'k“ Journal of Automated Reasoning 32: 187-226, 2004. 187
‘. © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Abductive Theorem Proving for Analyzing
Student Explanations to Guide Feedback in
Intelligent Tutoring Systems

MAXIM MAKATCHEV, PAMELA W. JORDAN, and KURT VANLEHN
Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
e-mail: {maxim,pjordan,vanlehn} @ pitt.edu

Abstract. The Why2-Atlas tutoring system presents students with qualitative physics questions and
encourages them to explain their answers through natural language. Although there are inexpensive
techniques for analyzing explanations, we claim that better understanding is necessary for use within
tutoring systems. In this paper we motivate and describe how the system creates and uses a deeper
proof-based representation of student essays in order to provide students with substantive feedback
on their explanations. We describe in detail the abductive reasoner, Tacitus-lite+, that we use within
the tutoring system. We also discuss evaluation results for an early version of the Why2-Atlas system
and a subsequent evaluation of the theorem-proving module. We conclude with the discussion of
work in progress and additional future work for deriving more benefits from a proof-based approach
for tutoring applications.
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1. Introduction

Whereas most natural language explanations are produced and adapted to benefit or
inform a hearer, a self-explanation is produced for the benefit of the speaker. If there
is a hearer, he often already knows all about the topic, as is the case in a tutoring
context. Self-explanation is a cognitively valuable pedagogical activity because
it leads students to construct knowledge (Chi et al., 1994), and it can expose deep
misconceptions (Slotta et al., 1995). But it is difficult to encourage self-explanation
without giving the students substantive feedback on what they generate (Aleven
and Koedinger, 2000; Chi et al., 2001). To give substantive feedback, the system
has to be able to understand student explanations to some degree.

To study the problem of how to encourage students to productively self-explain,
we built the Why2-Atlas intelligent tutoring system and selected qualitative physics
as its domain of instruction. Qualitative physics is a worthy pedagogical goal be-
cause it is well known that college physics students are often unable to construct
acceptable answers for even simple qualitative physics questions. Students with top
grades in their physics classes get low scores on standardized measures of quali-
tative understanding, such as the Force Concepts Inventory (Hestenes et al., 1992).
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Question: Suppose you are running in a straight line at constant speed. You throw a pumpkin
straight up. Where will it land? Explain.

Explanation: Once the pumpkin leaves my hand, the horizontal force that I am exerting on it
no longer exists, only a vertical force (caused by my throwing it). As it reaches it’s maximum
height, gravity (exerted vertically downward) will cause the pumpkin to fall. Since no hori-
zontal force acted on the pumpkin from the time it left my hand, it will fall at the same place
where it left my hands.

Figure 1. The statement of the problem and a verbatim explanation from a student who
received no follow-up discussions on any problems.

Qualitative physics problems emphasize physics concepts more so than problem-
solving tactics and applications of equations. Because little progress has been made
at successfully improving qualitative understanding by altering physics classroom
instruction and because training involving qualitative physics problems does help
repair some persistent physics misconceptions (Hake, 1998), continued pursuit of
qualitative understanding by tutoring systems is worthwhile.

The Why2-Atlas system covers seven qualitative problems on introductory me-
chanics that are adapted from (Hewitt, 1998). When the system presents one of
these questions, it asks that the student type an answer and explanation, and it
informs the student it will analyze and discuss the final response with the student.
After the discussion, the system asks that the student revise the explanation, and
the cycle of explanation, revision, and follow-up discussion continues until all the
flaws in the student’s response have been addressed. One such problem is shown
in Figure 1. The student response shown is from our corpus of students’ problem-
solving sessions and illustrates how challenging these explanations are for a system
to analyze for flaws that are worth discussing with a student. The dialogue shown
in Figure 2 is a portion of a follow-up dialogue between a student and a human
tutor for a flaw similar to that in Figure 1, while the dialogue shown in Figure 3
is a dialogue that the Why2-Atlas system held with a different student who is also
exhibiting a similar flaw during an early evaluation of the system.

One difficulty in analyzing students’ explanations for qualitative physics prob-
lems is that they require more than a single-sentence response and take the form of
short essays. Two experienced physics instructors provided us with detailed expla-
nations for 10 qualitative problems as well as minimal, but complete, essays that
they would accept from students in an introductory physics course. The physics
instructors arrived at their explanations and essays independently and then met
and agreed on the minimum essays required. These reconciled, minimal essays
contained 6.9 sentences on average. So the system must be capable of analyzing
the relationships between sentences.

Statistical text classification approaches, such as latent semantic analysis
(Landauer et al., 1998) and naive Bayes (McCallum and Nigam, 1998), have shown
promise for assessing multisentential student explanations (Graesser et al., 2000;
Rosé et al., 2002) and are particularly desirable because, for training, they require



ABDUCTIVE THEOREM PROVING FOR ANALYZING EXPLANATIONS 189

T: After it is thrown what is the horizontal velocity of the pumpkin?

S: zero

T: If the velocity changes from whatever it was to zero, then there should be a force on it?
S:no

T: Does a change in velocity mean acceleration?

S: yes

T: What is required to produce an acceleration?

S: force

T: Right. So, if the pumpkins horizontal velocity was same as that of the runner and then it
becomes zero when released then has there been a deceleration in it?

yes

: Right. So there must be force which causes it?

yes

: Ok.What is that force which reduces the horizontal velocity of the pumpkin to zero?
gravity

: Let us see. What is the direction of the gravity?

: vertical

: Thats right. Can a vertical force cause a horizontal acceleration?

no

H 4w 340 30 340n

: Right. So gravity cannot change the horizontal velocity of the pumpkin. can you see any
horizontal force on the pumpkin?

S: no
T: Right. Then can its horizontal velocity component change after it is released?
S: no

Figure 2. A verbatim follow-up discussion between a human tutor and another student
exhibiting the impetus misconception.

nothing more than natural language text from a particular domain and the identifi-
cation of short texts that represent prescriptively good and bad descriptions against
which a student text can be compared. For instance, a bad description that should
match Figure 1 is the often-observed impetus misconception:

If there is no force on a moving object, it slows down.

These types of classification approaches create a statistically derived form of
semantics for a text relative to the training data but do so by treating language
as an unordered bag of words in which the organization of the words imparts no
meaning. Because these techniques fail to capture this additional semantics, they
are insensitive to a number of language phenomena that help distinguish between
good and bad explanations. First, they would clearly be insensitive to argument
ordering variations making the difference between “x accelerates faster than y”
and “y accelerates faster than x”” undetectable. Negation is another phenomenon to
which these techniques are insensitive. For example, a good explanation followed
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Explanation: The pumpkin moves at a constant velocity in the horizonatal direction which is
zero. The only force moving the pumpkin is gravitational force. . .

T: I see a topic we should explore. Let’s consider what forces act on objects after they have
been pushed or thrown. Suppose a person is floating in deep space. The person, who is wearing
a space suit of course, pushes a wrench away. While the person is pushing the wrench, what
forces are acting on it?

S: Gravity.

T: Uhhh. .. Let’s assume that the stars and planets are all so far away that gravitational forces
are negligible. So the only force acting on the wrench is the pushing force exerted by the
person on the wrench. After the person has pushed the wrench, it floats away from her. Now
what forces are acting on the wrench?

S: The force given.

T: Let’s look at this more closely. Are there any other forces on the wrench after it leaves the
person? If so, what are they?

S: No.

T: Fine. If there was one force acting on the wrench after the person has pushed it away, how
would that force affect the wrench’s velocity?

S: 1 don’t know.

T: Let’s consider this then. If you exert even a small force on a stationary billiard ball, it
accelerates and begins to move. If a stationary rocket ship turns on its thrusters, it accelerates
and begins to move a little even if the thruster is weak. So if there is even a small force on the
wrench, shouldn’t it also accelerate?

S: Yes.

T: Okay. So if there is a force on the wrench due to the person after the wrench has left the
person, then the wrench should accelerate. Is it really reasonable for the wrench to speed up
all by itself after leaving the person? Have you ever seen a billiard ball speed up after being
hit? Or a hockey puck speed up after being shot?

S: No.

T: Fine. Because the wrench really doesn’t speed up after leaving the person, there is no force
acting on it. The force of the person’s push ends as soon as the person stops touching the
wrench. In general, when do pushing forces, pulling forces and other forces due to the contact
of two objects end?

S: When contact is over.

T: Well... When one objects exerts a contact force on another object, the force stops when
the contact stops. Thus, when the wrench leaves the person’s hand, the contact ends, so the
pushing force ends. In general, after a person or some other agent has started an object moving
but is no longer touching the object, does it still exert a force on the object?

S: Yes.

T: Uhhh. .. No, it does not. Except for field forces, like gravitational or magnetic force, forces
only exist between two objects when they are touching each other. Your essay seemed to imply
otherwise to me.

Figure 3. A verbatim student explanation and discussion with the Why2-Atlas system during
an early evaluation that was completed by 26 students.
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by “But I don’t think that will happen” would be classified as good because “not”
is too general to have a high information value.

A third, even more complex, language phenomenon to which these classifi-
cation techniques are insensitive is anaphoric expressions (e.g., determining the
referent of a pronoun such as “that” in the previous example, or “it”). Although
other statistical techniques for pronominal anaphora resolution are highly effec-
tive (Strube et al., 2002; Ng and Cardie, 2002), they cannot be directly combined
with superficial, statistically derived semantics approaches. As an example of the
problem, consider the last clause of the essay shown above in Figure 1:

it will fall at the same place where it left my hands.

This clause would tend to be misclassified as the correct answer “The pumpkin
will land in my hands.” The reason is that the words “fall,” “my,” and “hands” have
a high information value relative to the expected answer, while the temporal and
nominal anaphora involved in “will fall” and “at the same place” do not. Hence,
these anaphoric expressions will be overlooked although they change the meaning
significantly in this case.

