
1 

PERFORMING REAL-TIME SCHEDULING IN AN INTERACTIVE AUDIO-

STREAMING APPLICATION 

 

Julien Cordry, Nicolas Bouillot, Samia Bouzefrane  
 

Laboratoire CEDRIC, Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75141 , Paris, France  

Email:julien.cordry@auditeur.cnam.fr,{ bouillot, samia.bouzefrane}@cnam.fr 

 

Key words : multimedia application, real-time scheduling, real-time system, distributed system. 

Abstract:  The CEDRIC and the IRCAM conduct since 2002 a project entitled "distributed orchestra" which proposes to 
coordinate on a network the actors of a musical orchestra (musicians, sound engineer, listeners) in order to produce a live concert. 
At each site (musician), mainly two components are active: the sound engine (FTS) and an auto-synchronisation module (nJam), 
two modules which must treat audio streams in real time and exchange them via the network. These components were first made 
to run under the Linux environment, where the available schedulers are imposed.  For this purpose, we choose to use Bossa, a 
platform grafted on the Linux kernel in order to integrate new real-time schedulers.  
 
 

1. INTRODUCTION  
The distributed virtual orchestra is the result of a 

co-operation between the research laboratories of the 
IRCAM and the CEDRIC-CNAM [ Bou., 2003; Loc. et 
al., 2003 ]. The aim of this project is to provide means 
to connect musicians that would play in real time via 
Internet. The current version runs over a multicast 
network. The musicians communicate via PCM audio 
streams, a constraint allowing a high quality hearing of 
the different audio streams. Each musician broadcasts 
towards the other musicians the music which he/she 
plays and hears the music that he/she has just played 
after a constant latency. Our purpose is to schedule the 
different processes of each site, particularly those 
generated by the sound device and the self-
synchronization by using a suitable real-time 
scheduling technique in order to improve the global 
performances of the application. We have chosen to use 
Bossa, an event-based framework for process-scheduler 
development. This choice is motivated by the following 
points:  

- to use a "Bossa" scheduling for “Linux native” 
applications, both Linux and application must be 
modified. However, a minimum of  insertion of code 
(three lines of code by process to attach it to a  specific 
scheduler) are required in an application code to benefit 
from BOSSA schedulers. Linux is automatically 
modified by Bossa:  a set of rewriting rules are applied 
to the sources of the Linux core. This way allows us to 
test and configure easily new schedulers in  an 
environment (Linux) where many applications are 
available. One could have used real-time Linux such as 
RTAI

1
 but this requires the complete rewriting of the  

                                                   
1
 Real-Time  Application Interfaces, developed in 
Dipartimento di Ingeniera  Aerospaziale, Politecnico di 

application considering the particular structure of the 
real-time tasks and the particular libraries to include.   

- We will be able to use a real-time scheduler for  
the management of the processes of our multi-media 
application, rather than those of Linux (SCHED_FIFO 
or SCHED_RR).   

The paper is organised as follows. In section 2, we 
describe the characteristics of our multi-media 
application, the distributed virtual orchestra. In section 
3, we present the Bossa platform and we show how it 
can integrate new scheduling policies. In section 4, we 
determine the application processes which need to be 
scheduled in real time, by defining a scheduler 
hierarchy. Before concluding in section 6, section 5 
presents our experiments, where we show that BOSSA 
helps our application to meet the timing constraints.  

 
2. THE DISTRIBUTED VIRTUAL 

ORCHESTRA  
The free-software team of IRCAM and the 

multimedia research team from CNAM-CEDRIC 
conduct a project since 2002 named the "distributed 
virtual orchestra". The aim of this project is to provide 
means for musicians to play across the Internet in real 
time (see Figure 1) [ Bou., 2003; Loc. et al., 2003 ].  

The application constraints are as follows:  
- the musicians are physically separated but must 

play virtually "together" in real time.  
- the sound engineer must be able to adjust in real 

time the audio parameters of the various sound sources 
(e.g., to add reverberation effects, etc).  

                                                                               
Milano of Prof Paola Mantegazza  
(http://www.aero.polimi.it/~rtai/applications /)  
 



2 

- the public must be able to virtually attend the 
concert, either at home by a standard mechanism of 
audio/video streaming, or in a room with a dedicated 
installation. 

