
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

The TAO Linearly-Constrained Augmented Lagrangian Method for

PDE-Constrained Optimization1

Evan Gawlik, Todd Munson, Jason Sarich, and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P2003-0112

January 2012

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. This

work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-

partment of Energy, under Contract DE-AC02-06CH11357.

1



The TAO Linearly-Constrained Augmented Lagrangian

Method for PDE-Constrained Optimization∗

Evan Gawlik∗ Todd Munson† Jason Sarich† Stefan M. Wild†

Abstract

This report describes a linearly-constrained augmented Lagrangian method for solv-

ing optimization problems with partial differential equation constraints. This method

computes two types of directions: a Newton direction to reduce the constraint viola-

tion and reduced-space directions to improve the augmented Lagrangian merit function.

The reduced-space directions are computed from limited-memory quasi-Newton approx-

imations to the reduced Hessian matrix. This method requires a minimal amount of

information from the user—only function, gradient, and Jacobian evaluations—yet can

obtain good performance. Strong scaling results are presented for some model test prob-

lems on high-performance architectures, indicating that the code scales well provided

the code for the PDE constraints scales well.

1 Introduction

Optimization problems with simulation constraints are fundamental to many scientific grand

challenges, ranging from the design of nanophotonic devices [6], to controlling the coil

currents in a fusion reactor to avoid instabilities [7], to optimizing the performance of

both existing accelerators and future lepton collider accelerators [5]. When the underlying

partial differential equation (PDE) constraints are discretized, such problems can be posed

as finite-dimensional nonlinear optimization problems of the form

min
u,v

f(u, v)

subject to g(u, v) = 0,
(1)

where the state variable u ∈ R
nu is the solution to a discretized PDE parameterized by

the design variable v ∈ R
nv defined by g : Rnu+nv 7→ R

nu and f : Rnu+nv 7→ R is the

objective function. Our goal is to develop methods for solving these problems that exploit

1Stanford University, Institute for Computational and Mathematical Engineering, 75 Via Ortega, Stan-

ford, CA 94305-4042, egawlik@stanford.edu
2Argonne National Laboratory, Mathematics and Computer Science Division, 9700 S. Cass Ave., Argonne,

IL 60439, {tmunson,sarich,wild}@mcs.anl.gov
∗This work was supported by the Office of Advanced Scientific Computing Research, Office of Science,

U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by a DOE Computational Science

Graduate Fellowship to the lead author under grant number DE-FG02-97ER25308.

2



the structure of the underlying PDE constraint, require a minimal amount of derivative

information, and can use the iterative methods and preconditioners developed for solving

the PDE.

Naively, any PDE-constrained optimization problem of the form (1) can be reformulated

as an unconstrained optimization problem in nv variables by treating the state variables u

as functions of the design variables v:

min
v

f(g−1(v), v).

Such an approach, however, is impractical for large problems because it requires that the

nonlinear PDE be solved for each evaluation of the objective function and its derivatives.

Alternatively, full-space methods can be derived by writing down the first-order opti-

mality conditions—a (2nu + nv)-dimensional system of nonlinear equations in u, v, and

the Lagrange multipliers—and solving them with an iterative method. Haber and Hanson

[9], for example, apply a Gauss-Newton method for this purpose, using a flexible GMRES

routine to solve the linear systems arising at each outer iteration. Biros and Ghattas [3, 4]

employ Newton’s method to solve the KKT system, where each linear solve is preconditioned

with a quasi-Newton, reduced-space method. Their algorithm exhibits optimal scaling with

respect to problem size in the sense that, under certain circumstances, the number of outer

iterations taken to converge is independent of the mesh resolution. Being a pure Newton

method, however, it requires the Hessian of the Lagrangian. Other full-space methods [13]

take similar approaches, invoking Krylov solvers at each outer iteration of a Newton or

quasi-Newton solver.

We present here a matrix-free, linearly-constrained augmented Lagrangian method that

requires a minimal amount of information from the user: function evaluations and first

derivatives and linearized forward and adjoint solves. Most of this information is readily

available from simulations that employ Newton’s method to solve their PDE. In contrast

to other methods [1, 3, 4, 13], we do not require that the user provide second-order in-

formation, and we do not need an iterative method and preconditioner for the full system

of optimality conditions. The method closely resembles the quasi-Newton, reduced SQP

method described in [3, Algorithm 3]. The algorithms, however, differ in two key respects.

First, our method searches along two types of directions—a Newton direction to reduce the

constraint violations and reduced-space directions to improve the augmented Lagrangian

merit function—and performs independent line searches along each. Second, we choose to

minimize an augmented Lagrangian merit function rather than the pure Lagrangian. By

separating feasibility and optimality steps, we can seamlessly enter a feasibility restora-

tion phase in which we approximately solve the PDE constraint with a globalized Newton

method for fixed design variables.

As will be shown, the primary expense of our algorithm is associated with solving lin-

earized forward and adjoint systems of equations; a successful implementation will require

a small number of these linear solves. We expect and recommend that a preconditioned

iterative method be used to solve the systems of equations with a convergence tolerance

specified by the optimization routine. The iterative method and preconditioner need not

3



be the same for the linearized forward and adjoint systems. In particular, if one is us-

ing a left-preconditioned iterative method for the forward problem, then one can apply a

right-preconditioned iterative method to the adjoint problem in which the adjoint precondi-

tioner is the transpose of the forward preconditioner. Furthermore, the procedure supplied

should take advantage of user knowledge regarding the partial differential equation being

solved. For example, certain finite-element approximations produce symmetric systems

of equations; the iterative method supplied should take advantage of this structure. All

specialized knowledge for the application is encapsulated in the selected linear solver and

preconditioners and is independent of the optimization algorithm.