Fourth, the inferences captured by statistical semantics approaches are too weak.
In Figure 1, the student has the extreme belief that the pumpkin has no horizontal
velocity. This would probably not be recognized as a case of “slowing down” by
this type of statistical analysis. Even more difficult is that no horizontal veloc-
ity is not explicit; there is a multistep chain of inference involved that statistical
approaches are not equipped to handle. The chain of inference can be informally
expressed as “pumpkin’s final horizontal position = pumpkin’s initial horizon-
tal position” — “pumpkin’s horizontal displacement is zero” — “pumpkin’s
horizontal velocity is zero.”

Furthermore, these statistical techniques are often too insensitive to recognize
that student statements are true but vague in cases where a few content words are
missing. In these cases the tutor should acknowledge the correct statement and
elicit more precision rather than continuing as if the statement were wrong or
accepting it without requiring more precision from the student. For example, if
a student makes a correct statement about an axial component of the velocity of an
object but does not report it in terms of the horizontal and vertical components of
the velocity, the tutor should ask which was intended.

Although additional preprocessing of the language and postprocessing of the
classifications can be done to alleviate some of the problems involved (Rosé et al.,
2002), there is no clear workaround for the problem of weak inferencing. To both
capture what are subtle differences to statistical semantics classification and ad-
dress the problem of weak inferencing, we need the precision possible so far only
with approaches that try for a deeper understanding of the student’s reasoning.

The Geometry Explanation Tutor is an operational prototype that does a deeper
semantics classification (Aleven et al., 2001b, 2001a) of student utterances. It parses
a student explanation into a propositional representation using a syntactic grammar
and lexical semantics and then uses LOOM, a terminological knowledge represen-



192 MAXIM MAKATCHEV ET AL.

tation tool, to classify these relative to prescriptive categories that typically express
one proposition. This approach looks promising (Aleven et al., 2002), but the sys-
tem’s goal is to elicit a justification for a single step in a geometry proof; generally,
such a justification can be expressed with a single sentence that succinctly trans-
lates into a small number of propositions. It isn’t clear that this approach will work
well for the longer, more complex explanations that the Why2-Atlas system elicits,
since it will largely overlook the intersentential, or discourse-level, meaning of the
text.

Our approach to the problem of recognizing inferential relationships between
sentences is to create a proof based on the student’s natural language essay and
then check the proof. Why2-Atlas parses student utterances into propositional rep-
resentations. It uses a syntactic grammar and lexical semantics to create a represen-
tation for each sentence (Rosé et al., 2002) and then resolves temporal and nomi-
nal anaphora (Jordan and VanLehn, 2002). But instead of classifying the resulting
propositions relative to a terminological representation of the domain knowledge,
the Why2-Atlas system constructs proofs by using abductive reasoning. Abduction
is a process of reasoning from an observation to possible explanations for that
observation. In this application the observations are the propositions that represent
the student’s essay, and the proof is the abductive reasoning steps that explain the
propositions.

A proof-based approach gives more insight into the line of reasoning the student
may be following across multiple sentences because proofs of the propositions
should share subproofs. For example, consider the last sentence and part of the first
sentence of the essay in Figure 1. The sentences have the informal proof shown
in Figure 4, where the first column is a reference number for the proof step; the
second column is a gloss of a proposition that is in the student’s explanation, or
is inferred, or is given; and the third column is the rule or justification for the
proposition. The proof for the second sentence is steps 3—7, and the proof for the
first sentence is steps 1-4, so that the first sentence is a subproof that supports the
second. Moreover, subtle misconceptions such as impetus (as in step 5) are revealed
when they must be used to prove a student-supplied proposition.

The proof-based approach also opens the possibility of implementing interac-
tive proof generation through a dialogue with the student. This interaction can serve
the dual purpose of revealing the conjectured argumentation behind the student’s
statement and disambiguating the student’s intended meaning when there are multi-
ple proofs. For example, if there are two equally good proofs of a student statement,
where one involves a misconception about the relationship between force and ve-
locity and the other involves a misunderstanding of when a particular force is
negligible, then we can use the structure of the proof to identify a possible series
of disambiguation questions. This example will be further developed in Sections 2
and 6.

Although we could use deductive inference as an approach for building and
checking proofs of student explanations, abductive inference is a better choice
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Reference | Proposition Justification

Number

1 before the release, the man is hold- | given
ing the pumpkin

2 the man exerts a nonzero horizontal | *if bodyl & body2 in contact then
force on the pumpkin bodyl exerts a nonzero force on

body2

3 after the release, nothing is is touch- | given
ing the pumpkin

4 after the release, the horizontal force | if no contact then contact force is
is zero Zero

5 the pumpkin’s horizontal velocity is | *if zero force then zero velocity (im-
Zero petus)

6 the pumpkin’s horizontal displace- | if zero velocity then zero displace-
ment is zero ment

7 the pumpkin’s initial & final posi- | if zero displacement then initial and
tions are equal final positions are equal

193

Figure 4. An informal proof of the excerpt “Once the pumpkin leaves my hand, the horizontal
force that I am exerting on it no longer exists. ... Since no horizontal force acted on the
pumpkin from the time it left my hand, it will fall at the same place where it left my hands”
(from the essay in Figure 1). Buggy justifications are preceded by an asterisk.

because we are performing a diagnostic task, and we must robustly and efficiently
deal with the ambiguity and vagueness introduced by natural language,* students’
incomplete proofs, and an incomplete knowledge base.

Although the reasoning system we use within Why2-Atlas has some similarities
with other qualitative physics reasoning systems (Weld and de Kleer, 1990) in its
ontology and rules, their tasks are different. Most existing systems do the student’s
task: given a physical system, the reasoner can predict or explain the system’s
behavior deductively. In our case, the student essay is viewed as a fragmentary,
incomplete, and possibly incorrect proof. Our task is to complete that proof insofar
as possible.

In this paper we motivate and describe an abductive reasoning system that cre-
ates proof-based representations of student essays for tutorial applications. First
we give an overview of the Why2-Atlas tutoring system architecture to clarify
the context in which the abductive reasoner operates. As we describe the tutoring
system, we explain the pedagogical considerations that motivate how we use a
proof-based representation of a student’s essay and provide an example of how
a proof is built and used. We then motivate our choice of weighted abduction for

* Abductive inference has a long history in plan recognition, text understanding, and discourse
processing (Appelt and Pollack, 1992; Charniak, 1986; Hobbs et al., 1993; McRoy and Hirst, 1995;
Lascarides and Asher, 1991; Rayner and Alshawi, 1992).
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Figure 5. Why2-Atlas tutoring system architecture.

building proofs and explain in detail our abductive inference engine, Tacitus-lite+.*
Next we present evaluation results for an early version of the Why2-Atlas system
and the results of a subsequent evaluation of the abductive reasoner using a test
suite of 45 student essays. Finally, we describe current work in progress and some
of our future plans for deriving additional benefits from a proof-based approach for
tutoring applications.

2. Building and Using Abductive Proofs

Our discussion in this paper focuses on building proofs using an abductive reasoner
where the input is a propositional representation of the student’s essay. In this
section, we describe the architecture of the entire system as background, so that
it is clearer how the input for the proof building is provided and what is done as
a result of analyzing the proof. Except for the abductive inference engine module,
none of the other system modules described in this section will be addressed in this

paper.

* We are using an extended version of SRI’s Tacitus-lite weighted abductive inference engine
(Hobbs et al., 1993) as our main tool for building abductive proofs.
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2.1. THE WHY2-ATLAS TUTORING SYSTEM

The architecture for the current version of the Why2-Atlas qualitative physics tu-
toring system is shown in Figure 5. The user interface for the system is a screen
area in which the physics question is displayed along with an essay entry window
and a dialogue window. As the student enters an answer and explanation for a
qualitative physics question, the sentence-level understanding module builds sets
of propositions to represent sentences as the student enters them. The user inter-
face and the sentence-level understanding components are described in detail in
(VanLehn et al., 2002; Rosé et al., 2002).

The sets of propositions are passed by the discourse manager to the discourse-
level understanding module. Each set of propositions represents one interpretation
of a sentence. The discourse-level understanding module resolves anaphoric ex-
pressions and other language dependencies within the sentence representation as
described in (Jordan and VanLehn, 2002). It then uses domain reasoning rules and
the Tacitus-lite+ abductive inference engine to create a set of proofs.

The proofs that are produced represent the student’s knowledge and beliefs
about physics with respect to the problem to which the student is responding. One
difficulty that must be addressed is uncertainty about the beliefs and knowledge
that should be attributed to a student. This uncertainty arises because some of
the knowledge and beliefs about the student are inferred based on observed stu-
dent actions or utterances (Zukerman and Albrecht, 2001). Thus, as with decision-
theoretic approaches (Murray and VanLehn, 2000; Keeney and Raiffa, 1976), the
system needs to reason about the utility of separately attributing each of these mu-
tually exclusive representations of varying plausibility to the student. Tacitus-lite+
tries to estimate this by associating costs with the proofs it creates by weighted
abduction. In weighted abduction, weights are assigned to propositions in the bod-
ies of the Horn clauses in order to compute the cost of assuming a proposition
without proof. Assuming a proposition is further referred to as abducing, and such
a proposition is called an assumption. Weighted abduction is explained in more
detail in Section 4.

