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Abstract: With the growth of interactive multimedia streaming on Internet, we expect to provide a 
tool making remote musicians play together in real-time and across the Internet. However, real-time 
streaming deals with delays, producing among musicians what we call an auditory inconsistency. As 
we will show, this inconsistency disables the collective musical practice. In this paper, our conductor 
driven scheme provides the auditory consistency property among chosen participant of the musical 
performance. This synchronization scheme hides the network latency to the musicians and enables the 
distributed collective musical practice. 

 

Résumé : La croissance des systèmes de transmission de flux multimédia interactifs nous laisse 
envisager la possibilité de fournir à des musiciens géographiquement éloignés un médium permettant 
de jouer de la musique ensemble en temps réel. Cependant, le streaming de flux multimédia introduit 
des délais de bout en bout. Parmi les musiciens distants, ces délais provoquent ce que nous appelons 
une incohérence auditive. Comme nous allons le montrer, cette incohérence empêche les musiciens de 
jouer de la musique collectivement. Dans cet article, notre mécanisme orienté chef d’orchestre fournit 
la propriété de cohérence auditive entre différents musiciens choisit. De plus, ce mécanisme cache 
complètement la latence introduite par le réseau aux musiciens et rend possible le jeu musical collectif 
distribué. 

 

Key words: Musical interactivity, real-time, PCM audio streaming, synchronisation, distributed 
system. 
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The auditory consistency in distributed music performance: 
a conductor based synchronization 

 

1 - INTRODUCTION 

1.1 - The distributed virtual concert project 
This project comes from the collaboration 
between IRCAM's and CNAM-CEDRIC's 
research laboratories. It may enable a real-time 
orchestra of remote musicians.  

 
Fig 1. The distributed virtual concert 

Figure 1 shows the general architecture of the 
distributed concert project. Remote musicians 
play together in real time, hearing each other 
through PCM audio streams. The different 
parts of the music (played by others) are heard 
after synchronization in the side fills of these 
streams. This allows them to play a real time 
and collective musical piece. In order to 
preserve local rhythms and audio quality in the 
streaming engine, latencies between musicians 
are kept constant. The public can hear the 
concert thanks to a sound engineer who 
performs remote control of the audio streams 
parameters as volume, localization in space, 
etc (see locher (2003)). In this way, he controls 
the streaming engine that achieves a traditional 
and spatial mixing. Spatial mixing consists in 
placing sources on a three dimensional space 
(then the sound is multi-channel). We focus 
here on the synchronization scheme among 
musicians and particularly on the way to play 
music according to the network constraints.  

1.2 - The distributed auditory consistency 
problem 
We will first show some differences between 
the traditional music practice in a band, i.e. 
when all musicians are in the same room, and 
the musical practice across the network. Then, 

we will define the distributed auditory 
consistency property.  

Traditionally, the musical interaction is helped 
by various visual signs and conventions 
predetermined on the piece of music played 
(such as a sequence of chords with a theme for 
a piece of Jazz).  At the same time, the musical 
contents added by each musician inform the 
others on the possible evolution of the piece. 
For example, groups of percussions sometime 
use rhythmic sentences to call each other to 
change rhythms. These kinds of interactions 
are possible due to the instantaneous hearing of 
the sound produced by each musician. For 
instance, if a bassist and a drummer play 
rhythms at the same time, everybody in the 
room will hear them together. We will next 
differentiate the direct sound produced by each 
musician and the side fills given by the 
environment. This allows us to consider the 
environment latency as the latency between the 
direct sound and the side fills. In a room, the 
environment latency exists due to the sound 
transmission delay in the air but it is not 
audible. In our work, we consider 20ms as the 
auditory delay perception threshold. As this 
latency cannot be heard musicians could 
synchronously feel the time as structured 
musical units (bars, quarter notes, triplets…). 
This common musical language gives them the 
opportunity to play synchronously their own 
part on the global performance. The 
environment keeps then the property we call 
the consistent auditory restitution. We can thus 
say that playing music with interaction is 
possible in a synchronous environment. 

In our context of distributed “Live” music   
where the musicians are physically remote, 
networks and operating systems are 
asynchronous with audible and different 
latencies. Sound card, network, drivers and 
application provision the global latency. Let us 
show now why latencies impact on the 
consistent auditory restitution. Consider on 
figure 2 two musicians (Alice and Bob) who 
want to play across a network with perceptible 
delays.  