Our linearly-constrained augmented Lagrangian method for solving PDE-constrained

optimization problems is released as part of the open-source Toolkit for Advanced Opti-

mization (TAO) [14]. TAO focuses on software for the solution of large-scale optimization

problems on high-performance computers. The design philosophy strongly emphasizes the

reuse of external tools where appropriate, enabling a bidirectional connection to lower-level

linear algebra support. Our design decisions are motivated by the challenges inherent in

the use of large-scale distributed-memory architectures. In particular, TAO is built on top

of PETSc [12, 2], a package commonly used by the developers of PDE simulations that pro-

vides many parallel sparse-matrix formats, Krylov subspace methods, and preconditioners.

PETSc is extensible so that new matrix formats, such as those suitable for GPUs, iterative

methods, and preconditioners, can be readily supplied by the user.

After presenting notation, we describe our linearly-constrained augmented Lagrangian

algorithm in Section 2. This method makes consecutive steps along first a Newton-like

direction and then reduced-space directions with respect to the linearized constraints. Since

the user is required to provide only first-order derivatives, all Hessian information is obtained

from a limited-memory, quasi-Newton approximation. In its most basic form, the algorithm

requires two forward solves and two adjoint solves per iteration. Section 3 briefly describes

the implementation of the method in TAO. Section 4 then presents numerical results on a

collection of test problems, including the parameter estimation problems in [9]. Our results

confirm that the dominant computational cost is due to matrix-vector products associated

with the linear solves. We also illustrate the effects of increasing the problem size, changing

the linear solver tolerance, and varying the number of solves per iterations. We present

both weak and strong scaling results indicating that the method scales well provided the

code for the PDE constraint scales well.

Unless otherwise noted, we employ the Euclidean norm ‖ · ‖ = ‖ · ‖2 throughout. We

also assume the linearized forward operator, ∇ug(u, v), is invertible for all u and v and is

uniformly bounded above and below in an appropriate norm. This assumption is satisfied

for many real-world PDE constraints.

2 Linearly-constrained Augmented Lagrangian Method

Given a discretized problem (1) with nu state variables u and nv design variables v, we

denote the Lagrange multipliers on the constraint g : Rnu+nv 7→ R
nu by y ∈ R

nu .

4



Given a current iterate (uk, vk, yk), the kth iteration of a linearly-constrained augmented

Lagrangian method approximately solves the optimization problem

min
u,v

f̃k(u, v)

subject to Ak(u− uk) +Bk(v − vk) + gk = 0,
(2)

where Ak = ∇ug(uk, vk), Bk = ∇vg(uk, vk), gk = g(uk, vk), and

f̃k(u, v) = f(u, v)− g(u, v)T yk +
ρk

2
‖g(u, v)‖2

is the augmented Lagrangian merit function with penalty parameter ρk ≥ 0. The current

objective function gradient is given by ak = ∇uf(uk, vk) and bk = ∇vf(uk, vk).

We solve this optimization problem in two stages. In the first stage a Newton direc-

tion is computed, and a feasible point for the linear constraints is found. In the second

stage reduced-space directions are computed that maintain feasibility with respect to the

linearized constraints and improve the augmented Lagrangian merit function.

2.1 Phase I: Newton Step

The Newton direction is obtained by fixing the design variables at their current value vk

and solving the linearized constraint for the state variables. In particular, we approximately

solve the (forward) system of equations

Akdu = −gk

to obtain a direction du. Because the system is only approximately solved, the direction

satisfies the equation

Ak(du + rk) = −gk, (3)

where rk is the residual. We need a direction that provides sufficient descent for the PDE

constraint merit function
1

2
‖g(u, vk)‖

2, (4)

and hence we require that

gTk Akdu ≤ −ǫ1‖du‖
2+ǫ2 , (5)

where ǫ1 > 0 and ǫ2 > 0 are parameters. If du does not provide descent for the merit function

(4), we enter a truncated feasibility restoration phase to satisfy the PDE constraint for fixed

design variables. In particular, we apply a globalized Newton method to solve

g(u, vk) = 0

and stop this restoration phase when the Newton direction satisfies the descent criterion

(5). If the PDE constraints are well behaved, then this descent criterion will be satisfied

once we enter the domain of local fast convergence for the globalized Newton method.

5



Given that the Newton-like direction du is a descent direction for (4), we would like to

choose parameters for the augmented Lagrangian merit function so that du is also a descent

direction for this merit function. In particular, we want to satisfy the inequality

dTu
(

ak −AT
k yk + ρkA

T
k gk

)

≤ −ǫ1‖du‖
2+ǫ2 . (6)

Given multipliers yk and the penalty parameter (ρk = ρk−1) from the previous iterate, we

check this condition for du. If condition (6) is not satisfied, then ‖du‖ > 0 and gTk Akdu < 0,

and we consider two cases. In the first case, we choose ρk so that

ρk = min

{

dTu
(

AT
k yk − ak

)

− ǫ1‖du‖
2+ǫ2

gTk Akdu
, ρ̄

}

, (7)

where ρ̄ > 1 is a parameter bounding the magnitude of ρk. If condition (6) is still not

satisfied with the updated value of ρk, we then calculate a new multipliers estimate by

solving the system

AT
k yk = ak

for yk. This system need not be solved exactly, and we can stop the iterative method as

soon as condition (6) is satisfied. In particular, we can stop the iterative method when

‖AT
k yk − ak‖ ≤ (ρk − 1) ǫ1‖du‖

1+ǫ2 .