 
In this paper, we are interested in the part 

concerning the musicians only, since it is a critical part 
in term of interactivity. Our application uses jMax, a 
visual programming environment dedicated to 
interactive real-time music and multimedia applications 
[Déch., 2000 ]. jMax has been developed by the 
IRCAM. It is composed of two parts: FTS for "faster 
than sound", a real-time sound processing engine and a 
graphical user interface which allows to add,  remove 
or connect components that exchange audio samples or 
discrete values. Some examples of components 
available in jMax are the inputs/outputs of the sound 
device, the arithmetic operations and the digital audio 
filters. Since jMax is often used to make audio 
synthesis, it has an interface with the operating system, 
ALSA (for Advanced Linux Sound Architecture) for 
Linux.  

As we are close to virtual-reality conditions, the 
sound quality, the feeling of presence, as well as 
synchronism among musicians are crucial conditions. 
For this reason, the technology developed for the 
distributed concert uses a non compressed sound (PCM 
samples at 44100Hz 16 bit, corresponding to the 
quality of an audio CD). Additionally we use the 
multicast with the RTP protocol [Sch. et al., 1998] for 
the communication among musicians. For the feeling 
of presence, during our experiments, a videoconference 
software allowed remote visualisation among the 
musicians. 

Usually, the musical interaction (all musicians in 
the same room) is enabled thanks to a common 
perception among musicians: the sound and the visual 
events are perceived instantaneously, simultaneously 
and with a sound quality limited by the capacities of 
the human ears and eyes.  

During networked performances, we can provide 
the better quality for the sound, but we cannot provide 
instantaneity. In fact, we estimate that 20ms is the 
threshold above which the human ear perceives the 
shifts. For this reason, we ensure a global simultaneity 
among musicians thanks to a synchronization 
mechanism described in [Bou., 2003; Bou. et al., 2004] 
and implemented inside nJam (for network Jam), a 
pluggin of jMax. This synchronization ensures that the 
return of the overall mix of the music is identical for all 
the musicians. nJam computes the diffusion of the 
sound through multicast with RTP, the synchronization 
of the audio streams, and the shift between the 
musicians. Thus, the musicians specify a tempo, as well 
as the shift in musical units (a beat, an eighth note, a 
sixteenth note, etc). This parameter enables them to 
have a shifted feedback, which is synchronized and 
matches the beats of the music they are playing on their 
instrument.  

We can extract some constraints for the operating 
system and the network: each instance of nJam will 
send on the network only one audio stream and will 
receive N from them (if N sites are involved). Then, 
FTS manages at least one component corresponding to 
an input (microphone or instrument) and one 
component for each output of the sound device. Within 
the RTP protocol, the isochronism of the audio data is 
ensured by a time-stamping that corresponds to the 
number of audio samples. Additionally, each site is 
controlled by its own clock, that came from the local 
sound device. At each site-clock tick, a sample of 16 
bits is produced and a sample coming from each source 
is consumed. Thus, the constraints of end-to-end 
temporal delivery are crucial, either for the network 
part or for the system part FTS/ALSA.  

In this paper, we focus on the schedule of various 
application components by using a real-time scheduling 
technique.  

3. BOSSA  

The distributed virtual orchestra is an application  
written in C whose execution environment is the Linux 
system.  From a system point of view, this application 
is confronted with the resource  sharing, in particular in 
terms of access to the processor and to the  peripherals 
(network device and sound device).  However, a 
guaranteed periodic access to these resources is 
necessary.  In this context, the use of a real-time Linux 
system (such as RT-Linux

2
 or RTAI) would enable us 

to try out scheduling policies not available on the 
traditional Linux system.  Nevertheless, to profit from 
these policies, the target application  must respect the 
structure of the real-time tasks and include the 
particular function calls of the library of real-time 
Linux. To avoid modifying the source code that deals 
with the logic of the  application, we choose to use 
rather Bossa.  Indeed, to our knowledge,  it is the only 
platform which can integrate real-time schedulers into 
the Linux core, thus allowing Linux processes to be 
scheduled according to a scheduling policy integrated 
in Bossa.  The only modification to perform on the 
source code of the process is the insertion of a function 
call used to attach the process to the selected scheduler.   

 Before presenting the Bossa
3
 platform, we describe 

the Bossa DSL (domain-specific language) used to 
implement new scheduling policies.  

