x∗). (49)

Since from Assumption 1, f(x̂, u) is a uniformly continuous function in u over a compact set,
and since ‖xk − xk‖ → 0 (by accumulation), we have

|f(xk, uk)− f(xk, uk)| → 0.

By definition, ΨΩk (xk) = f(xk, uk), and so the above can be written

|f(xk, uk)− ΨΩk (xk)| → 0. (50)

It follows immediately from (49) and (50) that f(xk, uk) → Ψ(x∗). So, by (47) and an appli-
cation of the sandwich theorem, we conclude ΨUk (xk)→K Ψ(x∗), as we intended to show.

By using Lemma 7, we can now give a proof of Theorem 1.



28 Matt Menickelly, Stefan M. Wild

Proof (of Theorem 1) Recalling the definition of qÛ in (37), and since Uk ⊆ U for k =

0, 1, . . . , we have that for all k and for all ĥ ∈ Rn, qUk (xk, ĥ) ≤ q(xk, ĥ). Then, recalling the
definition of ΘUk in (6), we have that

ΘUk (xk) = min
h∈Rn

qUk (xk, h)− ΨUk (xk)

≤ min
h∈Rn

q(xk, h)− ΨUk (xk)

= Θ(xk) + Ψ(xk)− ΨUk (xk).

(51)

By using the criteria imposed on ΘUk (xk+1) in Line 5 of Algorithm 1 and (51), we have that
for k = 0, 1, . . . ,

− εk ≤ ΘUk (xk+1) ≤ Θ(xk+1) + Ψ(xk+1)− ΨUk+1 (xk+1). (52)

Let K be a subsequence defining the accumulation {xk} →K x∗. Taking the limit with respect
to K in (52), we obtain

lim
k∈K
−εk ≤ lim

k∈K

[
Θ(xk+1) + Ψ(xk+1)− ΨUk+1 (xk+1)

]
⇐⇒ 0 ≤ lim

k∈K
Θ(xk+1) + lim

k∈K
Ψ(xk+1)− lim

k∈K
ΨUk+1 (xk+1) by εk → 0

⇐⇒ 0 ≤ lim
k∈K

Θ(xk+1) + Ψ(x∗)− lim
k∈K

ΨUk+1 (xk+1) by continuity of Ψ

⇐⇒ 0 ≤ lim
k∈K

Θ(xk+1) + Ψ(x∗)− Ψ(x∗) by Lemma 7

⇐⇒ 0 ≤ lim
k∈K

Θ(xk+1) ≤ 0 by Proposition 1.

By the continuity of Θ from Proposition 4, the result follows from the sandwich theorem.

C Availability of a Generalized Cauchy Point

We refer the reader to [11, Chapter 12.2] for a detailed discussion of generalized Cauchy
decrease in trust-region subproblems with convex (here, linear) constraints, but we provide
some necessary details here, beginning with the following definition.

Definition 3 Let p(r) : R→ Rn+1 denote the projection PC([−r; 0]), where

C =
{

[z; d] : Gt>d− ze ≤ ΨUk (yt)e− F t
}
.

Use the notation p(r) = [pz(r); pd(r)] to indicate the separation of p(r) into the scalar z
component and the n-dimensional d component. Then, the generalized Cauchy point for (P)
is defined as p(r∗), where

r∗ = argmin
r

{
pz(r) +

1

2
pd(r)>Btpd(r) : 0 ≤ r ≤ ∆t

}
.

The generalized Cauchy point is the global minimizer of the objective in (P) restricted
to an arc described by the projected steepest descent direction at (z, d) = (0,0). Algorithm 3
(see [11, Algorithm 12.2.2]) computes an approximate generalized Cauchy point for (P) via a
Goldstein-type line search. The notation TC(y) denotes the tangent cone to a convex set C at
a point y (and we remark that, given a linear polytope C, this set is easily computable).

We further remark that the computation of p(r) for a given r involves the solution of the
convex quadratic program

min
sz ,sd

{
(r + sz)2 + ‖sd‖2 : Gt>sd − sze ≤ ΨUk (yt)e− F t

}
.

Although we anticipate that Algorithm 3 has benefits in many real-world settings, here it is
merely of theoretical convenience, and we do not use it in the implementation tested.
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Algorithm 3: Goldstein-type line search for generalized Cauchy point of (P)

1 Choose constants 0 < κubs < κlbs < 1, κfrd ∈ (0, 1), κepp ∈ (0, 1
2

).

2 Set rmin ← 0, rmax ←∞, r0 = ∆t, j ← 0.
3 while true do
4 Compute p(rj) = [pz(rj); pd(rj)] as in Definition 3.

5 if ‖pd(rj)‖ > ∆t or pz(rj) +
1

2
pd(rj)

>Btpd(rj) > κubspz(rj) then

6 rmax ← rj .