Even with a mechanism for ascertaining the plausibility of alternative proofs,
there can still be multiple proofs that are considered equally good representations.
Hence, once proofs have been built, the discourse-level understanding module up-
dates the history with the results from Tacitus-lite+ and selects the best proofs
to send to the tutorial strategist. The tutorial strategist poses relevant communica-
tive goals for itself by analyzing proofs. Acquiring and reasoning about student
beliefs and knowledge are central issues addressed by work in student modeling.
A student model is a type of user model, and in general a user model provides
information the system can use in adapting to the needs of its user (Wahlster and
Kobsa, 1989). The Why2-Atlas system uses the proofs derived from the student’s
essay to identify effective communicative strategies and goals that will (1) effec-
tively help students realize and correct their errors and misconceptions and (2)
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enable students to realize what reasoning is necessary when generating a complete
explanation.

Currently there are four categories of communicative goals. Two of these, dis-
ambiguating terminology and clarifying the essay, are addressed through direc-
tives to modify the essay. The other two, remediating misconceptions and eliciting
more complete explanations, are addressed through dialogue. Misconceptions are
detected when the proof includes a rule that is incorrect or inapplicable. Incom-
pleteness is detected under two conditions. First, there may be multiple proofs
that are significantly different and equally plausible. This condition indicates that
the student did not say enough in an explanation for the system to decide which
proof best represents what the student’s reasoning may be. Each possible line of
reasoning could point to different underlying problems with the student’s physics
knowledge. The second condition occurs when the student fails to explicitly state
a mandatory point, which is a proposition that domain instructors require of any
acceptably complete essay. Once the tutorial strategist has identified communica-
tive goals, it ranks them according to curriculum constraints and sends them to the
discourse manager. The discourse manager selects the highest-priority goal after
taking dialogue coherency into account and sends the goal to either the dialogue
engine or the sentence-level realization module.

In an educational context it is generally more effective if students discover
their own errors and misconceptions rather than always simply being told of the
error and its correction. Therefore, the dialogue engine initiates and carries out a
dialogue plan that will either help the student recognize and repair a misconception
or elicit a more complete explanation from the student. The main mechanism for
addressing these goals are what we call a knowledge construction dialogue (KCD)
specification. A KCD specification is a hand-authored push-down network. Nodes
in the KCD network are either the system’s assertions and questions to students
or pushes and pops to other networks. The links exiting a node correspond to
anticipated responses to the question. Each assertion and question are a canned
string, ready for presentation to a student. The dialogue engine is described in
detail in (Rosé et al., 2001).

If the tutorial strategist’s analysis of the proofs that represented the student’s
essay reveals a misconception or error, then the dialogue engine will engage the
student in a knowledge construction dialogue (KCD) that works through an anal-
ogous, but simplified, problem and summarizes at the end with a generalization
of the reasoning that the student is expected to transfer to the current problem.
If incompleteness is revealed by the analysis of the proof, then the system will
engage the student in a KCD that leads the student to express the missing detail by
reminding the student of an appropriate rule of physics, and a fact that is relevant
to the premise or conclusion of the rule, and then asking the results of applying the
rule.

Working through an analogous problem is currently the only technique imple-
mented in the system for leading a student to recognize an error or misconception.
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Another possibility is to step through the reasoning associated with the current
problem and ask the student to fill in any missing details. Having some of these
details wrong may have led the student to draw a wrong conclusion, and with the
corrected details the student may be able to easily see the error. Other techniques
for dialogue strategies to correct misconceptions, errors, and incompleteness may
be derivable from argumentation strategies used in argument generation as de-
scribed in (Zukerman et al., 2000) (e.g., reductio ad absurdum, premise to goal,
and reasoning by cases).

The other communicative goals, disambiguating terminology and clarifying the
essay, are addressed by the discourse manager as directives for the student to
modify the essay. It passes propositions and a goal to the sentence-level realiza-
tion module, which uses templates to build the deep syntactic structures required
by the RealPro realizer (Lavoie and Rambow, 1997) for generating a string that
communicates the goal.

While a dialogue is in progress, the discourse-level understanding and tutorial
strategist modules are currently bypassed until the essay is revised. Once the stu-
dent revises the essay, it is reanalyzed, and the cycle repeats until no additional
communicative goals arise from the system’s analysis of the essay.

2.2. EXAMPLES OF BUILDING AND USING PROOFS

The Tacitus-lite+ abductive reasoner currently has 105 qualitative physics rules
available to use in building proofs, where propositional representations of a stu-
dent’s sentences are input as observations that are to be explained. These rules
cover seven problems as well as parts of many other problems. Figures 6 and 7 are
examples of two simplified alternative abductive proofs for sentence (1).

The pumpkin slows down. (1)

For these examples, we take as given the fact that the air resistance is 0 and
that the runner is not applying a horizontal force to the pumpkin after he throws
it. Since students often overlook relevant givens, proofs that ignore these givens
can be considered as well whenever the given is represented by a rule and a buggy
counterpart is also included (as described in Section 3.4).

Each level of downward arrows from the gloss of a proposition in the two al-
ternative proofs shown in Figures 6 and 7 represent a domain rule that can be used
to prove that proposition. To simplify the example, we assume that the weights in
all the rules are evenly divided between the propositions in the body of each rule.
The number in parentheses at the end of each proposition represents the cost of
abducing the proposition.

In both proofs shown in Figures 6 and 7, one way to prove that the velocity of the
pumpkin is decreasing is to infer, through the rule Imprecision, that the horizontal
component of the velocity vector was meant to be decreasing. The system will also
build alternative proofs in which it tries to prove that the student means the vertical
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Student said: velocity of the pumpkin is decreasing (1)
Imprecision
horizontal component of velocity of pumpkin is decreasing (1)

Impetus

impetus is believed (.5)
(abduced)

horizontal component of the total force on pumpkin is 0 (.5)

ON

horizontal component of force of man on pumpkin is 0 (.25)
(given)

horizontal component of force of air on pumpkin is 0 (.25)
(given)

Figure 6. Example of one possible simplified abductive proof for “The pumpkin slows down.”
Rule names are in italics; arrows are in the direction of abductive inference. Total cost of the
proof is .5.

Student said: velocity of the pumpkin is decreasing (1)

Imprecision

horizontal component of velocity of pumpkin is decreasing (1)
a=dv/dt

horizontal component of acceleration of pumpkin is non-zero (1)

F=ma

horizontal component of the total force on pumpkin is non—zero (1)

0+ nonzero—nk

horizontal component of force of man on pumpkin is 0 (.5)
(given)

horizontal component of force of air on pumpkin is non-zero (.5)
a uce

Figure 7. Example of an alternative simplified abductive proof for “The pumpkin slows
down.” Rule names are in italics; arrows are in the direction of abductive inference. Total
cost of the proof is .5.

velocity instead (especially because, during certain time intervals, this is true), but
for this example we will ignore these other proofs.

Next we consider two ways of proving that the horizontal component is decreas-
ing. First, we consider the case of the proof in Figure 6. In this case Tacitus-lite+
has selected a buggy physics rule that is one manifestation of the impetus miscon-
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ception; the student thinks that a force is necessary to maintain a constant velocity.
In this proof it is abduced that the student has this bug at a cost of .5, and no further
attempts are made to prove it. Alternatively, the system could try to gather more
evidence that this is true by asking the student diagnostic questions.

Next, Tacitus-lite4- proves that the total force on the pumpkin is zero by proving
that the possible addend forces are zero. Since it is a given that air resistance is
negligible, this proposition unifies with this given fact for zero cost. Likewise, since
we said that it was also given that the man is applying a horizontal force of 0 to
the pumpkin after he throws it, this proposition unifies with the given fact for zero
cost as well. Since the proof contains just one assumption, that the student has the
impetus bug, the total cost of the proof is .5.

Looking again at the alternative proof in Figure 7, we see that it attempts to
prove the horizontal component of the velocity is decreasing by first trying to
prove that the horizontal component of the acceleration is nonzero in the direction
opposite the velocity. To prove this, we must prove that the total horizontal force
on the pumpkin is nonzero in the same direction as the acceleration. One approach
is to prove that at least one of the addend forces is nonzero. The system can ignore
either of the two givens at this point in order to try to prove that there is at least
one nonzero force on the pumpkin. In this case it tries to prove that wind resistance
is not negligible; but since it cannot prove this, the result must be abduced at a
cost of .5. So the total cost of this alternative proof is .5 as well. In this example,
the system now has two plausible proofs with no means of choosing between them
without more information from the student.

If the student had instead supplied the sentence

The pumpkin slows down because there is no horizontal force on it. 2)

which provides some justification, the proof in Figure 6 would be preferred. This
is because the proposition representing this justification conflicts with the inferred
proposition in Figure 7 that the total horizontal force is nonzero. This new proposi-
tion will not add an additional cost to the proof in Figure 6 because it unifies with
a proposition that has already been proven.

In the case of the proof in Figure 6 the tutorial strategist identifies a dialogue
goal to address the impetus misconception, since an impetus bug assumption is part
of the proof. In the case of the proof in Figure 7 it identifies a goal to address the
wrong assumption that air resistance is nonnegligible.

In addition to identifying errors and misconceptions, the system can also give
some direct, constructive feedback on an essay relative to the proof in response to
certain kinds of vagueness. For example, with the proofs in Figures 6 and 7, when
the system attempts to prove that the student means either the horizontal or vertical
velocity, it triggers a clarification question asking the student to clarify whether the
horizontal or vertical velocity is meant.
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Now that the context for building and using proofs is established, we will fo-
cus solely on the details of how the abductive reasoner creates the proofs given
propositional representations of a student’s essay as input.

3. Qualitative Reasoning in Mechanics

The development of qualitative mechanics has been driven largely by the needs of
automated reasoning about physical systems. The applications range from moni-
toring and engineering design to education. In education, qualitative physics has
been used in modeling and design environments (Forbus et al., 2001), an example
of which is Articulate Software (Forbus, 1997).