 
3.1 The Bossa DSL 
The technique used by Bossa to integrate new 

scheduling policies in an existing operating system is 
the use of a dedicated language (DSL: Domain Specific 

                                                   
2
   http://www.fsmlabs.com  
3
 http://www.emn.fr/x-info/bossa 



3 

Language). A DSL is a programming language 
providing high-level abstractions appropriate to a given 
domain and permitting scheduling-specific 
verifications and optimizations.  

Each scheduling policy in Bossa is implemented as 
a collection of event handlers that are written in Bossa 
DSL and translated into a C file by a dedicated 
compiler. A Bossa scheduling policy declares: (i) a 
collection of scheduling-related structures to be used by 
the policy, (ii) a set of event handlers, and (iii) a set of 
interface functions, allowing users to interact with the 
scheduler. 
Table 1 shows some of the declarations made by the 
Bossa implementation of the Linux 2.2 policy. The 
process declaration lists the policy-specific 
attributes associated with each process. As reflected by 
the policy field, the Linux 2.2 scheduling policy 
manages FIFO and round-robin real-time processes, as 
well as non real-time processes. The other fields of the 
process structure are used to determine the current 
priority of the associated process. Finally, the 
ordering_criteria declaration specifies how the 
relative priority of processes is computed. Table 1 
shows also examples of event handlers of the Linux2.2 
policy. For example, the event handler block. *  
moves the target process to the blocked process 
whereas the event handler unblock. * moves the 
target process from the blocked queue to the ready 
queue.  

 
3.2 From the Linux kernel to Bossa  
The developers of Bossa examined the problem of 

operating system (OS) evolution in the context of 
adding support for scheduler development into the 
Linux OS kernel. The goal of Bossa  is to simplify the 
design of a kernel-level process scheduler so that an 
application programmer can develop specific policies 
without expert-level OS knowledge [Law. et al., 2002; 
Bar. et al., 2002 ]. A Bossa scheduling policy is 
implemented as a module that receives information 
about process state changes from the kernel via event 
notifications and uses this information to make 
scheduling decisions. 

 
Table 1:  Declarations of the Linux 2.2 policy 
Declarations Event Handlers 
type policy_t = 
enum {SCHED_FIFO, 
SCHED_RR, SCHED_OTHER} 
 
process = { 
policy_t policy; 
int rt_priority; 
time priority; 
time ticks; 
system struct ctx mm; 
} 
 
 

On block.* { 
  e.target => 
bocked; 
} 
 
 On unblock.* 
{ 
if (e.target 
in blocked) { 
 e.target => 
ready; 
  } 
 }   

ordering_criteria = { 
highest rt_priority, 
highest ticks, 
highest 
((mm==old_running.mm)?
1:0)} 

  

 
Preparing a kernel for use with Bossa requires 

inserting these event notifications at scheduling points 
throughout the kernel. The evolution of the Linux 
kernel to support Bossa is rather complex, for various 
reasons. First, Bossa would like to be used across the 
many sub-series of Linux releases, which do not 
contain new algorithms. A solution based on patches is 
not sufficient because the line numbers of the 
scheduling points as well as the code surrounding these 
points can differ across releases. Second, some of the 
changes required to support Bossa depend on control-
flow properties. Detecting such properties by hand is 
error-prone even when considering a single version of 
Linux. Finally, making any changes by hand across 
multiple files of a large piece of software (Linux 
currently amounts to over 100MB of source code), is 
tedious and error-prone. Hence, the rewriting principle 
has been used to implement a crosscutting functionality 
that contains a collection of code fragments and a 
formal description of the points at which these 
fragments should be inserted into the target application. 
This functionality uses temporal logic to precisely 
describe code insertion points and thus resolve the 
context-sensitivity issue. 

 
An example of a rewrite rule is the following as it is 

described in [Aber. et al., 2003]:  
 

n:(call try_to_wake_up))  
=>Rewrite(n, bossa_unblock_process(args))  

 
This rule matches any call to the function 
try_to_wake_up. A node matching this pattern is 
given the name n. The use of Rewrite indicates that 
the call to try_to_wake_up is replaced by a call to 
bossa_unblock_process. The function 
wake_up_process shown below illustrates the 
effect of applying this rule.  

 
wake_up_process(struct task_struct * p) { 
#ifdef CONFIG_BOSSA  

return bossa_unblock_process  
(WAKE_UP_PROCESS, p, 0);  

#else  
return try_to_wake_up(p, 0);  

#endif  
} 

 
The Linux kernel is rewritten using over forty 

logical rules of a rather great complexity implemented 
in Ocaml and Perl via CIL (C Intermediate Language). 
Even with these methods which are supposed to 



4 

guarantee a minimum of reliability, the error is always 
possible. Thus, when using Bossa with the distributed 
virtual orchestra, we could note the failure of a 
rewriting rule.  