7 else if ‖pd(rj)‖ < κfrd∆t and pz(rj) +
1

2
pd(rj)

>Btpd(rj) < κlbspz(rj) and

‖PTC(p(rj))
([−1; 0])‖ >

κepp|pz(rj)|
∆t

then

8 rmin ← rj .
9 else

10 [zt; dt]← p(rj). break
11 if rmax =∞ then
12 rj+1 ← 2rj .
13 else
14 rj+1 ← 1

2
(rmin + rmax)

15 j ← j + 1.

16 return [zt; dt]

17 end

D Global Maximization of (27)

First, we remark that the objective of (27) is separable with respect to the variables L and b.
Thus, it is evident that the optimal value of b is given by

b∗i =

{
b̂i − α, if xi < 0

b̂i + α, otherwise
i = 1, . . . , n.

We now consider the optimal value of L. After deleting rows and columns of In ⊗ xx> corre-
sponding to the entries Lij where Lij = 0, we are left with a matrix of the form

x1̄x1̄> 0 · · · 0
0 x2̄x

>
2̄

0 · · · 0

.

.. 0
. . .

...
..
. 0

0 0 · · · 0 xn̄x>n̄


,

where xī denotes the truncated vector [x1, . . . , xi]. Exploiting this block structure, the maxi-
mization of the quadratic decomposes into n bound-constrained quadratic maximization prob-
lems of the form

max
`∈Ri

{
1

2
`>
(
xīx
>
ī

)
` : |`j − ˆ̀

j | ≤ α, j = 1, . . . , i

}
(53)

for i = 1, . . . , n. In turn, solving (53) is equivalent to solving the problem

max
`∈Ri

{
|x>ī `| : |`j − ˆ̀

j | ≤ α, j = 1, . . . , i
}
, (54)

which can be cast as a mixed-integer linear program with exactly one binary variable; that is,
solving (54) to global optimality entails the solution of two linear programs with O(i) variables
and O(i) constraints each. Thus, the total cost of solving (27) to global optimality through this
reformulation is bounded by the cost of solving 2n linear programs, the largest of which has
O(n) variables and constraints, and the smallest of which has O(1) variables and constraints.
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21. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM Jour-
nal on Optimization 20(1), 172–191 (2009). doi:10.1137/080724083

22. Polak, E.: Optimization. Springer New York (1997). doi:10.1007/978-1-4612-0663-7
23. Postek, K., den Hertog, D., Melenberg, B.: Computationally tractable counterparts of

distributionally robust constraints on risk measures. SIAM Review 58(4), 603–650 (2016).
doi:10.1137/151005221

24. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: Optimization by radial basis function
interpolation in trust-regions. SIAM Journal on Scientific Computing 30(6), 3197–3219
(2008). doi:10.1137/070691814

http://dx.doi.org/10.1007/s10107-014-0750-8
http://dx.doi.org/10.1007/s10107-014-0750-8
http://dx.doi.org/10.1287/opre.2015.1374
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1007/s10287-015-0236-z
http://dx.doi.org/10.1007/s10287-015-0236-z
http://dx.doi.org/10.1007/s10898-009-9496-x
http://dx.doi.org/10.1287/opre.1090.0715
http://dx.doi.org/10.1007/s10107-003-0499-y
http://dx.doi.org/10.1007/bf01386389
http://dx.doi.org/10.1007/s10957-013-0441-2
http://dx.doi.org/10.1080/10556788.2010.547579
http://dx.doi.org/10.1007/s10107-005-0685-1
http://dx.doi.org/10.1007/s10107-005-0685-1
http://dx.doi.org/10.1007/BF02592064
http://dx.doi.org/10.1007/BF01581153
http://dx.doi.org/10.1137/1035089
http://dx.doi.org/10.1137/0108053
http://www.mcs.anl.gov/papers/P8001-0817.pdf
http://dx.doi.org/10.1137/15M1042097
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1007/978-1-4612-0663-7
http://dx.doi.org/10.1137/151005221
http://dx.doi.org/10.1137/070691814


Derivative-Free Robust Optimization by Outer Approximations 31

25. Wild, S.M., Shoemaker, C.A.: Global convergence of radial basis function trust-region
algorithms for derivative-free optimization. SIAM Review 55(2), 349–371 (2013).
doi:10.1137/120902434

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government re-
tains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government. The Department of
Energy will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

http://dx.doi.org/10.1137/120902434

	Introduction
	Optimality Measure
	Inexact Method of Outer Approximations
	A New Derivative-Free Algorithm
	Convergence Analysis
	Practical Considerations
	Numerical Results
	Optimality Measure Properties
	Convergence of Inexact Method of Outer Approximation
	Availability of a Generalized Cauchy Point
	Global Maximization of (27)