The subset of physics that Why2-Atlas addresses motivates the ontology for the
propositional representations on which the theorem prover operates. The goal to
model and check the correctness of the student’s reasoning motivates the types of
rules included.

3.1. THE STRUCTURE OF QUALITATIVE PROBLEMS

The qualitative problems that we have chosen are from a first-year college course in
mechanics and have several differences from the problems addressed in the analy-
sis of dynamical systems, which is the common domain for previous automated
qualitative reasoning systems.

The problems in our domain, unlike design problems, usually have all the bodies
explicitly defined in the problem statement. In several situations the descriptions
of bodies (“you throw a pumpkin”) allow for more than one idealization of a
composite body (man and pumpkin versus man, hand and pumpkin).

The initial conditions are relatively unambiguously specified in the problem’s
description. This and other features of the problems we select ensures that the en-
visionment, as defined in (de Kleer, 1990), normally includes only one acceptable
sequence of events. However, similarly to the case of composite bodies, various
partitionings of the timeline into intervals are possible.

After the bodies and time intervals are identified, the next step in the solution
of the problem is to choose the sequence of time intervals (usually one or two) as
main time intervals at the beginning of which sufficient knowledge about physical
quantities (initial conditions) can be obtained from the givens, so that a sequence
of inferences will result in an appropriate conclusion about the sought physical
quantity (which is usually related to the time instant at the end of the sequence of
main time intervals).

In the case of the pumpkin problem (Fig. 1), the possible sets of main intervals
include, for example, the following two:

1. (a) Man is pushing the pumpkin up; (b) the pumpkin is flying.
2. The pumpkin is flying.
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The initial conditions corresponding to the first partitioning would include a
zero initial vertical velocity and a nonzero upward force from the man. From these
conditions we can infer (among other things) that

— from Newton’s first law, the pumpkin’s horizontal velocity is not changing
during the pushing stage,

— from continuity of the velocity at the instant of the release, the horizontal
velocity is still the same at the beginning of the second time interval (the
flight) as it was before.

Human tutors, however, normally also accept a solution based on the second
choice of the main interval. In this case the student could obtain the initial con-
dition of the pumpkin having the same horizontal velocity as the runner at the
beginning of the flight directly by interpreting the given “You throw a pump-
kin straight up.” Note that different choices of the main intervals correspond to
different idealizations of the problem.

After the idealization stage is complete, the student has to apply qualitative
inference rules to produce a solution. Thus, for the second choice of the main time
interval above, the following is an acceptable solution:

— Only the force due to gravity acts on the pumpkin during the flight so it has
no horizontal acceleration (an application of Newton’s first law).

— Zero horizontal acceleration implies that the horizontal velocity of the pump-
kin is constant during the flight.

— The constant horizontal velocity during the flight is equal to its value at the
beginning of the flight, namely, to the velocity of the man (from the initial
conditions).

— Therefore, the pumpkin and man have the same horizontal velocity during the
flight, so the pumpkin will always be above the runner until it falls back into
his hands (two bodies with the same initial position and same velocity over a
time interval have the same positions over this time interval).

This set of inferences (an essay) can be viewed as a qualitative proof of the
answer to the problem (“it falls back into his hands”). Note that the student’s actual
natural language argument can be presented in reverse order (or even some other or-
dering) and can include irrelevant steps. In the case of a different presentation order,
the natural language used signals the underlying ordering of the steps involved so
that after the discourse-level understanding module resolves anaphoric expressions
and other language dependencies, the underlying order of the argument is revealed.
If the underlying ordering is incorrect, then it can be addressed by anticipating
typical incorrect orderings with buggy rules. Irrelevant steps are handled in one of
two ways: (1) typical irrelevant steps are anticipated with buggy rules, or (2) the
step is assumed without proof at a high cost (see Section 4.2) and can be presented
to the student.
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3.2. EFFECT ON THE IMPLEMENTATION

The goal of our reasoning engine is twofold. First, we’d like to know the logical
steps the student did not mention explicitly in his essay. Second, we want to reason
about the correctness of these hidden steps as well as of the statements in the essay.

Note that unlike many of the systems for automated reasoning in qualitative
physics, we do not solve the physics problem. Also, since the problems do not
deal with complex envisionments, we do not have to reason about envisioning. Our
target is mainly the idealization and the following stage.

Not having to represent envisionments consisting of multiple plausible sce-
narios of events allows us to largely avoid one of the major difficulties facing
the developers of qualitative physics problem solvers — implementation of a vast
amount of common-sense knowledge.

3.3. QUALITATIVE PHYSICS ONTOLOGY

The Why2-Atlas ontology is inspired by that used in previous qualitative physics
reasoning work. In particular, for both ontology and rules, we borrowed extensively
from (Ploetzner and VanLehn, 1997), making appropriate simplifications given the
subset of physics the system is addressing. The ontology is further adapted to
take advantage of the knowledge representation facilities of the Tacitus-lite+ ab-
ductive reasoning engine, such as ordered sorts, which are described in detail in
Section 3.5. Until then, less formally, a ferm is defined as either a variable or a
constant (there are no functions in Tacitus-lite+). Terms are assigned sorts from a
partially ordered set of sort symbols, such that every term has a unique least sort.

The Why2-Atlas ontology comprises bodies, physical quantities, states, times,
and relations, each of which we describe below in more detail.

3.3.1. Bodies

The physics problems in our scope deal only with solid bodies, with the possible
exception of air, which occurs only in the context of air resistance. We distinguish
bodies with respect to their contact properties: bodies that generally require contact
to exert a force are of sort Regular-body; the other bodies, such as planets, are
said to be of sort Special-body. For the sake of simplicity, all the forces in our
ontology have a corresponding pair of bodies; therefore, we treat air, in the context
of air resistance, as a special body.

Regular bodies usually have the semantics of point masses. The few exceptions
are handled with ad hoc axioms (see, for example, contact states in Section 3.3.3).

3.3.2. Physical Quantities

The constants of the sort Quantitylb that represent vector quantities attributed
to a single body are position, displacement, velocity, acceleration, and
total-force. The sort Quantity2b for vector quantities involving two bodies has
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Table 1. Slots of a vector quantity of sort Quantitylb.

Description The Generic Sort of the Filler
Quantity Quantitylb
Identifier Id

Body (or two bodies in the case of force) Body

Axial component or not Comp
Qualitative derivative of the magnitude D-mag
Quantitative derivative of the magnitude D-mag-num
Zero or nonzero magnitude Mag-zero
Quantitative magnitude Mag-num
Sign for axial component Dir
Quantitative direction Dir-num
Qualitative derivative of the direction D-dir
Beginning of time interval Time

End of time interval Time

—  Quantitylb = {position, displacement, velocity, ...}
- Id
— Comp
e Axial = {horizontal, vertical}
e No-comp = {no-comp} (i. e. full vector)
— D-mag
e Constant = {constant}
e Nonconstant = {increase, decrease, varying}
— D-mag-num
— Mag-zero = {zero, nonzero}
—  Mag-num
— Dir = {pos, neg}
—  Dir-num
— D-dir = {constant, nonconstant}
—  Time = Problem-specific constants

Figure 8. Fragment of the sort hierarchy.

a single member in our ontology, the constant force. The constants of the sort
Scalar are duration, mass, and distance.

Every vector quantity has slots and respective restrictions on the sort of a slot
filler as shown in Table I. The hierarchy of sorts from Table I (except for sort Body,
which was described before) is shown in Figure 8. The names of sorts begin with an
uppercase character; the names of constants begin with a lowercase character. Note
that sorts Id, D-mag-num, Mag-num, and Dir-num do not have subsorts or constants.
Variables of these sorts are used only for cross-referencing between atoms (see
Section 3.5).
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3.3.3. States

Individual bodies can be in the following states: vacuum or freefall. Being in one
of these states implies respective restrictions on the forces applied on the body.

A special state between two bodies is contact. The contact between two bodies
can be attached — the bodies can exert mutual forces and the positions of two
bodies are equal; detached — the bodies do not exert mutual forces (except for
possibly the forces due to gravity); or moving-contact — the bodies can exert
mutual force (no conclusion on the respective positions). The last type of contact is
introduced to account for the fact that we often want to treat bodies as point masses
capable of pushing or pulling each other for certain time intervals (a nonimpact
type of contact), for example the man pushing the pumpkin up.

3.3.4. Time

The current representation of time most closely resembles the method of fempo-
ral arguments (Haugh, 1987), with a limited number of arguments per predicate,
but our predicates take a mix of temporal and nontemporal arguments, similar to
(Bacchus et al., 1989).

We use time instants as basic primitives. A time interval is a pair (1, ¢;) of in-
stants. This definition of time intervals is sufficient for implementing the semantics
of open time intervals in the context of the mechanics domain.

3.3.5. Relations

The multiplace relations are represented in Table II. The respective hierarchy of
sorts is shown in Figure 9. The relation non-equal can be used for any pair of
terms. There is no explicit relation for equating arbitrary terms. Instead, substitu-
tion is used to ensure that equal terms have the same names. The relation before
relates time instants in the obvious way. The relation rel-position provides the
means to represent the relative position of two bodies with respect to each other,
independently of the choice of a coordinate system — a common way to informally
compare positions in natural language. The relation compare provides the means to
represent the ratio and difference of the magnitudes of two quantities and, for quan-
tities changing with time, the magnitudes of the derivatives of two quantities. The
ralation compare-dir represents the relative directions of two vector quantities.

3.4. RULES

A distinctive feature of the task of modeling the student’s reasoning is that it be-
comes necessary to account for erroneous facts and rules. False facts corresponding
to a wrong idealization are called buggy givens. Other false facts are typically
conclusions that students make by applying false domain rules and are modeled
by buggy domain rules and buggy metaknowledge rules.
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Table II. Relations.