In this case, we have

dTu (ak −AT
k yk + ρkA

T
k gk) ≤ ‖du‖‖A

T
k yk − ak‖ cos θ − ρkǫ1‖du‖

2+ǫ2

≤ ‖du‖‖A
T
k yk − ak‖| cos θ| − ρkǫ1‖du‖

2+ǫ2

≤ (ρk − 1)ǫ1‖du‖
2+ǫ2 − ρkǫ1‖du‖

2+ǫ2

= −ǫ1‖du‖
2+ǫ2 ,

where θ denotes the angle between du and ak −AT
k yk. Both condition (6) and the possible

update of ρk in (7) require only inner products, since the matrix-vector products AT
k yk

and AT
k gk and evaluations gk and ak are already available. Calculation of new multipliers

estimates yk occurs rarely and requires an approximate solution to the linearized adjoint

problem.

We then find α to approximately minimize the augmented Lagrangian function along

the Newton-like direction,

min
α≥0

f̃k(uk + αdu, vk).

We can enforce either the sufficient decrease condition or the Wolfe conditions during the

search procedure. The intermediate point

uk,0 = uk + αkdu

vk,0 = vk
(8)

satisfies the linear constraint

Ak(uk,0 − uk + αrk) +Bk(vk,0 − vk) + αkgk = 0.

6



2.2 Phase II: Modified Reduced-Space Steps

In the second phase, we compute reduced-space steps for the linearly-constrained optimiza-

tion problem
min
du,dv

f̃k(uk + du, vk + dv)

subject to Ak(du + αrk) +Bkdv + αkgk = 0,

corresponding to (2) after a change of variables. Making the reduction

du = −A−1
k (Bkdv + αkgk)− αrk,

we obtain the unconstrained problem

min
dv

f̃k
(

uk −A−1
k (Bkdv + αkgk)− αkrk, vk + dv

)

.

Since the Newton-like direction exactly satisfies (3), the intermediate point defined by (8)

gives rise to the equivalent problem

min
dv

f̃k
(

uk,0 −A−1
k Bkdv , vk,0 + dv

)

. (9)

We approximately solve the reduced-space problem (9) by applying one or more steps of

a limited-memory quasi-Newton method. We obtain a direction dv by solving the quadratic

problem

min
dv

1

2
dTv H̃k,idv + g̃Tk,idv,

where H̃k,i is a (positive-definite) limited-memory quasi-Newton approximation to the re-

duced Hessian matrix and g̃k,i is the reduced gradient

g̃k,i = ∇vf̃k (uk,i, vk,i)−BT
k A

−T
k ∇uf̃k (uk,i, vk,i) . (10)

The reduced gradient is thus obtained from one linearized adjoint solve

AT
k yk,i = ∇uf̃k (uk,i, vk,i) (11)

and some linear algebra

g̃k,i = ∇vf̃k (uk,i, vk,i)−BT
k yk,i.

Because the limited-memory quasi-Newton Hessian approximation we use is positive definite

and we can easily apply its inverse to vectors, we obtain the direction

dv = −H̃−1
k,i g̃k,i.

We then want to perform a line search along the direction dv to obtain sufficient reduc-

tion in the augmented Lagrangian merit function. A reduced-space line search could require

calculating the reduced gradient at each trial point, requiring a solve with the linearized

adjoint. Therefore, we instead recover the full-space direction from one linearized forward

solve

Akdu = −Bkdv (12)

7



and approximately minimize the augmented Lagrangian merit function along this direction:

min
β≥0

f̃k(uk,i + βdu, vk,i + βdv).

The solves in (11) and (12) can be done inexactly. However, we require that the full-

space direction be a descent direction for the augmented Lagrangian merit function,

dTu∇uf̃k (uk,i, vk,i) + dTv ∇vf̃k (uk,i, vk,i) ≤ −ǫ1‖(du, dv)‖
2+ǫ2 .

If the direction computed is not a sufficient descent direction, we revert, at no additional

computational expense, to the steepest descent direction.

We enforce the Wolfe conditions (see, e.g., [11]) during the search procedure and obtain

the new point
uk,i+1 = uk,i + βk,idu

vk,i+1 = vk,i + βk,idv .

The reduced gradient at the new point is computed from

AT
k yk,i+1 = ∇uf̃k(uk,i+1, vk,i+1) (13)

g̃k,i+1 = ∇vf̃k(uk,i+1, vk,i+1)−BT
k yk,i+1.

The vectors vk,i, vk,i+1, g̃k,i, and g̃k,i+1 are used to update H̃k,i to obtain the limited-memory

quasi-Newton approximation to the reduced Hessian matrix used in the next iteration. The

update is skipped if it cannot be performed.

We keep iterating for a fixed number of steps i or until the norm of the reduced gradient

is sufficiently small and we have solved the subproblem. Our default strategy is to compute

only one reduced-space step, but we consider applying multiple steps in the numerical

results. At the end of the iterations, we set uk+1 = uk,ik+1, vk+1 = vk,ik+1 and yk+1 = yk,ik+1

in preparation for the next major iteration, where ik is the number of reduced-space steps

performed during major iteration k. The Hessian approximation is also reused from one

major iteration to the next, H̃k+1,0 = H̃k,ik+1.

2.3 Summary and Computational Cost

In summary, the algorithm is written as follows:

1. Given initial points u0, v0, and y0, an initial Hessian approximation H̃0,0, and param-

eters ρ̄ > ρ0 > 1, ǫ1 > 0, and ǫ2 > 0.

