The COCONUT project:
Dialogue Annotation Manual

Barbara Di Eugenio
Pamela W. Jordan
Liina Pylkkéanen

ISP Technical Report 98-1
December 1998

Contents
1 Introduction
2 Top level

3 Information-Level

3.1 DIScuSsion e e e e e e e e e

4 Forward-Communicative Function

4.1 Statement L e e e e e e e e
4.2 Influence-on-listener (Influence-addressee-future-action)
4.3 Influence-on-speaker (Commit-speaker-future-action)
4.4 Other-forward-function
4.5 Discussiono
4.5.1 Potential Actions
4.5.2 Trying to get the addressee to do something
4.5.3 Influence-on-Listener and Influence-on-Speaker
4.5.4 Accept, Influence-on-Speaker and Influence-on-Listener
4.5.5 Answer, Influence-on-Speaker and Influence-on-Listener
4.5.6 Elaborations, Influence-on-Speaker and Influence-on-Listener
4.5.7 Conventional acts L e
5 Topic
5.1 TtemFeature L L

6 SurfaceFeatures

7 Backward Communicative Function

7.1 Initiate. o e e e e
7.2 Agreement e e e e e e
7.2.1 Discussion e
7.3 Understanding e e
7.3.1 Signal-Non-Understanding

10
11
13
14
15
15
18
19
19
19
21
22

23
27

28

7.3.2 Signal-Understanding

T4 ADSWEr . . . L e e e e e
7.5 Informational Relations
7.6 Coreference / Set Relations L
77 Link . . .o e

8 Segment Tag

9 Fragment

10 Summary

11 Comment

12 Non-Relevant

13 Miscellaneous Conventions

14 File format

43

44

45

45

45

45

46

1 Introduction

This manual describes the coding scheme we developed to code the dialogues collected within the COCONUT
project (http://www.isp.pitt.edu/ intgen/). The COCONUT project has as its long-range goal the creation
of a unified architecture for interactive discourse, that includes both interpretation and generation. Using
abductive reasoning as a framework, we are developing a discourse simulator for collaborative tasks. The
abductive reasoner that manages the dialogue is coupled with a constraint satisfier that reasons about the
domain. We are currently analysing the corpus of dialogues we collected. The issue we are concentrating
on is how conversation correlates with the problem solving process that the two participants are engaged in.
The results of the empirical study inform the computational architecture, by helping selecting the context,
i.e., the subset of axioms that the abductive reasoner has at its disposal at a given time, and the heuristics
that the constraint satisfier uses.

The COCONUT Corpus. We collected computer-mediated dialogues in which two subjects collaborate
on a simple task, buying furniture for the living and dining rooms of a house. (The task is based on those in
[Walker, 1993; Whittaker et al., 1993]). Each subject is given a separate budget and inventory of furniture
that lists the quantities, colors, and prices for each available item. By sharing this information during their
conversation, the subjects can combine their budgets and can select furniture from each other’s inventories.
The problem is collaborative in that all decisions have to be consensual; funds are shared and purchasing
decisions are joint. The subjects in our collected conversations are equal in status: they are both briefed on
the domain knowledge needed for problem solving and neither is an expert at the task.

The subjects’” main goal is to negotiate the purchases; the items of highest priority are a sofa for the
living room and a table and four chairs for the dining room. The subjects also have specific secondary goals
which further complicate the problem solving task. Subjects are instructed to try to meet as many of these
goals as possible. The secondary goals are: 1) Match colors within a room, 2) Buy as much furniture as you
can, 3) Spend all your money. Subjects are enticed to try to arrive at a solution that achieves the maximum
number of goals by associating points with both individual furniture items and satisfied goals.

The subjects are in separate rooms and can communicate via the computer interface only. They are asked
to maintain private graphical representations of their discussions and incremental agreements. We can use
this private information as partial evidence of what S’s utterance meant and what H understood. Subjects
share dialogue windows but the inventories, budgets and updated floor plans are private and show up only
on the owner’s color display. Figure 1 shows the interface as it looks in the middle of a design session.