Relation 1st and 2nd Arguments 3rd Argument  4th Argument

non-equal any terms

before Time

rel-position  Body Rel-location

compare Mag-num or D-mag-num of any  Ratio Difference
scalar or vector quantity

compare-dir Dir-num of any vector quan- Rel-dir
tity

— Rel-location = {at, nonequal, to-left-of, below, etc.}
— Ratio
e Greater-than-one = {two, etc.}
e One = {one}
— Difference
e Nonzero
e Zero = {zero}
— Rel-dir
e Parallel
* Collinear = {codirected, opposite}
* Non-collinear = {non-collinear}
e Non-parallel = {orthogonal, non-orthogonal }

Figure 9. Sort hierarchy for arguments of relations.

3.4.1. Idealization

The canonical idealization of the problem is formalized as givens, or facts, for the
abductive prover. The facts that may be misunderstood by the student because of a
possibly wrong idealization are represented as pairs of correct and buggy givens.
In the context of a student’s reasoning about the problem, buggy givens are wrong
assumptions the student made during idealization.

For example, with the pumpkin problem, the facts

— the force of air resistance on the pumpkin is zero
and
—> the force of air resistance on the pumpkin is nonzero

are a pair of correct and buggy givens, respectively.

The facts that we consider to be common knowledge that are shared by the
student (i.e., we do not account for possible misunderstandings of those facts)
are represented as givens. Thus, assuming that no misunderstanding about the
trajectory of the man is possible, we can define as a given

— the vertical position of the man is constant at all times.
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This pairing of correct and buggy givens is subject to integrity constraints —
only one member of the pair can be in any given proof (see Section 4.5). The
intention is to reduce the search space during proof generation; it represents a risky
assumption that we have made: Students rarely believe both of the givens in an
inconsistent pairing within the same proof.

3.4.2. Metaknowledge

To account for any wrong rules that students may be applying when they come
up with wrong conclusions, we pair the good version of such a rule with its buggy
counterpart. This pairing of correct and false rules is subject to integrity constraints
that are analogous to those for pairings of correct and false givens. Again, although
this approach reduces the search space during proof generation, it assumes that
students do not believe both of the rules in an inconsistent pairing.

3.4.3. Qualitative Newtonian Mechanics

Currently we are focusing on the problems of kinetics of a rigid body in a plane
of noncircular motion. Thus, the domain axioms cover qualitative kinematics and
qualitative versions of Newton’s laws and their derivatives. Since some problems
are essentially two dimensional, we have also implemented a basic algebra for
vector components.

Currently, there are 24 idealization rules (excluding problem-specific givens
that are assumed to be shared knowledge), 24 metaknowledge rules, and 57 rules
of qualitative Newtonian mechanics.

3.5. KNOWLEDGE REPRESENTATION

The domain propositions described above are represented in the theorem prover
by using order-sorted first-order logic (FOL) (see, for example, (Schmidt-Schauf,
1989; Walther, 1987)).

As we mentioned earlier, a term for us is a variable or a constant. Tacitus-lite+
does not provide any built-in support for functions since function-free clauses are
the natural output from the Sentence-Level Understanding module (see Section 2).
Every term has a sort specification that maps it to a member of a partially ordered
set of sorts.

Tacitus-lite+ allows for the use of predicate variables, which can also be as-
signed sorts. This is encapsulated in the framework of FOL by grouping a predicate
name together with its arguments as arguments of a metapredicate M;, where i is
the total number of resulting arguments. Since there is exactly one metapredicate
symbol for each arity, metapredicate symbols can be safely omitted. Every such
representation of an atom is augmented with a corresponding sort specification for
the argument terms. For example, “Horizontal velocity of the pumpkin is decreas-
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ing” is represented as shown below (where constants are in the lower-case script,
sorts begin with an upper-case letter and variables begin with “?”):

((velocity vl pumpkin horizontal decrease
?d-mag-num ?mag-zero ?mag-num ?dir ?dir-num ?d-dir ?tl ?t2)
(Quantitylb Id Regular-body Axial Nonconstant
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))

Each atom is indexed with a unique identifier, a constant of sort Id, which is
used for cross-referencing. For example, “Force of gravity acting on the pumpkin
is constant and nonzero” has the following representation in which the identifiers
£1 and phl appear as arguments in the due-to predicate:

((force f1 ?bodyl pumpkin 2comp constant

?d-mag-num nonzero ?mag-num ?dir ?dir-num ?d-dir ?tl ?t2)
(Quantity2b Id Body Regular-body Comp Constant

D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
((due-to dl f1 phl) (Due-to Id Id Id)
( (phenomenon phl gravity) (Phenomenon Id Field-interaction))

There is no explicit negation. Instead, a negative student statement is repre-
sented as a conjunction of atoms with appropriate arguments whenever possible.
Thus, the fact that “there is no force” is represented as the force being zero. This
simplification is intentional and is done to avoid the problem of finding the scope
of negation in natural language text. The version of the system currently under de-
velopment extends the knowledge representation to cover disjunctions, conditional
statements, and certain types of negations (see Section 6).

Rules in Tacitus-lite+ are in the form of extended Horn clauses; namely, the
head of a rule can be a conjunction of atoms. For example, a rule that states “if the
velocity of a body is zero over a time interval then its initial position is equal to its
final position” is represented as follows:

((velocity vl ?body ?comp ?d-mag
?d-mag-num zero ?mag-num ?dir ?dir-num ?d-dir ?tl ?t2)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
N
((position pl ?body ?comp ?d-magl
?d-mag-numl ?mag-zerol ?mag-numl ?dirl ?dir-numl ?d-dirl ?tl ?tl)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
((position p2 ?body ?comp 2d-magl
?d-mag-numl ?mag-zerol ?mag-numl ?dirl ?dir-numl ?d-dirl ?t2 ?t2)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
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4. Weighted Abduction and Tacitus-lite+
4.1. ABDUCTION

Abduction is a process of reasoning from an observation to possible explanations
for that observation. In the case of the Why2-Atlas system the observations are
what the student said, and the possible explanations for why the student said this
are the qualitative physics rules (both good and bad) and orderings of those rules
that support what the student said. In order to arrive at the explanation, some as-
sumptions have to be made along the way, since all the inferences that underlie an
explanation will not be expressed.

Formally, an abductive framework can be defined as a triple (T, A, I), where T
is a theory, A is the set of abducible literals, and 7 is a set of integrity constraints
(Kakas et al., 1998; Paul, 1993). Then an abductive task for a given sentence G
(observation), is to find a set A € A such that

TUAEG, (3)
T U A satisfies 1. €]

In the case of an abductive logic programming framework, and in the context
of Tacitus-lite, T is the set of givens and rules of the logic program. Any literal
can be abduced in our implementation, and the semantics of satisfying the integrity
constraints I follows the consistency view as described in Section 4.5.

Naturally, more than one solution may exist for the abductive task. Often it
is required that the solution A be minimal, namely, that no proper subset A’ of A
have the property TUA’ E G. For the purpose of modeling the student’s reasoning,
however, other factors that influence the choice of solution may be more relevant,
as elaborated on in the next section.

4.2. CRITERIA FOR SELECTING AN ABDUCTIVE EXPLANATION

Various approaches are possible to define a preferred explanation among all ad-
missible ones. (Leake, 1995) distinguishes between plausibility criteria and goal-
based criteria. The following categories of plausibility criteria are identified: struc-
tural minimality, proof-based criteria, probabilistic/cost-based criteria, and crite-
ria based on analogy with the previous explanations. The goal-based criteria are
the factors that depend on the intended use of the explanation: as Leake notices,
“A good explanation in a humorous context may be one that is farfetched or obvi-
ously false” (Leake, 1995).

For our task of building a model of the student’s reasoning, a combination of a
number of these criteria is used. Informally, we formulate our preference as “the
less deep, the fewer incorrect rules, and the smaller total cost of assumptions.”
More formally we would like to maximize a certain function of measures of utility
and plausibility.
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The utility measure is a goal-based criterion that estimates the utility of the
choice of a particular proof for the tutoring application given a plausibility distrib-
ution on a set of alternative proofs.

The plausibility measure indicates which explanation is the most likely. It gives
preference to the shallow proofs, which reflects our assumption of cognitive econ-
omy: if a short proof and a long proof both explain the student’s utterance, and
all rules and assumptions in both proofs are equally likely, then the short proof
is the more likely interpretation. Of course, comparison of the depths of proofs is
complicated by the fact that the rules in the theorem prover are not all of equal
importance in the context of the solution. Thus, some steps of the formal proof
can be safely omitted in an actual solution provided by an expert. In the context
of using the proof as a student model, this preference makes the model optimistic
about the student’s skills. In the context of using the proof for guiding tutoring
feedback, a shallow proof has greater utility because according to our assumption,
it is the type of the proof the tutor would prefer to talk about. Another factor that
contributes to the utility is the preference for explanations that use good physics as
opposed to “buggy” physics.

Since an explicit estimation of utility requires the generation of multiple proofs
and is therefore computationally expensive, we deploy a number of proof search
heuristics in an attempt to optimize the combination of the two measures. Although
currently the parameters of these heuristics are fixed for the duration of the tutoring
session, our implementation allows for varying the parameters on the fly. This may
be useful for dynamic adjustment of the student model, for example when there is
an indication that the model should be more pessimistic about the student’s skills
(more on the heuristics in Section 4.6).

While the depth preference is neutral to the content of the explanation and
the correctness preference gives only binary output for each rule, the cost-based
criteria make it possible to take into account the relative plausibility of individual
hypotheses. Thus, cost-based abduction, as with the approach defined in (Charniak
and Shimony, 1990) and applied to natural language understanding applications,
assigns quantitative costs to the hypotheses and orders the explanations by the total
cost of their hypotheses.* The cost of a hypothesis is fixed and therefore is not
sensitive to such factors as (a) the relative plausibility of the goals (observations)
to be explained, (b) the explanatory chain that generated this hypothesis, and (c)
the relative plausibility of the antecedents of a particular rule.