2. For k = 0, . . .

(a) Evaluate functions, gradients, and Jacobians at uk and vk.

(b) If the first-order optimality conditions are satisfied or an iteration limit is reached,

then stop.

(c) Compute the Newton direction by approximately solving

Akdu = −gk.

8



(d) If gTk Akdu > −ǫ1‖du‖
2+ǫ2 , then enter feasibility restoration.

(e) Otherwise choose ρk and/or yk so that condition (6) is satisfied and du is a

descent direction for the augmented Lagrangian merit function.

(f) Perform a line search to determine steplength αk by solving the one-dimensional

optimization problem

min
α≥0

f̃k(uk + αdu, vk).

(g) Initialize uk,0 = uk + αkdu and vk,0 = vk.

(h) Compute the reduced gradient g̃k,0 using equation (10).

(i) For i = 0, . . .

i. If the norm of the reduced gradient is within tolerances or the inner iteration

limit is reached, then break; otherwise proceed to ii.

ii. Compute the reduced-space direction,

dv = −H̃k,ig̃k,i.

iii. Recover the full-space direction by solving the equation

Akdu = −Bkdv.

iv. Perform a line search to determine steplength βk,i by solving the one-dimensional

optimization problem

min
β≥0

f̃k(uk,i + βdu, vk,i + βdv).

v. Update uk,i+1 = uk,i + βk,idu and vk,i+1 = vk,i + βk,idv.

vi. Compute reduced gradient g̃k,i+1 using equation (10).

vii. Calculate a new reduced Hessian approximation H̃k,i+1 using the L-BFGS

update formula.

(j) Update uk+1 = uk,ik+1, vk+1 = vk,ik+1 and H̃k+1,0 = H̃k,ik+1. Moreover, let

the multiplier estimates yk+1 = yk,ik+1 from the computation of the reduced

gradient.

The dominant computational cost of this method is associated with the linearized solves

with the Jacobian Ak: one forward solve (3) to obtain the Newton direction per major

iteration, one adjoint solve (11) to obtain the reduced gradient, one forward solve (12) to

recover the full-space direction for each minor iteration, and one adjoint solve (13) per

major iteration to complete the update of the Hessian approximation and obtain multiplier

estimates.

Other substantial operations are associated with evaluating the Jacobian of g. Each it-

eration involves at least two Jacobian evaluations: one to obtain Ak and Bk to linearize the

constraints and one to compute the gradient of the augmented Lagrangian merit function

at the intermediate (and possibly additional trial) point(s). In our experience, this com-

putational cost is negligible; the computation of the gradient of the augmented Lagrangian

merit function requires only a single Jacobian-vector product.

9



3 Implementation

The linearly-constrained augmented Lagrangian algorithm described here is available in

version 2.0 of the Toolkit for Advanced Optimization [14]. For these problems, the user

needs to set routines for computing the objective function and its gradient, the constraints,

and the Jacobian of the constraints with respect to the state and design variables. TAO

also needs to know which variables in the solution vector correspond to state variables and

which correspond to design variables.

The objective and gradient routines are set as for other TAO applications, with TaoSet-

ObjectiveRoutine() and TaoSetGradientRoutine(). The user can also provide a fused

objective function and gradient evaluation with TaoSetObjectiveAndGradientRoutine().

The input and output vectors include the combined state and design variables. Index sets

for the state and design variables must be passed to TAO by using the function

TaoSetStateDesignIS(TaoSolver, IS, IS);

where the first IS is a PETSc IndexSet containing the indices of the state variables and the

second IS corresponds to the design variables.

The routine that evaluates the constraint equations must have the form

PetscErrorCode EvaluateConstraints(TaoSolver,Vec,Vec,void*);

The first argument of this routine is a TAO solver object. The second argument is the

variable vector at which the constraint function should be evaluated. The third argument

is the vector of function values g(x), and the fourth argument is a pointer to a user-defined

context. This routine and the user-defined context should be set in the TAO solver with

the

TaoSetConstraintsRoutine(TaoSolver,Vec,

PetscErrorCode (*)(TaoSolver,Vec,Vec,void*),

void*);

command. In this function, the first argument is the TAO solver object, the second argu-

ment a vector in which to store the constraints, the third argument is a function pointer

to the routine for evaluating the constraints, and the fourth argument is a pointer to a

user-defined context.

The Jacobian of g(x) is a matrix such that each column contains the partial derivatives

of g(x) with respect to one variable. The evaluation of the Jacobian of c is performed by

calling the

PetscErrorCode JacobianState(TaoSolver,Vec,Mat*,Mat*,Mat*,

MatStructure*, void*);

PetscErrorCode JacobianDesign(TaoSolver,Vec,Mat*,void*);

routines. In these functions, The first argument is the TAO solver object. The second

argument is the variable vector at which to evaluate the Jacobian matrix, the third argument

10



is the Jacobian matrix, and the last argument is a pointer to a user-defined context. The

fourth and fifth arguments of the Jacobian evaluation with respect to the state variables

are for providing PETSc matrix objects for the preconditioner and for applying the inverse

of the state Jacobian, respectively. This inverse matrix may be PETSC NULL, in which case

TAO will use a PETSc Krylov subspace solver to solve the state system. These evaluation

routines should be registered with TAO by using the

TaoSetJacobianStateRoutine(TaoSolver,Mat,Mat,Mat,

PetscErrorCode (*)(TaoSolver,Vec,Mat*,Mat*,

MatStructure*,void*), void*);

TaoSetJacobianDesignRoutine(TaoSolver,Mat,

PetscErrorCode (*)(TaoSolver,Vec,Mat*,void*),

void*);

routines. The first argument is the TAO solver object, and the second argument is the

matrix in which the Jacobian information can be stored. For the state Jacobian, the third

argument is the matrix that will be used for preconditioning, and the fourth argument is

an optional matrix for the inverse of the state Jacobian. One can use PETSC NULL for this

inverse argument and let PETSc apply the inverse using a KSP method, but faster results

may be obtained by manipulating the structure of the Jacobian and providing an inverse.