 
Fig 2. The auditory consistence problem 

First, Alice is playing a sound at the time we 
call “A1”. When this sound is returned to Bob 
at “B2”, he is playing another sound. At this 
time, Bob hears the sounds «A1» and «B2» 
simultaneously. But he has to send to Alice his 
sound produced at “B2”. It is returned to Alice 
when she is producing the “A4” sound. This 
makes Alice hears the sound “A4” and “B2” 
simultaneously. As “B2” is mixed with 
different sounds for Bob and Alice, we can say 
that they are not living the same experience of 
the musical piece. This is what we call an 
inconsistent auditory perception of the music. 
It is then difficult to get a common rhythmical 
language. Suppose that Alice is a drummer and 
Bob is a bassist. If Bob feels himself 
rhythmically synchronized with the drums 
pattern, Alice will feel Bob out of the rhythm. 
Therefore she will adjust her rhythm in order 
to be synchronous with Bob but that will cause 
a de-synchronization at Bob’s side-fills, with a 
snowball effect.  

1.3 - Solutions 
To avoid this problem, we propose to add a 
mechanism that provides the consistent 
restitution. We distinguish two kinds of 
solutions. Bouillot (2003) has described the 
first one. This solution consists in adding 
consensually delays in each musician’s side 
fills, making each musician hears himself with 
a constant latency. There are situations where 
musicians are able to play with some delays, 
like organists interacting with a choir in 
church. But the musicians have to learn to play 
with this latency, limiting the spectrum of 
musical style possible. The second solution is 
presented in this paper (section 3) and it is 
called the “conductor synchronization 
scheme”. This solution gives to the musicians 
a synchronous side-fill with a zero-local 
latency perception. As a side effect, each site 
can hear only his own produced stream with 
the one coming from the conductor. 

On section 2, a state of the art is given with 
short comparisons with our synchronization 
scheme. We will next present our “conductor” 
based solution. Then we will present the 
current status of the prototype in section 4 and 
to finish, we will conclude in section 5. 

2 - STATE OF THE ART 

Several experiments of real time multimedia 
performances on Internet have already been 
achieved. Most of them use the MIDI standard 
(Musical Instrument Digital Interface). In 
Eliens (1997), latency between the production 
and the consumption of sounds is not designed 
to be constant so, variations are perceived 
while hearing.  In the piano lesson system of 
Young (1999) and Fujinaga, a single musician 
is teaching while the pupils are listening. Then, 
there is no need here to play in a synchronized 
way.  The team of Goto (1996, 1997) 
developed VirJa, a tool of virtual session of 
Jazz in which someone can play music with 
two processors, but there is no mechanism of 
synchronization of streams specified. An 
experiment of remote music was born based on 
RMCP (Remote Music Control Protocol) used 
in VirJa:  OpenRemoteGIG (Goto (2002)) 
allows playing with remote musicians with 
MIDI streams and constant latency (an entire 
chord sequence). In this system, the musicians 
from various places will hear all the musicians 
but none of them hears the same resulting 
music. The example describes in Goto (1997) 
shows us this shift: the player improvises while 
listening to other sounds delayed by the 
constant period of the repetitive chord 
progression (a 12-bar blues chord progression 
in the text). Because the progression is 
repetitive, the delayed performance can fit the 
chords. In this way, musicians can play in a 
synchronous way. They will hear themselves 
instantaneously but simultaneously with the 
other delayed by the 12-bar latency. We can 
say that this work is done without a distributed 
auditory consistence and with a big latency 
reducing the interactivity between musicians. 
Despite the interest that such performances 
represents, the MIDI protocol allows to put 
aside some aspects of the transmission of PCM 
audio streams. MIDI takes less bandwidth 
thanks to its descriptive format but it also 
decreases the field of the transported sounds. 
Thus, it is difficult to make a direct analogy 



with the constraints raised by PCM audio 
streams. Among all of these papers no one 
deals with the distributed auditory consistency 
problem or something equivalent. 

Xu (2000) and Cooperstock (2001) have tested 
the transport in real time of PCM audio 
streams created on fly. The authors used a 
recording studio to sample a performance that 
took place in another country. The musicians 
were located at the same place, raising no 
problem on interactions between musicians.  