This motivated us to choose another approach, weighted abduction (Hobbs et al.,
1988), which attempts to avoid these limitations by defining the cost of a hypothesis

* It was also shown in (Charniak and Shimony, 1990) and in (Poole, 1993) that belief revision
in Bayesian networks can be accurately modeled by cost-based abduction. That is, when costs are
chosen appropriately for the conjuncts of the rules, and the proof graph produced by applying them
to explain an utterance inherits those costs as conditional probabilities, then the resulting network
is a Bayesian network and thus can produce mathematically sound posterior marginal probabilities
(Conati et al., 2002).
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as a function of the explanatory chain that led to it and the cost of the goal at the
head of the chain. The drawback of weighted abduction in comparison to cost-
based abduction, however, is the lack of a precisely defined semantics of weights.
We do not attempt to provide a formal definition of such semantics in this paper;
instead, we use ad hoc heuristics that are suitable for our particular application.

4.3. WEIGHTED ABDUCTION

Following the weighted abductive inference algorithm described in (Stickel, 1988),
Tacitus-lite is a collection of rules where each rule is expressed as a Horn clause.
Further, each conjunct p; has a weight w; associated with it:

PUUA A PE 5)

The weight is used to calculate the cost of abducing p; instead of proving it,
where cost(p;) = cost(r) - w;. The costs of the observations are supplied with the
observations as input to the prover.

Given a subgoal or observation atom to be proven, Tacitus-lite takes one of three
actions: (1) abduces the atom at the cost associated with it, (2) unifies it with an
atom that either is a fact or has already been proven or abduced (in the latter case
the cost of the resultant atom is counted once in the total cost of the proof, as the
minimum of the two costs), or (3) attempts to prove it with a rule. Tacitus-lite calls
the second action factoring.

All possible proofs could be generated. However, Tacitus-lite allows the appli-
cations builder to set depth bounds on the number of rules applied in proving an
observation and on the global number of proofs generated during search. Tacitus-
lite maintains a queue of proofs where the initial proof reflects abducing all the
observations and each of the three above actions adds a new proof to the queue.
The proof generation can be stopped at any point, and the proofs with the lowest
cost can be selected as the most plausible proofs for the observations.

Tacitus-lite uses a best-first search guided by heuristics that select which proof
to expand, which observation or goal in that proof to act upon, which action to
apply, and which rule to use when that is the selected action. As we mentioned,
most of the heuristics in Why?2-Atlas are specific to the domain and application.

SRI’s release of Tacitus-lite was subsequently extended as part of the research
project described in (Thomason et al., 1996) and was named Tacitus-lite4 at that
time. We are using two main extensions from that work: (1) proofs falling below
a user defined cost threshold halt the search and (2) a simple system of vari-
able sorts reduces the number of rules written and the size of the search space
(Hobbs et al., 1988, p. 102).

Unlike the earlier applications of Tacitus-lite4, which used it solely for reason-
ing about language, Why2-Atlas also uses it for shallow qualitative physics rea-
soning. To support qualitative physics reasoning, we’ve made a number of general
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inference engine extensions, such as improved consistency checking and allowing
the rule author to express both good and bad rules in the same rule set.

While computing the minimal explanation with respect to many kinds of pri-
oritization is known to be NP-hard (Bylander et al., 1991; Charniak and Shimony,
1994; Eiter and Gottlob, 1993; Selman and Levesque, 1990), polynomial algo-
rithms have been found for some useful classes of abductive problems (Eshghi,
1993), including cost-based abduction (Santos and Santos, 1996). To the best of
our knowledge no such promising complexity results exist for the problems specific
to weighted abduction. We are still searching for the best heuristics to use with our
domain and application.

4.4. ORDER-SORTED ABDUCTIVE INFERENCE

Let S be a set of sort symbols with a partial order <. A sorted term is a pair (¢, t),
denoted as ¢ : T, where ¢ is a term (a constant or a variable in our case) and 7 is a
sort symbol. A sorted atom is of the form p(xy,...,x,) : (11, ..., T,), where the
term x; is of the sort ;.

An order-sorted abductive logic programming framework (T, A, I) is an ab-
ductive logic programming framework with all atoms augmented with the sorts of
their argument terms (so that they are sorted atoms).

Order-sorted deduction has received extensive treatment on its own and as an
extension of unsorted logics (Walther, 1987; Cohn, 1989; Kaneiwa and Tojo, 2001;
Frisch, 1991). In terms of unsorted predicate logic, formula Ixp(x) : (r) can
be written as dxp(x) A t(x). For our domain we restrict the sort hierarchy to a
tree structure that is naturally imposed by set semantics and that has the following

property:
Ik AT = (L <T1) V(T IT), (6)

where 7; < 7; is equivalent to Vxt;(x) — t;(x). Without loss of generality for
the rest of this section, we will use binary predicates and constant-free atoms. The
latter can be easily achieved in order-sorted logic by transforming an ordered atom
p(a) : (7) that includes a constant a into p(x,) : (7,) and creating a new variable
X, and a new sort symbol 7, € S such that 7, < 7. We will also assume that the
rules of the order-sorted logic program T are nongeneralizing, that is, for any rule
of the form

px,y) : (11, 12) < q(x,2) : (13, 1), (7

it holds that 7; < t3. If for rule (7) this condition doesn’t hold (and therefore,
according to (6), 73 < t; must hold), it can be transformed into the nongeneralizing
form by substituting the sorts for the terms in the head of the rule by the most
specific sorts (for the respective terms) found in the body of the rule. For example,
rule (7), where 73 < 71, can be transformed into the nongeneralizing rule

p(x,y) (13, 12) <= q(x,2): (13, T4). ()
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It is easy to see from the set-theoretic semantics of sorts that this transformation is
model preserving.

Given the constraint (6) on the sort hierarchy, modus ponens can be extended to
sorted deduction as follows:

q(x', 7))t (15, 76)
px,y) (11, 12) < q(x,2) : (13, T4)
573,76 U4

p(x',y") t (min(zs, 71), 72)

Similar to (Kakas et al., 1998) our abductive reasoning procedure interleaves
consistency check and backchaining stages. Briefly, the procedure can be described
as follows:

1. Unify the goal with the head of the rule.

2. If unification succeeds, apply the unifier to the body of the rule and generate
the candidate new goals from the atoms in the body of the rule.

3. Check whether the candidate new goals satisfy the consistency constraints. If
the constraints are violated, mark the pair (goal, rule) as not applicable.

4. If the consistency constraints are satisfied, (a) add the candidate new goals to
the list of goals; (b) remove the goal from the list of goals; and (c) add the goal
and the rest of the atoms from the conjunction in the head of the rule (having
applied the unifier to them as well) to the list of provens (which is used in the
consistency check).

4.5. CONSISTENCY CONSTRAINTS

Our definition of what it means for a knowledge base T U A to satisfy an integrity
constraint ¢ € I is most closely related to the consistency view; see, for example,
(Kakas et al., 1998):

TUA satisfies ¢ iff TUAFE —¢.

The particular integrity constraint we wish to enforce is
=[p A p7] ®)

for every atom p, where p* means an opposite of p, following the approach de-
scribed in (Kakas et al., 1998; Eshghi and Kowalski, 1989). The definition of
an opposite of an atom is domain specific, and for a given atom an opposite is
not necessarily unique. For example, in the domain of qualitative mechanics, one
of the opposites of “velocity of pumpkin is constant” is “velocity of pumpkin
is nonconstant”; another is “velocity of pumpkin is increasing.” More formally,
every predicate p has a distinguished subset of argument places, called functional
arguments, with the following property: There is a mapping (specific to p) from
groundings of functional arguments to groundings of the rest of the arguments
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(although this mapping may be unknown). For example, if in binary predicate
p the first argument is functional (and the second is not), then for a given atom
p(x,y) : (11, 1z), the set P* of opposites would be as follows:

P*={p(x,y") : (11, y) | 75 is incomparable to 7,}.

In terms of provability, the abductive explanation A is said to satisfy constraint
(9) if and only if for every atom p,

TUAV¥F pAp*, Vp*eP (10)

For the sake of computational efficiency we do not implement the completeness
part of the semantics of negation as failure (NAF), which requires that one of
the following must hold: T U A + p or T U A + p*. Neither do we do a full
implementation of constraint (10) because in this case each step of a proof must
be checked by testing whether each opposite of the atom is provable with no new
steps or with steps that cost less than the proof of the original atom. As suggested in
(Appelt and Pollack, 1992) in the case of weighted abduction one should settle for
incomplete consistency checking and focus on detecting the inconsistencies that
are most likely to arise in the application domain.

Instead of implementing (10), we prevent abductive inference on rules that
would immediately give rise to a new goal p* € P* when the proof generated so
far has atom p. Namely, we guarantee that the following holds for every atom p:

pApt¢TUAUProof, Vp*e P an
For example, the atoms corresponding to the pair of statements
velocity of pumpkin is increasing
and
velocity of pumpkin is nonconstant

are consistent (since constant increasing is of sort Nonconstant), while the atoms
corresponding to the statements

velocity of pumpkin is increasing
and
velocity of pumpkin is constant

are inconsistent (since constant increasing is of sort Nonconstant which is in-
comparable with sort Constant).