The buttons in the upper right corner of Figure 1, “End of Turn” and “Design Complete”, enforce
turn-taking and initiate the incremental recording of the conversation and the graphics updates. During an
incremental recording, the most recently transmitted message is recorded as well as the state of the sender’s
graphics display. The graphics display record is a description of the furniture icons in the two rooms as well
as what has been allocated but not assigned to any room. An additional feature of the interface is that each
furniture icon is initially displayed with a dashed outline around it. The subjects are given the option of
turning off the dashed outline to signal that agreement has been reached on using the item in the solution
(i-e. the item has been selected as part of the solution).

Note. All the examples taken from the Coconut dialogues that are included in this manual appear as they
have been recorded. Specifically, typos have not been corrected.

| |
=| Opal 1 I
YOUR | NVENTORY

1 TABLE-H GH YELLOW $400 pprE—
SOFA GREEN $350 of_Turn
SOFA YELLOW $400

RUG RED $200

[}
1
1
1 LANP. FLOR BLUE $50
2
o
2

CHAIR BLUE $75 1
CHAI R GREEN $100
CHAIR RED $100 PARTNER S | NVENTORY

ooooooooan
.
:

L1 VI NG ROOM DI NI NG ROOVI

We bought the green sofa 350,

he green table 400,
land 2 green chairs 100 each. @

— Your bankroll is: $400 7

Figure 1: A View of the COCONUT Interface

Coding Schema Approach. We build on top of the DRI coding schema (DAMSL) and extend it
in two ways: we add some top level tags, and we further specify other tags. As noted, certain sec-
tions of this manual are adapted from the DAMSL manual [Allen and Core, 1997]. The tool we use
is Nota Bene (NB) [Flammia, 1995]. Pointers to both the DAMSL manual and NB can be found at
http:/ /www.georgetown.edu/luperfoy /Discourse-Treebank /dri-home.html, under Tools and resources.

2 Top level

The top level menu consists of five major categories that utterances in the Coconut domain are annotated
for. These are Information-Level, Forward Communicative Function, Topic, Surface Features and Backward
Communicative Function. Every utterance that is a minimal unit (Section 14) must be annotated for these
dimensions, except when the utterance unit is Non-Relevant (Section 12) or part of a Summary (Section 10).
If the utterance unit is not a tensed clause, it should be tagged as a Fragment; a Fragment will be tagged
with any other tag that may apply, see discussion in Section 9.

The tags Non-Relevant, Summary and Fragment all occur at the top level, along with Comment (Sec. 11).

Note. Most of the tag menus that follow don’t provide an explicit catch-all OtherValue tag, to be used
when none of the other tags applies. So for example, Task (Section 3) can be specialized as EvaluatePlan
or as GameProcedure. This should not be taken to mean that each utterance which is labeled as Task is

tagged as either EvaluatePlan or GameProcedure; rather, most utterances will be tagged simply as Task,
without any further specializations. However, InformationLevel, the menu to which Task belongs, does
provide an OtherValue subtag, i.e., OtherLevel; namely, if none of the other tags applies, OtherLevel
should be used. The fact that some menus include an OtherValue tag, and others don’t, is not really
an inconsistency. When a menu includes an OtherValue tag, it means that the OtherValue tag is rare:
for example, at the InformationLevel, an utterance will be tagged as either Task, TaskManagement, or
CommunicationManagement the vast majority of times. Instead, when a menu does not include an Other Value
subtag, it means that the included subtags are infrequent, so that utterances will be mostly tagged at the
higher level, as in the case of the Task tag.

3 Information-Level

(Adapted from DAMSL sec. 2.2.)

This category provides a rough characterization of the content of the utterance. In task-oriented dialogues, we
can roughly divide the utterances into those that address the task, and those that address the communication
process. In addition, we can subdivide the first category into utterances that advance the task (Task) and
those that discuss the problem solving process or experimental scenario (TaskManagement). We follow the
current version of DAMSL in subdividing Information-Level as follows — boldface indicates the further
distinctions we introduce:

* Task (“Doing the task”)

— EvaluatePlan

— GameProcedure
* TaskManagement (“Talking about the task”)
— StrategizeAction
CommunicationManagement (“Maintaining the communication”)

* OtherLevel

Task. In a task oriented dialogue, most utterances directly move ahead (or attempt to move ahead) the
participants’ domain goals, i.e., they concern the task. For example, in the two (unrelated) excerpts
below, (a), (b), (c), and (d), (e), are all tagged as Task:

S1: (a) we spent: 300 (sofa), 250 (lamp), 200 (table), and 300 on chairs.
(b) I had 550.
(c) We overspent 50.