The closest work done by another team is the 
“SoundWire” project. They experienced the 
streaming of professional-quality audio across 
the Internet2 network (see Chafe (2000)). Few 
LAN and WAN experiments were deployed in 
the United States, where round trip time was 
about a 2 factor slower than the speed of the 
light. In these experiments, the main musical 
goal was to see how musicians could play with 
latency introduced by the network. As these 
latencies were closed to the one perceptible by 
the ear, the musicians could progress together 
in the musical piece but not rhythmically 
synchronous (see SoundWire (2002) Live 
WAN test audio examples). The reason is that 
they did not include any musical 
synchronization in their streaming engine. In 
comparison with our experimental context, we 
are working on Internet with bigger round trip 
times. But even with the smallest delays 
possible (the light speed), “the theoretical 
round trip time across USA and back is 
approximately 40msec”. We take 20msec as 
the perceptible latency between two clicks 
delayed. This threshold is stated also by 
simulated delay tests from Schuett (2002) 
audio examples. We hear that with a 20ms 
delay, musicians can play together but with a 
30ms delay, we can hear a difference between 
the side-fills of the two musicians. This let us 
imagine perceptible delays with bigger 
distance. Schuett’s thesis (2002) tries to 
“define the level of delay at which effective 
real-time musical collaboration shifts from 
possible to impossible”. The author talks about 
a leader-follower relationship between 
musicians. However, this relationship is 
different from the one presented in our work. 
In the Schuett’s study, two performers are 
subject to symmetric delays added with a 
digital mixing console. He remarks that the 
musicians can play together if one of them 
follows rhythmically the other one. This 

relationship is based on the musicians’ 
behavior. We point out that in our work, we 
synchronize the audio streams thank to the 
streaming engine and the time stamping. 
Remote performers are then subject to delays 
that could be asymmetric. This is here the 
synchronization scheme which is conductor 
driven.  

3 – THE SYNCHRONIZATION SCHEME  

3.1 – Justification of such an architecture 
Playing music in a band is itself a hard task. 
Then we want to minimize the difficulties 
added by the streaming engine. Playing music 
with remote musicians avoids social 
interactions as looking to the other musicians, 
hearing them instantaneously… In order to 
provide an easier practice of the remote 
playing, we believe that musicians have to be 
in a synchronous musical environment. This 
immersion is possible if we include 
synchronization mechanisms in each local 
musician’s side-fills. We thus have to consider 
things like: “what does each musician should 
hear?” In Bouillot (2003), we supposed that 
each musician hears each other to keep a 
musical interaction. But it depends on the kind 
of music, especially when the entire band must 
communicate. This approach provides a good 
interactivity among the musicians but the side 
effect of keeping each stream in the side-fills is 
that the local sound is delayed too. The 
musical practice becomes then more difficult, 
but still possible. The idea we present here is 
quite different: the musicians will hear only 
two streams, the one from the conductor and 
the one from themselves. This is acceptable 
with some kinds of music where there is a little 
interaction between musicians. This is the case 
of many written music where the most 
important interaction is the one with the 
conductor. Symphony is a good example: in a 
symphonic orchestra, musicians are looking at 
the conductor and at the same time they are 
hearing their neighbors to play music. We can 
find some other examples as the Mugam of 
Azerbaijan, one of the liveliest Orient’s 
classical musical styles. Bois (1993) explains 
that this music requires « a singer, […] and 
two musicians (sazande) playing on the luth 
(târ) and the spike-fiddle (kemânche). The târ 
converses directly with the sung phrases, while 
the kemânche sometimes sustains the singer 



sometimes the târ player». Then, the singer 
needs to hear the târ player. The târ player 
needs to hear the singer but the kemânche 
player stream is not necessary at the other's 
side fills to play in a synchronous way. At the 
question “what do musicians hear? » our 
conductor synchronization scheme answers 
that each musician must hear his own produced 
sound and the conductor sound. In this way, 
we can make easier the distributed musical 
practice. To compare that with our previous 
work, this avoids the local latency and also the 
interaction between musicians. With this 
conductor driven scheme, we can distribute the 
Mugam’s musicians by associating the târ 
player with the singer as the conductor and the 
kemânche player as a musician. Thus the 
kemânche player can play without local 
latency.  