As an example of the above, consider a fragment of a proof tree starting from
the subgoal “horizontal velocity of pumpkin is constant” as shown in Figure 10.
First, assume that the fact “total vertical force on pumpkin is a nonzero constant,”
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‘‘horizontal velocity of pumpkin is constant’’
Rule 24: “The magnitude of a vector is constant —
the magnitude of every component of the vector is constant”
‘‘velocity of pumpkin is constant’’
Rule 13-int: “Acceleration of a body is zero —
velocity of the body is constant”
‘‘acceleration of pumpkin is 0’
Rule 6: “Total force on a body is zero —
acceleration of the body is zero”
‘‘total force on pumpkin is 0’
Rule 23iff: “The magnitude of every component of a vector is zero —
the magnitude of the vector is zero”
‘‘total horizontal force on pumpkin is 0'’
‘‘total vertical force on pumpkin is 0'’
Figure 10. Example of an inconsistent proof. One of the newly generated goals “Total hori-

zontal force on pumpkin is 0” is inconsistent with the previously proven fact “Total vertical
force on pumpkin is a nonzero constant.”

which refers to the time the pumpkin is in free-fall, has been proven in another
branch of the proof tree. In this case, the application of rule 23iff should not be
allowed in the same proof because it results in the need to prove the contradictory
statement “total vertical force on pumpkin is 0.”

Another kind of inconsistency is related to metaknowledge reasoning, namely,
the rules that have buggy counterparts. For example, if a correct rule (in the sense
of a rule schema, e.g., p, g, and ¢* have unbound variables)

P—4q
has a buggy counterpart
P4,

then both of them cannot be a part of theory T, which includes fact Ix p(x),
provided we want to keep T consistent. The obvious workaround is to implement
such pairs of rules as

bug* A p — q
and
bug A p — q*,

where bug and bug* are mutually exclusive abducibles, because of constraint (11),
that do not appear anywhere else.

In the actual implementation we handle this constraint on the metalevel by
simply disallowing the appearance of pairs of these rules within the same proof.
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We restate here that while the consistency constraints we describe are natural in
theorem proving, from the viewpoint of student modeling they represent a risky
assumption: that the student does not simultaneously hold inconsistent beliefs.
There is, however, some justification of the assumption that the student doesn’t
hold directly contradicting beliefs, implemented as constraint (11), coming from
cognitive science: it has been shown that even young children are unlikely to make
mistakes in tasks involving taxonomic categories (Chi and Ceci, 1987).

4.6. SEARCH ISSUES

Our goal is to guarantee that the resultant proof will satisfy one of the following
criteria:

— Strong criterion: there is no cheaper proof within the given threshold on depth
of the proof. This is likely to require close to an exhaustive search.

— Medium criterion: there is no cheaper proof that is of the same depth or
shorter, and the proof search has met the threshold on depth or the threshold
on number of proofs. This criterion is likely to require exhaustion of the lat-
ter threshold by iterative deepening for a significantly large depth threshold.
Therefore a deeper, cheaper proof within the depth threshold would not be
found.

— Weak criterion: there is no cheaper proof that is of the same depth or shorter,
and one of the thresholds (depth, number of proofs, satisfactory proof cost) is
met by the proof search.

The cost threshold allows us to avoid iterative deepening and implement heuris-
tics to help find a low-cost proof before we exhaust depth or number of proofs
thresholds. Thus, our current search strives to satisfy the weak criterion. Heuristics
are used to select the best potential proof for expansion, the best goals in the proof
to address, and the best possible rule to apply to prove the goals. A description of
the heuristics follows.

The best goals are those that have high assumption costs and have not been
expanded for the most number of steps of the proof. Rules that would not satisfy
the condition of consistency are eliminated from the list of potential candidates.
Then the remaining pool of consistent rules is divided into classes of rules of the
same cost. The costs of rules cause the search to try to apply first the most specific
correct rules, then the more general correct rules, and, only when these two fail,
the buggy rules. This approach reflects our subjective estimate of the probability of
a successful proof for each choice of rule.

The cheapest rule is chosen, with possible conflicts being resolved nondeter-
ministically. If no applicable rules are found in the given class, the next cheapest
class is searched. If no class has an applicable rule, the goals are abduced, and their
cost is added to the cost of the proof accordingly.
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5. Evaluating the Tutoring System and the Theorem Prover

The Why2-Atlas system participated in an evaluation study in the spring of 2002
in order to acquire baseline measurements of student learning gains. The experi-
mental setup focused on the question of whether similar content delivered through
dialogue or a static text had different effects on student learning. Each condition
selected the material it presented from a limited, well-defined set of prescribed
physics topics for each training problem. The static text condition presented all of
the prescribed topics, while the dialogue condition chose a subset of the topics that
it deemed necessary given a student’s essay responses and previous dialogue.

The population tested was undergraduate students who had recently completed
an introductory physics course. Although the ideal population is physics students
who are currently taking physics and who are just learning the content covered
by the experiment, it is difficult to recruit enough students from such a highly
constrained population to offset low experiment completion rates. But given that
previous studies indicated that even physics students who have done well in their
courses perform poorly on qualitative physics problems (Hake, 1998), we expected
that students who had completed an introductory course to be appropriate as well
for the experiment.

Why2-Atlas was one of several dialogue conditions for the experiment. Another
dialogue condition of interest here was human tutoring dialogue. Although these
human tutors and their students communicated through typing, the human tutoring
condition was hypothesized to be better than the static text condition. We expected
that the Why?2-Atlas system would be at least as good as the static text condition
given that the system and knowledge sources were known to be incomplete.

Although the students in every condition showed significant learning gains,
a surprising result was that the gains for all of the conditions were statistically
similar. Because the human tutoring condition and the static text condition were
similar, and counter to previous experiments comparing human tutoring to sim-
pler instruction, subsequent experiments focused on comparisons involving human
tutors and the static text.

In addition, as we had expected, our system’s accuracy for identifying miscon-
ceptions was poor. None of the misconceptions that were identified were justified
according to human judgments of a sampling of the essays from students who
completed the experiment for the Why2-Atlas system. We also confirmed that the
propositional inputs to the theorem prover only partially represented the content
of student essays, so the system evaluation provided no informative performance
measurement of the theorem prover. Because the theorem prover was getting sparse
representations of student’s essays and because the system evaluation results are
inconclusive, we cannot yet test for a correlation between student learning and the
system’s accuracy at selecting appropriate dialogue topics. We expect that, with
system improvements and improvements in the experimental design, an upcoming
repeat of the system evaluation will be more informative.



ABDUCTIVE THEOREM PROVING FOR ANALYZING EXPLANATIONS 217

In the interim, we created a test suite using essays collected during the base-
line evaluation and subsequent experiments. In addition to the essays from the
baseline evaluation, we have since collected essays from students who have never
taken physics but who receive a short instructive text prior to testing and training.
To create the test suite, we randomly selected 45 essays, while balancing prob-
lems, subjects, subject backgrounds, and essay versions. The 45 essays cover seven
problems and were written by 21 students (11 with physics backgrounds and 10
without); 32 of these essays are written by students who had not previously had a
physics course, and the remainder by students who had completed a physics course.
Since each student may have revised an essay for a problem multiple times, we
randomly selected one problem essay per student. Once the essays for the test suite
were selected, we hand-corrected the logged inputs for the various system modules
for each student essay in the test suite and had human judges annotate each essay
with the physics principles it covered and the misconceptions it exhibited.

Two main test suite evaluations are of interest for the abductive theorem prover
relative to processing bounds and efficiency: (1) the accuracy of the misconceptions
revealed by the proofs and (2) the accuracy of the whole proofs as student models.
We have an evaluation of the accuracy of misconceptions relative to the test suite
but have just begun a preliminary evaluation of the accuracy of the whole proofs
generated.

5.1. ACCURACY OF THE MISCONCEPTIONS REVEALED

To assess the accuracy of the misconceptions that are identified as a result of
the proofs produced by the theorem prover, we can compare the misconceptions
selected with those that should have been identified according to the human judg-
ments for the essays in the test suite.

Our goal here is to minimize the number of misconceptions missed by the sys-
tem that a human judge identified as relevant. In the 45 essays of the test suite,
three essays have two misconceptions each, eight essays have one misconception
each, and the rest of the essays don’t have any misconceptions from the list of 54
misconceptions that could arise for the training problems according to our physics
experts.

To evaluate the accuracy of the theorem prover at revealing misconceptions, we
compare the theorem prover’s results for an essay relative to the misconceptions
possible for the problem (system identified (SI) versus system did not identify
(SDI)) to those of the human judgments annotated in the test suite relative to
the misconceptions possible (human identified (HI) versus human did not identify
(HDI)) to determine the number of

— true positives (TP), where TP = SI N HI

— true negatives (TN), where TN = SDI N HDI
— false positives (FP), where FP = SI N HDI

— false negatives (FN), where FN = SDI N HI
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If for problem 1, experienced physics instructors indicate that 5 misconceptions
are relevant, A—E, and for an essay instance on problem 1 the theorem prover output
reveals misconceptions A and B while a human judge identified as present B and
C instead, then for that essay instance, TP = 1, TN = 2, FP = 1, FN = 1. So
TP+ FN is the number of misconceptions that the human identified as present, and
FP 4 TN is the number of relevant misconceptions that were not present according
to the human judge.

We build a confusion matrix with the cells TP, FP, TN, FN by summing the
values across each essay in the test suite. From this confusion matrix we can com-
pute the following measures, which are frequently used in classification tasks for
information retrieval and machine learning:

— recall (R) = TP/(TP + FN)

— precision (P) = TP/(TP 4 FP)

— positive false alarm rate = FP/(FP + TN)
negative false alarm rate = FN/(FP + TN)

In addition, we also recorded the theorem prover’s results at various proof cost
thresholds to see how the performance changes as we move closer toward building
a complete proof. For each threshold of interest, we create a separate confusion
matrix. However, it is possible that other thresholds (for example, the threshold on
number of possible proofs generated) are exceeded before a proof satisfying the
cost threshold is found. When this case arises, we add the results of the best proof
so far to the target threshold confusion matrix regardless of what the actual cost is.