 
3.3. Bossa: a hierarchy of schedulers  
A scheduler is a complex application since that it 

requires understanding the operation of multiple low-
level kernel mechanisms. Ideally, to be able to 
implement new scheduling policies, the scheduler and 
the rest of the kernel must be completely distinct but 
perfectly interfaced.  

Bossa proposes a specific abstraction level to 
scheduling domain. Instead of calling directly the 
functions of the scheduler (typically schedule ()), 
the drivers call a system of events. Indeed, the Bossa 
framework replaces scheduling actions in the kernel, 
such as the modifying of a process state or the electing 
of a new process, by Bossa event notifications. Event 
notifications are processed by Bossa run-time system 
(RTS) (see Figure 2) which invokes the appropriate 
handler defined by the scheduling policy.  

To resolve the problem of coexistence of real- time 
and non real-time programs, Bossa introduced the 
concept of hierarchy of schedulers. A process 
scheduler is a traditional scheduler that manages the 
processes in order to allocate to them a processor time. 
A virtual scheduler is a scheduler that controls other 
schedulers. Thus, one can create a virtual scheduler 
with child schedulers to which it can give control 
according to well defined criteria (for example, 
priority) or according to a proportion (for example the 
virtual scheduler will give control once on three to the 
child scheduler number 1 and twice out of three to the 
child scheduler number 2). The system scheduler will 
thus have a tree form where nodes are virtual 
schedulers and leaves are process schedulers. The main 
difference between a process scheduler and a virtual 
scheduler is the handling of events. The Bossa run-time 
system sends the event to the first scheduler in the 
hierarchy. After receiving the event, a virtual scheduler 
forwards the event to the appropriate child scheduler 
and then updates the child scheduler state according to 
the result of the event treatment.  

4. REAL-TIME SCHEDULING OF 

THE DISTRIBUTED ORCHESTRA  

Many real-time scheduling algorithms are described 
in the literature [Cot. et al., 2002 ] nevertheless they are 
not implemented on usual (non real-time) operating 
systems. We have chosen Bossa because our 
multimedia application will continue running under 
Linux while using a real-time scheduling strategy for 
the processes.  

In the remainder of this section, we will investigate 
the real-time processes of the distributed orchestra that 
must be scheduled by using a real-time scheduling 
policy. For this purpose, we will be interested in the 
FTS/jMax and nJam modules that constitute the heart 
of our application.  

 
4.1 Analyzing FTS and nJam 

processes 
As explained in section 2, at each site FTS, the 

audio engine, manages the jMax components like the 
audio inputs/outputs or nJam (the pluggin of jMax). 
During the initialization of FTS  (when starting jMax), 
modules (like  ALSA under Linux ) will be loaded. 
Then, the user can define, connect and set parameters 
of the components via a graphical interface. The FTS 
engine has a loop structure(see the following code):  
the functions associated to the components are 
executed one by one (with a beat driven by the sound 
card). Indeed, the function fts_sched_do_select 
returns in main_sched the list of the functions to be 
executed.  

 
void fts_sched_run(void)  
{ 
while(main_sched.status! = sched_halted)  
fts_sched_do_select(&main_sched);  
} 

FTS starts by analyzing the output of the graphical 
interface to deduce a set of dependences between FTS 
components. The execution of the functions associated 
to the components will allow audio-data exchange 
between components and a possible output over the 
sound device. This loop is critical since each function 
registered in FTS engine corresponds to a set of 
samples which must be available to the next cycle. 
During our experiments, the cycles were equivalent to 
64 samples each, corresponding to a duration of 
64/44100 seconds, i.e., 1.45 ms.  