The fifth argument is the function pointer, and the sixth argument is an optional user-

defined context. Since no solve is performed with the design Jacobian, no preconditioner

or inverse matrices are needed. For symmetric matrices, we exploit the symmetry in the

forward and adjoint solves. Note that matrix-free versions are supported by changing the

PETSc matrix type and implementing the necessary functions for applying the Jacobian

and Jacobian transpose matrices.

To approximate the reduced Hessian H̃k,i of the augmented Lagrangian merit function,

we use an L-BFGS scheme [11] that is rescaled at each iteration. The scalings are described

in the TAO users manual [10].

4 Numerical Results

In this section we describe the performance results of the implementation. We focus on

two aspects of the algorithm: its dependence on solver parameters (Section 4.2), and its

scalability with respect to problem size and number of cores (Section 4.3).

For the former studies, we have chosen a set of default solver parameters and studied

the effects of varying individual members of the set while holding the remaining parameters

fixed. As our defaults, we used a relative residual tolerance of τ = 10−4 in the iterative

solves, we stored a maximum of five history vectors for the limited-memory quasi-Newton

approximation to the reduced Hessian of the augmented Lagrangian, and we employed a

single reduced-space step in each outer iteration. At the end of Section 4.2, we propose

modifications to these default parameters and use the modified parameters throughout the

scaling studies of Section 4.3.

11



All experiments in Section 4.2 were performed at Argonne National Laboratory on ded-

icated nodes of the Fusion cluster, which comprises 320 nodes, each with 2.6 GHz Pentium

Xeon 8-core chips and 36 GB of RAM. All experiments in Section 4.3 were performed at

Lawrence Berkeley National Laboratory on dedicated nodes of the Franklin cluster, which

comprises 9,572 nodes, each with a 2.3 GHz AMD Budapest 4-core processor and 8 GB of

RAM. In all cases, the code was compiled against version 3.2 of PETSc [12].

4.1 Model Problems

We tested the algorithm on the collection of model problems for PDE-constrained opti-

mization proposed by Haber and Hanson [9]. The collection consists of three parameter

estimation problems that are constrained by elliptic, parabolic, and hyperbolic PDEs.

In these problems, the design variable v is a parameter distribution in a domain Ω, and

the state variable u is the solution to a PDE on Ω that involves the parameter v. The

continuous optimization problem asks for the design variable distribution v∗ for which the

corresponding solution u∗ to the PDE most closely matches a set of observed data d. The

objective function takes the form

f(u, v) =
1

2
||Qu− d||2 + αR(v − vr),

where Q denotes a projection operator onto the locations of the measurement data, vr is a

reference parameter distribution, α is a positive scalar, and R is a regularization functional.

Details of the PDE constraints and the associated discretizations, each of which are low-

order finite-difference schemes on regular grids, can be found in [9]. An illustrative example

of each type of problem is provided in TAO.

The regularization functionals (and hence the objective functions) appearing in the

model problems constrained by elliptic and parabolic PDEs are convex. The hyperbolic

model problem’s objective function is nonconvex. The PDE constraints appearing in all

three model problems are of the form

g(u, v) = A(v)u− q

with A an operator depending nonlinearly on v.

To solve the linearized forward and adjoint problems arising in the elliptic and parabolic

model problems, we used the conjugate gradient method with a successive over-relaxation

preconditioner for serial computations and a Jacobi preconditioner for parallel computa-

tions. For the hyperbolic model problem, GMRES was used with preconditioners of the

same type. We chose to use a Jacobi preconditioner for parallel scalability studies to elim-

inate variability in the linear solver’s efficiency under increased parallelization. (PETSc

supports only local SOR sweeps in parallel computations.)

When comparing problem sizes in the subsequent sections, we will sometimes refer

to spatial and temporal resolutions of the PDE discretizations rather than to the total

number of unknowns in the model problem. We use mx to denote the unidimensional

spatial resolution (i.e., the inverse of the grid spacing) of the discretization, mt to denote

12



Table 1: Relationship between spatial resolution (mx), temporal resolution (mt), and prob-

lem size for each of the Haber-Hanson model problems.

Problem Spatial

Dimension

Time-

dependent

# State

(nu)

# Design

(nv)

Total Size

(n)

Elliptic 3 No m3
xme m3

x m3
x(me + 1)

Parabolic 3 Yes m3
xmt m3

x m3
x(mt + 1)

Hyperbolic 2 Yes m2
xmt 2m2

xmt 3m2
xmt

Table 2: Performance of the LCL algorithm on the Haber-Hanson model problems with

default linear solver tolerances τi = 10−4, i = 1, 2, 3, 4.

Problem mx mt nu nd Time

(sec)

Outer

Iters.

Itsolver

Iters.

Mat-

vecs

Elliptic 32 - 32768 32768 79.2 51 13028 18319

Parabolic 16 8 32768 4096 57.6 71 57339 68955

Hyperbolic 32 32 32768 65536 5.5 31 10980 31276

the number of time steps employed if the problem is time-dependent, and me to denote

the number of experiments used for the elliptic problem. For all the computational results,

me = 1 was used. Table 1 summarizes the relationship between these parameters and the

problem sizes for each of the three model problems.