3.2 - Description 

 
Fig 3. The conductor architecture 

The idea behind the conductor driven 
architecture is quite simple. The conductor 
broadcast his own sound, for instance a beat, 
time stamped with the local sound card’s 
clock. Helped by the streaming engine, the 
musicians can hear the sound sent by the 
conductor. It is easy now for all of them to 
play synchronously with the beat heard on the 
side-fills. As musicians got a global reference 
(the conductor’s stream), it is able to mix all 
the streams in a synchronous one. In order to 
do that, each musician’s sample are time 
stamped with the stamp of the conductor’s 
sample perceived simultaneously. The 
conductor (or someone else) could receive 

each stream and mix them in the synchronous 
way by playing simultaneously the samples 
having the same timestamp. To keep 
interactivity in the musical piece, the 
conductor can mix his own beat with his voice 
to indicate to musicians how the musical piece 
will change.   
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These considerations suppose that the remote 
sound cards are running at the same sample 
rate. If not, a conversion can be added. 

 
Fig. 4. The streams in the conductor driven scheme 

As Figure 4 shows, in the conductor 
architecture, the conductor broadcast his own 
sound. Each musician receives thus all the  
samples as a stream (Figure 4 shows us the 
sample CO1 broadcasted to the musicians). 
With that stream, each musician gets samples 

j
cs



(with the timestamps associated) to play out. 
The main objective for them is now to 
timestamp their own stream with the values 
that allow the conductor to mix them and get a 
resulting mix synchronized. Locally to , the 
input stream coming from the ’s instrument 
and the stream coming from the conductor are 
processed by the same clock ( t ). Then for 

each musician , for each locally produced 
sample, the timestamp associated is 

where: 
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On figure 4, the A1 and B1 timestamp are set 
to CO1. After the timestamp calculation, each 
musician will send his produced sample with 
the associated timestamps to the conductor, 
who will mix the streams as: 
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The conductor mixes these samples to hear 
them or to send the mix to listeners (Figure 4).  

If musicians play synchronously with the 
conductor stream (the global reference), the 
mix will be synchronous. To keep an 
interaction between the conductor and the 
musicians, the conductor has to hear the 
resulting music, which includes a rhythmic de-
synchronization between his side-fills and his 
direct sound. Therefore, he can send a pre-
recorded sound (a beat for example) and hear 
the mix only, avoiding the problem. Another 
solution is to take two people as the conductor: 
one plays the synchronization stream and the 
other one hears the mix to give the indications. 
In this way, we expect a minimal latency from 
musicians to the conductor.  

We can notice now that musicians do not 
perceive the network latency: they are just 
playing with a received stream. However, the 
conductor can hear all of them and perform the 
interactivity by giving them indications.  

3.3 - Bandwidth requirement 
A mono PCM stream with a 44100Hz sample 
rate sent with RTP (Schultzrinne (1998)) 
represents 0,7Mb/s. As we use IP multicast in 
our streaming engine, the conductor need to 

send 1 synchronization stream and need to 
receive  streams from the musicians. The 
conductor thus needs a 0,7Mb/s upload 
bandwidth and a 

n

n×7,0 download bandwidth. 
Each musician needs 0,7Mb/s as upload 
bandwidth (his own produced sound) and 
0,7Mb/s as download bandwidth (the 
conductor stream). Nowadays, these 
bandwidth requirements are too big to place 
the conductor on a DSL connection at home 
but not to play through academic Internet 
providers, which is our actual experimentation 
context. 

3.4 – Combination with previous work 
The conductor architecture fits well with the 
music where there are little interactions 
between musicians. It provides a null latency 
perception to the musicians. Bouillot (2003) 
focus on interactions between all the musicians 
and includes latency in the perception of the 
local produced sound. These two kinds of 
interactions have advantages and 
disadvantages but are not incompatible. We 
can take the advantages of both, thanks to an 
appropriate distribution of the roles between 
each musician in a band, according to the 
expected interactions. For example, the 
resulting music of a group of musicians that 
interacts with the self-synchronization 
algorithm (see Bouillot (2003)) music could be 
the synchronization stream in the conductor 
architecture. The other musicians can then play 
with this synchronization steam in a 
“conductor” oriented way. Therefore, by 
coupling both synchronizations, the solution to 
the auditory consistence problem can be 
generalized with two levels of added 
difficulties at the musicians’ instrumental 
practice. 

4 – CURRENT STATUS 

We have not implemented yet the conductor 
driven scheme in our prototype. However, as 
we will show, our streaming engine is modular 
and can be easily extended with the conductor 
driven scheme. 