 
In addition to FTS, the nJam patch  synchronize 
musicians  to provide the perceptive consistency [Bou. 
et al, 2004]. Additionally, it keeps the isochronism 
from end to end by playing null sample when data 
come late (RTP is build on top of UDP). In this way, 
nJam needs periodical accesses to the sound card and 
the network interface nJam starts mainly a thread 
which loops on the reception and the sending of RTP 
packets until the end of connections. It is the greediest 
operation from the resources point of view. 

 
4.2 The distributed orchestra under 

Bossa  
To run the distributed orchestra under Bossa, we 

define a scheduler hierarchy. The development team of 
Bossa has already worked on multi-media applications 
[Conc. et al., 1998]. Indeed, they developed a version 
of mplayer that uses the EDF technique. This version 
requires to define the attachment of the application to 



5 

the scheduler with a period and an execution time 
expressed in jiffies (CPU clock ticks). We define a tree 
structure with one level so that the root which 
corresponds to a virtual scheduler is composed of two 
child process schedulers: one process scheduler 
corresponds to the EDF version of mplayer and the 
other one is a traditional Linux process scheduler. The 
virtual scheduler is a fixed-priority based scheduler, in 
other words it handles two child schedulers having 
static priorities. In our case, the priorities are associated 
to the process schedulers so as to favour systematically 
EDF over a Linux scheduler. The following commands 
allow the creation of the schedulers hierarchy of Figure 
3.  

 
panoramix:/home/cordry # modprobe EDFu  
panoramix:/home/cordry # modprobe 
Fixed_priority  
panoramix:/home/cordry # /bin/manager  
Available schedulers:  
0. Linux (PS, root, default)  
1. EDFu (PS, not loaded, not default)  
2. Fixed_priority (VS, not loaded, 
default)  
 
Default path:  
Linux  
 
Command: (the scheduler number uses)  
C <P> <C> connect relative scheduler P to 
child scheduler C  
D <S> disconnect scheduler S  
L list available schedulers  
H print this help finely  
Q quit  
 
> C 2 0  
int importance_10: 5  
> C 2 1  
int importance_10: 7  
> L  
Available schedulers:  
0. Linux (PS, loaded, default)  
1. EDFu (PS, loaded, not default)  
2. Fixed_priority (VS, root, default)  
 
Default path:  
Fixed_priority - > Linux  
> Q  

 
All the processes will be executed by default under 

Linux, except for the principal loop of FTS (which 
makes audio computation) and the nJam thread (in 
charge of the emissions and receptions of RTP packets) 
which will be scheduled in real time.  

Any process which must be scheduled under Bossa, 
must be attached to a scheduling policy. In the context 
of our application, FTS loop will be attached to EDF 
scheduler while specifying the worst case execution 

time of the loop and its deadline that is equal to its 
period.  

To compute the execution time of FTS loop, it is 
necessary to evaluate the execution time of the various 
functions called. These functions associated with the 
components prepare 64 samples at each clock tick of 
the sound device, that is, a cycle which takes 
64/44100=1.45 ms. Greater is the number of 
components, greater is the number of associated 
functions, which increases the execution time of FTS 
loop. In our experiments, according to the number of 
components defined, we limited the execution time of 
FTS loop to 4 jiffies (CPU clock ticks, on a modern 
hardware a jiffie approximates 10ms) and fixed its 
period to 5 jiffies.  

The following code shows the modifications that 
were have carried out on FTS loop in order to attach it 
to EDF scheduler.  

 
/* we include the definitions of EDFu */  
 # include " user_stub_EDFu.h "  
  
 
void FTS_sched_run(void)  
{ 
int period = 5;  
int wcet = 4;  
 
/* we attach the current process to the 
EDFu scheduler * /  
if (EDFu_attach(0,period,wcet) < 0) 
    FTS_post("Cannot attach (%s)\n", 
strerror( errno)); 
 
while(main_sched.status! = sched_halted)  
FTS_sched_do_select(&main_sched);  
/* we loop on the list of functions 
called by FTS until the end */  
} 

Similarly, we attached the nJam thread to the EDF 
scheduler by assigning to the thread a period equal to 
10 jiffies and a worst case execution time of 1 jiffie. 
The following code shows this attachment.  
 
void start_routine(nJam_t * this)  
{ 
struct timeval timeout;  
 
pid_t my_pid;  
 int wcet = 1;  
int period = 10;  
 my_pid = getpid();  
if (EDFu_attach(0, period, wcet) < 0)  
fts_post("Cannot attach %u (%s) 
\n",my_pid,strerror( errno)); 
pthread_exit(0);  
} 