4.2 Accuracy of Solves

We first study the influence of inexact linear solves, approximate subproblem solves, and

approximate Hessians on the performance of the algorithm.

Accuracy of iterative linear solves. We varied the relative residual tolerances τi, i =

1, 2, 3, 4 for each of the linearized forward and adjoint solves within an outer iteration of

the LCL algorithm. The subscript i enumerates the four linear solves in the order that they

appear in the algorithm: i = 1 corresponds to the first forward solve, i = 2 the first adjoint

solve, i = 3 the second forward solve, and i = 4 the second adjoint solve.

Figures 1 and 2 show the performance of the LCL algorithm under different choices of

the two illustrative parameters τ2 and τ3. The data for each model problem are reported

relative to their values at the level τ1 = τ2 = τ3 = τ4 = 10−4, which are presented in

Table 2. The number of iterative solver iterations and matrix-vector products are denoted

by “Itsolver Iters.” and “Mat-vecs,” respectively.

The tolerances τ1 and τ2 appear more amenable to loosening. As Figure 1 shows,

reductions in solve time accompany decreases in τ2 beyond 10−4 for all three model problems,

despite occasional increases in outer iteration counts.

13



10
−10

10
−5

10
00.8

0.9

1

1.1

1.2

1.3

Relative residual tolerance

R
el

at
iv

e 
tim

e

 

 
Elliptic
Parabolic
Hyperbolic

(a)

10
−10

10
−5

10
00.95

1

1.05

1.1

1.15

1.2

1.25

Relative residual tolerance
R

el
at

iv
e 

# 
of

 o
ut

er
 it

er
at

io
ns

 

 
Elliptic
Parabolic
Hyperbolic

(b)

10
−10

10
−5

10
0

0.7

0.8

0.9

1

1.1

1.2

1.3

Relative residual tolerance

R
el

at
iv

e 
# 

of
 li

ne
ar

 s
ol

ve
r 

ite
ra

tio
ns

 

 
Elliptic
Parabolic
Hyperbolic

(c)

10
−10

10
−5

10
00.8

0.9

1

1.1

1.2

1.3

Relative residual tolerance

R
el

at
iv

e 
# 

of
 m

at
rix

−
ve

ct
or

 p
ro

du
ct

s

 

 
Elliptic
Parabolic
Hyperbolic

(d)

Figure 1: Performance of the LCL algorithm on the Haber-Hanson model problems as a

function of the relative residual tolerance τ2 of the linear solver during the first adjoint

solve. Data for each model problem is reported relative to the values at the level τ2 = 10−4

(see Table 2).

14



10
−10

10
−5

10
00.8

1

1.2

1.4

1.6

1.8

Relative residual tolerance

R
el

at
iv

e 
tim

e

 

 
Elliptic
Parabolic
Hyperbolic

(a)

10
−10

10
−5

10
00.5

1

1.5

2

2.5

Relative residual tolerance
R

el
at

iv
e 

# 
of

 o
ut

er
 it

er
at

io
ns

 

 
Elliptic
Parabolic
Hyperbolic

(b)

10
−10

10
−5

10
00.8

1

1.2

1.4

1.6

1.8

Relative residual tolerance

R
el

at
iv

e 
# 

of
 li

ne
ar

 s
ol

ve
r 

ite
ra

tio
ns

 

 
Elliptic
Parabolic
Hyperbolic

(c)

10
−10

10
−5

10
00.8

1

1.2

1.4

1.6

1.8

2

Relative residual tolerance

R
el

at
iv

e 
# 

of
 m

at
rix

−
ve

ct
or

 p
ro

du
ct

s

 

 
Elliptic
Parabolic
Hyperbolic

(d)

Figure 2: Performance of the LCL algorithm on the Haber-Hanson model problems as a

function of the relative residual tolerance τ3 of the linear solver during the second forward

solve. Data for each model problem is reported relative to the values at the level τ3 = 10−4

(see Table 2).

15



Table 3: Performance on the Haber-Hanson model problems as a function of the number l

of reduced-space steps taken during each outer iteration.

Problem l Time (sec) Outer Iters. Itsolver

Iters.

Mat-vecs

Elliptic mx =

32,me = 1

1 60.3 51 13028 18319

2 46.3 28 10644 14420

4 45.1 16 9938 13081

8 49.2 10 10844 14196

Parabolic

mx = 16,mt = 8

1 33.0 71 57514 69160

2 29.6 43 52517 61577

4 43.1 38 78301 89275

8 53.8 27 99616 111514

Hyperbolic

mx = 32,mt = 32

1 4.6 31 10980 56759

2 3.9 19 10188 45140

4 8.9 28 26038 92907

The results indicate that the tolerances τ3 and τ4, corresponding to the second forward

and adjoint solves, respectively, are less amenable to loosening. For example, Figure 2 shows

that setting τ3 < 10−4 for the parabolic problem results in increases in all four performance

measures (solve time, outer iterations, linear solver iterations, and matrix-vector products).

Decreasing τ4 beyond 10−4 prevented convergence of the LCL algorithm for the parabolic

problem, and decreasing τ4 beyond 10−3 prevented convergence for the elliptic problem.

We suspect that the impeded convergence stems from the poor quality of the Lagrange

multiplier estimates obtained from the second adjoint solve when a loose tolerance is used.

Based on these observations, we advocate the use of tolerances τ1 = τ2 = 10−3 and

τ3 = τ4 = 10−4 in the LCL algorithm.