4.1 – The Streaming engine 
We developed the streaming engine as part of 
the jMax (Déchelle (2000)) visual language. 
Figure 5 shows a jMax patch example. This 



visual language works with a message oriented 
semantic. For instance, a modification on the 
slider will send an integer to the division 
object, which will process the division by 127. 
By implementing reception and emission of 
audio streams as a function of this language, 
we can easily route the different audio streams, 
as generated music, microphone input stream, 
speakers output stream or received streams. 
jMax allows us to process sound in real-time 
and gives us a modular approach to configure 
the streaming engine. 

 
Fig 5. The rtp objects in a jMax visual program   

In our first prototype, the reception of audio 
streams has been achieved with the rtpin object 
developed in jMax (figure 5) and the emission 
in the rtpout object. The sound samples are 
produced at a constant rate of 44100Hz and 
consumed by the rtpin objects (at the same 
rate). The transport of audio streams is done 
using the RTP protocol (Schulzrinne (1998)), 
through the RTP library called UCL Common 
Code Library version 1.2.8 developed by the 
Computer Science Department of the 
University London College University. Each 
rtpout object stamps the samples in the RTP’s 
timestamp field. The timestamp is incremented 
per sample. Helped by the RTP’s ssrc field, we 
get the music source identification.  Each rtpin 
object consumes simultaneously a sample 
coming from each rtpout remote object.  

4.2 – Implementing synchronization 
In our prototypes, we deployed the 
synchronization described in Bouillot (2003). 
We tested successfully this kind of 
synchronization on LAN (jMax 2.5.1) and on 
MAN (with a second prototype deployed on 
jMax 4.1) where the musicians played a 
distributed Blues in a synchronous way with a 
synchronized start. Drums/bass were located at 

the IRCAM center and guitar/saxophone at the 
CNAM University with a distance of one 
kilometer across two Internet providers.  

In our second prototype we took only one 
object for both reception and emission. With 
this implementation, we have local sound card 
clock, time stamping, streaming and a shared 
space to read and write samples on the sound 
cards. Then, we can easily implement our 
conductor driven synchronization scheme.  

5 - CONCLUSION AND FUTURE WORKS 

We have seen that the major interest here is to 
provide a way for distributed musicians to play 
without any network latency perception. In all 
the other distributed musical systems, the 
instrumental playing deals with delays, 
including an alteration in the instrumental 
practice. Although our conductor driven 
architecture focuses the musicians on the 
conductor, it makes the distributed musical 
practice easier for musicians and keeps the 
auditory consistency among people interacting 
together. We can then provide a more generic 
solution to the distributed way of playing 
music with a combination of the conductor 
architecture and the self-synchronization 
algorithm described in a previous work (see 
Bouillot (2003)). This new solution would 
make the system’s architect define interaction 
between musicians, allowing each of them to 
one of both synchronizations schemes 
discussed before. However, this combination 
introduces some alterations on the traditional 
way of playing music. This introduces two 
kinds of musical experimentations. The first 
one is to try to project existing kinds of music 
on our solution. The second is to work with 
composers and musicologists to develop a new 
kind of musical interaction, which would be 
aware of these synchronization schemes. As a 
side effect, the solution to the auditory 
consistency problem could fit well with some 
distributed virtual reality problems. 

Added to the developments, we will achieve 
tests with bigger distances with more sites. The 
work of experimentation will be supplemented 
by a network provisioning. The guarantee of 
constant latency between the musicians and the 
conductor has a basically statistical nature.  

In the future, it will be necessary to take 
account of the losses and to choose a strategy 



among the mechanisms presented in Perkins 
(1998), Bolot (1999) and Rosenberg (1998) or 
in the literature where the main challenge is to 
compensate losses without retransmissions. 

The last work in progress is the skew existing 
between the clocks of the different sound 
cards. This skew occurs between the emission 
time stamping clock (the sound card) and the 
reception clock. The problem is a many-to-
many one. Orion (2000), Akester (2002) and 
Fober (2002) present a solution but in a one-to-
one context.  

However our priority is to make tests on larger 
network as MAN and WAN. On one hand, this 
will allow to dimension our prototype and on 
the other hand, to determine more precisely the 
kind of interactions that we will provide to the 
remote musicians.  
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