6 

5. PERFORMANCES EVALUATION 

We have run the distributed orchestra application 
by using sound automates that generate a 16 bit PCM 
audio signal at a frequency of 44100 Hz (one automate 
on each site). The machine called "breton" has an Intel 
processor of 3 GHz with a memory of 1 GB and uses 
Linux as operating system (kernel 2.6.5). The machine 
"panoramix " has an Intel processor of 350 MHz with a 
memory of 256 MB and uses Linux with two kernels 
(Bossa and kernel 2.4.21). The curves we present 
correspond to the quantity of data stored in the buffers 
of nJam, each buffer corresponds to a musical source. 
These data are regularly consumed by FTS in order to 
feed the sound device. Since the production of audio 
samples as their consumption take place at the same 
rate theoretically (if we consider that the clocks of the 
sound cards do not derive), the quantity of data should 
be constant, modulo the jitter of the network. The 
measurements are made from the first communication 
between the machines, showing abrupt increasing due 
to the adjustment of latencies to synchronize audio 
streams.  

Figure 4 shows the ideal situation for the machine 
panoramix (which runs under Bossa), i.e. when the 
system is not overloaded. In this case, the 
producer/consumer relation of the audio streams 
coming from panoramix and breton is correctly 
preserved (the curves are constant starting from the 
33th second).   

Figure 5 shows the case where the machine 
panoramix  runs with a Linux system loaded thanks to 
a script and started at the 29th second on panoramix. 
From this moment, the audio samples are not heard any 
more at the output of the sound device, causing an 
imbalance in the producer/consumer relation of nJam.  
The curve of figure 5 shows the nJam buffer size of 
panoramix machine. We can see that the data coming 
from breton are not consumed since their quantity 
increases. However, the local stream remains constant, 
letting us assume that the data are not sent. This 
assumption is confirmed by the curve of figure 6, 
because the machine breton stops abruptly the 
reception of data from panoramix at the 50th second. 
We thus see clearly thanks to figure 5 that processor 
loads blocks completely the access to the sound device 
(FTS  process) as well as the sending and the reception 
of the data on the network (thread nJam) .  

We made the same load test with panoramix  while 
running under Bossa. Process FTS as well as the thread 
nJam being scheduled with an EDF policy. In this case, 
in spite of the load, we can see on figure 7 that the 
machine panoramix is not disturbed by the load script, 
neither in relation with the network, nor regarding to 
the sound-device access. It shows that nJam meet its 
timing constraint, instead of an heavily  loaded system. 

6. CONCLUSION  

The project on the distributed virtual orchestra aims 
to provide means to allow to remote musicians to play 
music via Internet. In this paper, we provide some 
execution guaranties, which help the application to 
satisfy the temporal requirement, both for the local 
device and for the network access. 

 In addition to FTS/jMax module, N. Bouillot 
proposed an audio-stream synchronization algorithm to 
provide synchronism among the musicians. This 
algorithm is implemented as a jMax pluggin. We 
wanted to show here how we proceed to schedule the 
various processes generated by these components by 
using a real-time scheduling technique in order to 
handle the temporal constraints of the application. We 
chose to use Bossa, an event-based platform which 
integrates easily new scheduling policies without 
changing the operating system. We used the concept of 
scheduler hierarchy defined in Bossa to schedule the 
real-time processes of our application according to an 
EDF-based technique more appropriate to the multi-
media domain. Non real-time processes are handled by 
a traditional scheduler of Linux.  

Finally, the experiments carried out show that we 
can test and configure specific schedulers in a widely 
deployed desktop environment (Linux). Thus, we argue 
that BOSSA allows us to test new schedulers easily 
with multimedia applications and with a small cost. 
However, the Linux kernel must be replaced by the 
kernel modified by the BOSSA rewriting rules. This 
modifications performed on Linux can be performed 
only by specialists.   