Accuracy of linearly-constrained subproblem solves. The accuracy to which the

linearly constrained subproblem (2) is solved can be adjusted by performing more than one

reduced-space step in Phase II of the algorithm. In so doing, one reduces the augmented

Lagrangian residual and accumulates more Hessian information during each outer iteration,

at the expense of extra computational effort within that iteration.

Table 3 studies the effect of varying the number l of reduced-space steps taken during

each outer iteration over the range 1 ≤ l ≤ 8. Improvements in computation time accom-

pany the use of two reduced-space steps for each of the model problems, as well as the use of

four reduced-space steps for the elliptic problem. We advocate the use of two reduced-space

steps per outer iteration on the basis of these tests, although it may be worthwhile to study

heuristics for choosing l adaptively as the optimization routine proceeds.

16



Table 4: Performance of the LCL algorithm on the Haber-Hanson model problems as a

function of the number m of history vectors stored in the quasi-Newton approximation of

the reduced Hessian.

Problem m Time (sec) Outer Iters. Itsolver

Iters.

Mat-vecs

Elliptic mx =

16,me = 1

3 3.8 29 3767 6761

5 3.6 28 3621 6527

10 3.8 29 3755 6749

20 3.8 29 3766 6747

40 3.9 29 3768 6749

Elliptic mx =

32,me = 1

3 94.0 60 15479 21744

5 79.4 51 13028 18319

10 79.4 51 12985 18263

20 81.9 52 13345 18737

40 85.2 54 13798 19392

Elliptic mx =

48,me = 1

3 510.6 75 28714 36546

5 466.5 69 26280 33402

10 507.3 75 28477 36231

20 488.8 72 27351 34802

40 498.1 73 27765 35304

Parabolic

mx = 16,mt = 8

3 61.0 75 60825 73075

5 57.4 71 57339 68955

10 54.3 67 54052 64954

20 55.2 68 54755 65783

40 54.5 67 53882 64714

Parabolic

mx = 24,mt = 12

3 550.3 147 236173 265487

5 500.1 133 215135 241415

10 413.7 109 176342 198758

20 482.0 126 206633 231771

40 401.0 105 171762 192810

Parabolic

mx = 32,mt = 16

3 2192.1 139 378060 411880

5 2171.0 138 375393 408267

10 2173.4 137 374608 407804

20 2083.4 131 359407 390703

40 2139.8 134 367425 399545

Hyperbolic

mx = 16,mt = 16

3 0.4 16 3064 9020

5 0.4 16 3062 9018

10 0.5 16 3060 9016

20 0.5 16 3060 9016

40 0.5 16 3060 9016

Hyperbolic

mx = 32,mt = 32

3 5.4 31 10948 31317

5 5.5 31 10980 31276

10 5.2 28 9983 28631

20 5.8 31 10980 31349

17



Table 5: Modifications to default parameters.

Parameter Meaning Initial Default New Default

τ1 Residual tolerance, first forward solve 10−4 10−3

τ2 Residual tolerance, first adjoint solve 10−4 10−3

τ3 Residual tolerance, second forward solve 10−4 10−4

τ4 Residual tolerance, second adjoint solve 10−4 10−4

l Number of reduced-space steps 1 2

m Number of quasi-Newton history vectors 5 10

Accuracy of quasi-Newton approximation. We considered the role played by the

quality of the limited-memory quasi-Newton approximation H̃k,i to the reduced Hessian of

the augmented Lagrangian. Table 4 shows the influence of the number m of quasi-Newton

history vectors stored on the performance of the algorithm.

The results indicate that a good choice of m lies somewhere near m = 10 for this test

suite. An optimal choice of m for a given application will depend on the nature of the

objective function, the constraint equations, the size of the problem, and any constraints

on computer memory that may be present.

Modifications to default parameters. Based on the results of the preceding studies,

we have listed in Table 5 a revised set of default residual tolerances, number of reduced

space steps, and number of quasi-Newton history vectors to be used in the LCL algorithm.

These defaults will be used throughout the scaling studies in the following section.

4.3 Scaling Studies

We now study the performance of the algorithm as a function of the problem size and the

number of cores used.

Scaling with respect to problem size. We begin by examining the performance of the

algorithm under an increase in problem size with the number of cores held fixed. Figure 3

plots the computational expenses associated with solving each of the model problems on

a single core for a range of problem sizes. Specifically, we studied the elliptic problem

with mx = 16, 32, 48, 64, 80, 96, 112 and me = 1, the parabolic problem with mx = mt =

8, 16, 24, 32, 40, 48, and the hyperbolic problem with mx = 2mt = 32, 64, 96, 128, 160, 192.

In all three model problems, the solution time increases like n
γ
u, where nu is the number

of state variables and γ ≈ 1.5 (elliptic), γ ≈ 1.4 (parabolic), and γ ≈ 1.3 (hyperbolic).

The O(n
3/2
u ) scaling relationship for the elliptic problem is consistent with well-known

properties of Krylov subspace methods. Indeed, consider the application of an iterative

Krylov subspace method to an nu-dimensional linear system Ax = b with a preconditioner

P . Each iteration of the solver requires O(nu) flops if A is sparse. Moreover, the number of

iterations needed to meet a fixed relative residual grows like the square root of the condition

18



10
2

10
4

10
6

10
810

0

10
5

Problem size (n)

T
im

e 
(s

ec
)

 

 
Elliptic
Parabolic
Hyperbolic

(a)

10
2

10
4

10
6

10
810

1

10
2

10
3

Problem size (n)

# 
of

 o
ut

er
 it

er
at

io
ns

 

 
Elliptic
Parabolic
Hyperbolic

(b)

10
2

10
4

10
6

10
810

3

10
4

10
5

10
6

10
7

Problem size (n)

# 
of

 li
ne

ar
 s

ol
ve

r 
ite

ra
tio

ns

 

 
Elliptic
Parabolic
Hyperbolic

(c)

10
2

10
4

10
6

10
810

3

10
4

10
5

10
6

10
7

Problem size (n)

# 
of

 m
at

rix
−

ve
ct

or
 p

ro
du

ct
s

 

 
Elliptic
Parabolic
Hyperbolic

(d)

Figure 3: Performance of the LCL algorithm on the Haber-Hanson model problems as a

function of the problem size n.