As shown in Figure 11, the recall increases from 0 at a proof cost of 1 (where
everything is assumed without proof) to 62% at a proof cost threshold of 0.2. As
the recall increases, the precision degrades but then levels off. We expect that the
precision will also improve rather than degrade once the planned improvements to
the theorem prover are implemented (see Section 6). These results mean that the
theorem prover can help to reveal up to 62% of the misconceptions that a human
would recognize, but at the cost of identifying some misconceptions that are not
justified by the essays. We consider recall to be the more important measure for
misconceptions because it is important to find and address the misconceptions that
are expected to be obvious to a human tutor.

In order to get a sense of how difficult the task of finding misconceptions is,
it is useful to also examine the false alarm rates, as shown in Figure 12. The
negative false alarm rate is inversely related to recall in that as recall increases,
the negative false alarm rate declines and indicates how many misconceptions are
overlooked. Our goal is for this number to fall as close to 0 as possible because we
hypothesize that overlooking misconceptions is detrimental in tutorial applications.
We have observed that students can have a complete explanation and still conclude
the wrong answer from that explanation.

The positive false alarm rate is inversely related to precision and indicates how
many misconceptions the system incorrectly attributed to essays. While we’d prefer
that this number fall to zero as well, it is not so bad to cover more misconceptions
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Figure 11. Recall and precision measures as proof cost threshold decreases.
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Figure 12. Negative and positive false alarm rates as proof cost threshold decreases.

than are needed. One might take the approach, as with the static text condition, of
covering all the misconceptions that are expected to be possible for a problem, but
some hypothesized downsides of this approach are inadvertently strengthening the
reasoning associated with a misconception and a loss of interest and cooperation on
the part of the student; the student’s effort to explain during subsequent problems
may drop off if the student perceives the system is not usually giving appropriately
focused feedback on their essay.

As expected, the effort to find more complete proofs and improvements in recall
and negative false alarm rates require an increase in processing time, as shown by
Figure 13.

While the theorem prover’s negative false alarm rate is considered good, we
expect that additional testing and fine-tuning of the rules, inference procedures,
and proof search heuristics will further improve the results.
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Figure 13. Processing time in seconds as proof cost threshold decreases.

5.2. ACCURACY OF THE WHOLE PROOFS GENERATED

Comparing the misconceptions revealed with those that a human judge identifies
is only a coarse measure of the accuracy of the proof generated. To determine
the fitness of the theorem prover for assessing completeness of an explanation,
we must also consider the accuracy of the whole proofs generated. Assessing proof
accuracy is more difficult because the proofs must be hand verified. In addition, it is
difficult to create a reliable gold standard against which to evaluate the accuracy of
proofs for essays and the reasons for any inaccuracy. The reason is that, in general,
language in context gives rise to many inferences (Austin, 1962; Searle, 1975).
In this case, we will judge whether the proof is at least a plausible model for the
student essay. Such an accuracy evaluation is still in progress.

6. Future Work

A number of improvements to Tacitus-lite4 and to Why2-Atlas are in progress, and
we also plan to address a number of improvements in the future. The improvements
we have identified for Tacitus-lite+ are as follows:

— To integrate into the tutoring system a refinement where the factoring oper-
ation (as defined in Section 4.3) distinguishes between factoring with more
specific and with more general atoms (and charges the proof an appropriate
cost).

— To respond to explicit conflicts in students’ essays in the near future and
to work on interactive proof generation (i.e., asking questions of the stu-
dent when ambiguities arise, rather than dealing with them after the proof
generation is complete).

— To explore a stronger consistency criterion than (11) in order to improve con-
fidence in the consistency of an abductive explanation. On the other hand, a
consistent proof may not be appropriate as a model for all types of students.
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This trade-off can be accounted for by allowing a certain degree of flexibility
in the consistency criterion. The relationship between the consistency of the
explanation and its measures of utility and plausibility is not straightforward
and is currently being investigated.

— To address weaknesses in the current reasoning system that stem from a lack
of explicit negation, quantifiers and disjunction in its knowledge representa-
tion. For example, it could be beneficial for the sort hierarchy to distinguish
between lexical negation (decreasing) and classical negation (—increasing),
as proposed in (Kaneiwa and Tojo, 2001).

Naturally, addition of any of these features will require more sophisticated reason-
ing procedures.

In the area of improvements to Why2-Atlas, we are currently extending the
system to cover a larger subset of physics and as a result more physics problems.
Our next most immediate goal is to improve the feedback to students relative to
the proofs produced by Tacitus-lite+. We need to address two situations. The first
is when the system generates multiple lowest-cost proofs, as in the earlier example
associated with Figures 6 and 7. The second is when it produces just one lowest-
cost proof in which the student has presented unambiguous correct information in
the essay that leads the system to infer a correct and complete explanation or the
student has provided information that is clearly incorrect.

Although work on natural language interpretation selection (Zukerman and
George, 2002) and natural language generation work on argumentation and expla-
nation (e.g., Zukerman et al., 2000; Horacek, 1997; Zukerman and McConachy,
1993) will give us a starting point for deriving feedback to the student relative to a
proof, there are a number of new challenges to address. First, generation work on
argumentation and explanation has focused on generating text as opposed to dia-
logue and deals mainly with correct representations. Second, in the case of choos-
ing between alternative representations, the work in (Zukerman and George, 2002)
doesn’t address the problem of choosing between representations that have the
same number of inferences, as is the case for the alternative proofs in Figures 6
and 7.

In the situation where there are multiple lowest-cost proofs, the system needs to
locate major differences between the alternative proofs and ask clarification ques-
tions that will help the system determine which proof is the best representation of
the student’s beliefs. For instance, in the earlier example with Figures 6 and 7, there
are a number of possibilities for doing this. First, the system can ask, “Why do you
think the pumpkin slows down?” If the student responds with “I don’t know,” then
the system can ask a more leading question such as “What is the total horizontal
force on the pumpkin?” since a proposition about total force is present in both
proofs but has different argument values.

The other situation is where the system finds one plausible proof either on its
own or because it asked questions that allowed it to narrow down the possibilities
to one proof as above. We are working on the case where the system has to infer
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T: How do you know that the pumpkin will land on the man?
U: I don’t know

T: What is the pumpkin’s displacement relative to the man’s?
U: itis equal to the man’s

T: Right. The pumpkin’s horizontal displacement will be equal to the man’s displacement at
all times. So what leads you to know this, given you already know that the man is carrying the
pumpkin and is running at a constant speed?

U: I don’t have any idea

T: What can you say about the velocity of the pumpkin before the runner throws it?

U: itis equal to the man’s

T: Right. The horizontal velocity of the pumpkin is equal to the horizontal velocity of the
runner. So what follows from knowing this ?

Figure 14. A prototype dialogue based on a simplified input proof in which the proposition
“The pumpkin lands on the man” is marked as covered by the user’s essay.

most of this one proof from just a few true student propositions (Jordan, 2004).
Our approach is to use low-level constraints defined in terms of the structural
relationship between a proof step of high assumption cost that is to be elicited and
a proof step of low assumption cost. The structural relationships are ancestor, sib-
ling, and transitive. Next we define higher-level elicitation strategies by specifying
constraints on the distance between the steps in the three structural relationships,
the orientation between the high-cost target step and the low-cost step, and the
distance and orientation when choosing the next high-cost target step to elicit. In
the case of an ancestor relationship, in one dialogue turn, the constraints select a
step of low assumption cost that is at a distance N on a path from the step that is
to be elicited and ask for an elaboration relative to the low-cost step. For example,
if the student had said, “The pumpkin lands on me because the velocity of the
pumpkin is constant” and N is 1, the system can ask either an open-ended question
such as “What follows from knowing that the pumpkin’s velocity is constant?” or
a more focused question such as “What does the constant velocity tell us about the
pumpkin’s acceleration?”

We have implemented a proof of concept prototype using these three low-level
constraints and additional higher-level dialogue strategy constraints. The prototype
takes a simplified proof as input, where the proof is marked with which steps were
covered in an essay and which are givens and therefore of low assumption cost. An
excerpt of a dialogue produced by this prototype, where the initial essay is only
“The pumpkin lands on the man,” is shown in Figure 14.

We are just beginning to explore the case where the one plausible proof contains
a bug because the student made some incorrect statements (as in the essay in Fig-
ure 1). Our approach treats these incorrect student statements as being correct and
attempts to lead the student to a contradiction (Jordan, 2004), as with reductio ad
absurdum (Zukerman et al., 2000). For example, if the target incorrect statement is
“There was a horizontal force acting on the pumpkin before the throw,” then a con-
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tradiction is sought for the givens “The horizontal velocity of the man is constant
before the throw” and “The man is carrying the pumpkin before the throw.”

7. Conclusions

In this paper we have presented weighted abductive proofs as a method for de-
veloping a deeper understanding of students’ explanations for qualitative physics
problems than can be afforded by superficial sentence-level semantics. We viewed
abductive proofs that are based on student essays as a way to model students’
beliefs and knowledge of physics. We described how feedback that is adapted to a
student’s particular needs can be generated based on these student models. To show
how we are able to acquire these student models, we presented a qualitative physics
ontology with sorts and a collection of correct and buggy rules that were designed
to cover a subset of Newtonian mechanics and the most common misconceptions.
We also described how we adapted a weighted-abduction reasoning framework
for the task of building proofs of student essays. A combination of heuristics was
developed to assist in choosing the best proof and hence the best model of the
student by having these heuristics approximate selection criteria that are based on
measures of utility and plausibility of a candidate model.
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