Several search directions can be explored as a 
perspective to this work. Nevertheless the direction 
which seems to be essential to pursue this work 
concerns  
o first, a precise study of the parameters relating to 

the quality of service of the network which could 
influence the temporal characteristics of the real-
time processes of the distributed orchestra and 

o second, the configuration of the scheduler. We 
have seen that the scheduler is configured with 
Jiffies. However, our constraints are expressed in 
time units which depend on the sound-device 
clock. Thus, we plan to modify Bossa to use 
system calls, as the access to the sound device, 
inside the scheduler configuration 

 
7. REFERENCES  
 
[Aber. et al., 2003] : Aberg R. A., Lawall J.L., Südholt 

M., Muller G. And Le Meur A.-F., "On the automatic 

evolution of an OS kernel using temporal logic and AOP", 

Automated Software Engineering, 2003.  

[Bar. et al., 2002] : Baretto L. P. et Muller G., "Bossa: a 

language-based approach to the design of real-time 



7 

schedulers", In 10th International Conference on Real-Time 

Systems (RTS'2002), pages 19-31, Paris, France,march 2002. 

[Bou., 2003] : Bouillot N., "Un algorithme d'auto 

synchronisation distribuée de flux audio dans le concert 

virtuel réparti", RenPar'15, CFSE'2003, SympAAA'2003, 

pp.441-452, France, oct. 2003. 

[Bou. et al., 2004] Nicolas Bouillot N. et Gressier-

Soudan E.,"Consistency models for Distributed Interactive 

Multimedia Applications". A paraître dans Operating 

Systems Review. Volume 38, issue 3. Octobre 2004. 

 [Conc. et al., 1998] : Consel C. et Marlet R., 

"Architecturing software using a methodology for language 

development", Proc. of the 10th Intern. Symp. On 

Programming Languages, Implementations, Logics and 

Programs, Pise, Italy, pp. 170-194, 1998. 

[Cot. et al., 2002] : Cottet F., Delacroix J., Kaiser C. et 

Mammeri Z., "Scheduling in Real-Time Systems", Wiley Ed., 

261 pages, 2002. 

[Déch., 2000] : Déchelle F., "jmax: un environnement 

pour la réalisation d'applications musicales temps réel sous 

Linux", Actes des journées d'Informatique Musicale, 2000. 

[Law. et al., 2004a] : Julia L. Lawall, Gilles Muller, 

Hervé Duchesne, "language design for implementing process 

scheduling hierarchies", Invited application paper, in Proc. of 

the ACM/SIGPLAN Workshop Partial Evaluation and 

Semantics-Based Program Manipulation Proceedings of the 

2004 ACM SIGPLAN symposium on Partial evaluation and 

semantics-based program manipulation, pages 80-91, 

ISBN:1-58113-835-0, Italy, August 24-25, 2004.  

[Law. et al, 2004b] : Julia Lawall, Gilles Muller, Anne-

Francoise Le Meur, " On the design of a domain-specific 

language for OS process-scheduling extensions", in Proc. of 

the Third International Conference on Generative 

Programming and Component Engineering (GPCE'04), 

Vancouver, October 24-28, 2004. 

[Loc. et al., 2003] Locher H.-N., Bouillot N. Becquet E., 

Déchelle F. & Gressier-Soudan E.,"Monitoring the 

Distributed Virtual Orchestra with a CORBA based Object 

Oriented Real-Time Data Distribution Service", International 

Symposium on Distributed Object Application, nov. 2003. 

Catagne, Italy. 

[Sch. et al., 1998] Schulzrinne, Casner, Frederick and 

Jacobson. RTP: A Transport Protocol for Real-Time 

Applications. RFC 1889. 1998. 

 

Aknowledgments : we would thank Mr Gilles Muller, 

Professor at Ecole des Mines de Nantes (France) and a Bossa-

team member, and Mr Jean-Ferdinand Susini, Associate-

Professor at CNAM (Paris),  for their relevant remarks that 

help us to improve the content of this paper.  

 

 

 

 
 

Figure 1. The distributed virtual orchestra 

  
Figure 2. Bossa architecture 

 



8 

 
Figure 3. A scheduler hierarchy 

 
 

 
Figure 4. The behaviour of panoramix using Bossa and breton 
using Linux when the system is not loaded (from panoramix point 
of view) 

 
 
Figure 5. The buffers sizes of panoramix and breton when 
they run under Linux with a loaded system(from panoramix 
point of view) 

 
 

 
Figure 6. Buffers size of panoramix and breton running under 

Linux with a loaded system (from breton point of view) 
 

 
 

 
Figure 7. Buffers size of panoramix running under Bossa with 
a loaded system 
 

 
 
 

 