19



8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

10
3

10
4

Number of Processors

W
al

l T
im

e 
(s

)

 

 

m
x
=96

m
x
=256

Figure 4: Strong scaling results for the Haber-Hanson elliptic model problem.

number κ of P−1A [8]. For the constraint Jacobian appearing in the elliptic model problem,

κ(P−1A) = O(nu) [8], so the O(n
3/2
u ) run time is fully explicable.

Clearly, superior scaling with respect to problem size is achievable in many circum-

stances, for example, through the use of multigrid methods. We have not explored such

enhancements in this study.

Strong scaling. We now examine the performance on a fixed problem size as the number

of cores increases. Figure 4 plots the computational expense associated with running five

outer iterations on the elliptic problem. We kept the number of iterations constant to obtain

a more accurate view of the overhead associated with increasing the cores. For mx = 96

and me = 1 ( 1.7M variables), we see that the results follow the ideal scaling trajectory for

between 8 and 64 cores, but that for more than 128 cores, the communication and set-up

overhead start to dominate. For larger problem sizes, strong scaling is evident for a larger

number of cores, as illustrated by the mx = 256 and me = 1 results ( 33M variables), which

scale well up to 1,024 cores.

5 Conclusion

We have developed a linearly-constrained augmented Lagrangian method for solving opti-

mization problems with partial differential equation constraints. The computational cost of

the algorithm is dominated by the cost of inexactly solving linearizations of the forward and

adjoint PDEs. Numerical tests on a suite of model problems indicate that the algorithm

exhibits good parallel scalability and that as the problem size increases, the solution time

grows almost as slowly as the cost of the inexact linear solves of dimension equal to the

number of state variables. Further speedups can be realized through judicious choices of

20



linear solver tolerances. The algorithm and model problems are available in version 2.0 of

the Toolkit for Advanced Optimization.

Acknowledgments

We are grateful to Lauren Taralli (née Hanson) for providing code for the model problems

in [9]. We gratefully acknowledge the computing resources provided by the Laboratory

Computing Resource Center at Argonne National Laboratory and by the National Energy

Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

References

[1] V. Akçelik, G. Biros, O. Ghattas, J. Hill, and B. van Bloemen Waanders. Parallel algo-

rithms for PDE-constrained optimization. In M. Heroux, P. Raghaven, and H. Simon,

editors, Frontiers of Parallel Computing, pages 291–322. SIAM, 2006.

[2] Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh

Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong

Zhang. PETSc users manual. Technical Memorandum ANL-95/11 - Revision 3.2,

Argonne National Laboratory, 2011.

[3] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-

constrained optimization, part I: The Krylov-Schur solver. SIAM Journal on Scientific

Computing, 27:687–713, 2005.

[4] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-

constrained optimization, part II: The Lagrange-Newton solver and its application

to optimal control of steady viscous flows. SIAM Journal on Scientific Computing,

27:714–739, 2005.

[5] Scientific grand challenges: Challenges for understanding the quantum universe and

the role of computing at the extreme scale, December 2008. http://science.energy.

gov/~/media/ascr/pdf/program-documents/docs/Hep_report.pdf.

[6] Scientific grand challenges: Discovery in basic energy sciences: The role of computing

at the extreme scale, August 2009. http://science.energy.gov/~/media/ascr/pdf/

program-documents/docs/Bes_exascale_report.pdf.

[7] Scientific grand challenges: Fusion energy sciences and the role of computing at

the extreme scale, March 2009. http://science.energy.gov/~/media/ascr/pdf/

program-documents/docs/Fusion_report.pdf.

[8] Ivar Gustafsson. A class of first order factorization methods. BIT Numerical Mathe-

matics, 18:142–156, 1978.

21



[9] Eldad Haber and Lauren Hanson. Model problems in PDE-constrained optimization.

Technical Report TR-2007-009, Emory, Atlanta, Georgia, 2007.

[10] T. Munson, J. Sarich, Stefan M. Wild, S. Benson, and L. Curfman McInnes. TAO 2.0

users manual. Technical Memorandum ANL/MCS-TM-322, Argonne National Labo-

ratory, Argonne, Illinois, 2012.

[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[12] PETSc. Portable Extensible Toolkit for Scientific Computation. See www.mcs.anl.

gov/petsc.

[13] E. Prudencio, R. Byrd, and X.-C. Cai. Parallel full space SQP Lagrange-Newton-

Krylov-Schwarz algorithms for PDE-constrained optimization problems. SIAM Journal

on Scientific Computing, 27:1305–1328, 2006.

[14] TAO. Toolkit for Advanced Optimization. See http://www.mcs.anl.gov/tao.

The submitted manuscript has been created by UChicago Argonne, LLC, Op-

erator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-

ment of Energy Office of Science laboratory, is operated under Contract No.

DE-AC02-06CH11357. The U.S. Government retains for itself, and others act-

ing on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said

article to reproduce, prepare derivative works, distribute copies to the public,

and perform publicly and display publicly, by or on behalf of the Government.

22