S1: (d) I say let’s start with a blue sofa;
(e) I have one for 300

The vast majority of utterances will be just tagged as Task, without any further specification. In other
cases, a more specific Task tag can be assigned, as follows:

— EwvaluatePlan, which is used when plans are explicitly talked about as objects. For example, (e)
in D’s answer would be tagged as < Task - EvaluatePlan>:

S1: (a) I believe that we should purchase the red sofa (100)
and the blue table (50) and blue chair (25).
(b) Red for the living room and blue for the dining room.
(c) If we have enough left over we can purchase the red lamp-table.

S2: (d) My funds are limited to 150 with the same credit situation.
(e) that sounds like a very reasonable plan to me.
(f) Let’s go with it.

Note. Whereas EvaluatePlan is used when both complete and partial solutions are under con-
sideration, it should not be used to tag single steps in a plan. For example, (b) below should not
be tagged as EvaluatePlan:!

S1: (a) I have a red sofa for 300.
(b) How does that sound?

— GameProcedure, used to mark utterances that concern what the players are allowed to do, such as
we can’t exceed our budget, or global domain constraints, such as colors aren’t that many points.
GameProcedure does not apply to domain constraints that the participants can give up, such as
the color matching goal. Utterances discussing these types of constraints should be treated as
StrategizeActions. The coder should keep in mind that even the primary goals can be given
up and, thus, they don’t qualify as a GameProcedure.

e TaskManagement. Utterances at this level explicitly address the problem solving process or experi-
mental procedure. This includes utterances that involve coordinating the activities of the two speakers
(e.g., “Are you keeping track of the time?”, “Forget about that problem for a while”), asking for help
on the procedures (e.g., “Do I need to state the problem?”) or asking about the status of the process
(e.g., “Are we done?”). In domains where the task involves building a plan, it is important to distin-
guish between utterances that concern the plan, which are Task level, and utterances that involve the
problem solving process, which are TaskManagement level. For instance, consider a situation where a
plan has been proposed; a question “will that work?” will be a Task level utterance because evaluating
possible plans is part of the task.

— We introduce a further distinction, StrategizeAction. Utterances marked as StrategizeAction
concern strategies to follow in the current problem solving scenario, such as Let’s start from the
living room, or Let’s work on getting the train to Avon first. (a) and (d) below are tagged as
Strategize-Action.

S1: (a) we can try to color coordinate with chairs.
(b) i have 3 green (50) 5 yellow (150) 2 red
(c) but colors aren’t that many points...
(d) maybe we should just try to accumulate furnature.

Note that an utterance simply stating global domain constraints that cannot be changed, such as
(c) above, colors aren’t that many points, is tagged as Game-Procedure, not as Strategize-Action.

INote that the fact that (b) is a question, and thus asks for an evaluation rather than providing one, is not of concern here.
The tag EvaluatePlan is assigned independently from other dimensions of coding; the fact that e.g. a question may ask for
an evaluation, rather than providing one, will be captured by the cooccurrence of the EvaluatePlan and Info-Request tags
(Section 4.2).

It is in principle possible that an utterance states global constraints in order to explicitly di-
rect problem solving, and therefore, that it should be tagged as Strategize-Action, not as
a Game-Procedure; however, we didn’t find any such examples in our data. Thus we assume
that, apart from rare cases, there is no ambiguity between the two tags Game-Procedure and
Strategize-Action.

o CommunicationManagement. This type of utterance typically includes conventional phrases that main-
tain contact, perception and understanding during the communication process. They include greetings,
acknowledging what the speaker said, stalling for time, signaling a speech repair (oops), or signaling
misunderstanding. Other utterances in this category concern the communication process explicitly:
they may establish the communication channel (Are you there?), address communication problems (I
didn’t understand what you said), explicitly manage the delays, or maintain the turn (Wait a minute).

e OtherLevel. Catch all label for utterances that don’t fall neatly under any of the other categories, but
may be relevant to the dialogue. In Coconut, this category is used for some utterances that relate to
actions that are part of the experimental set up, but that neither further problem solving, nor belong
to TaskManagement. In general, they discuss manipulations of the graphics display that cannot be
taken as paraphrases of steps of the solution. For example:

S1: (a) and what color are yours [chairs]
(b) so I can log them in

(b) is tagged as OtherLevel, as updating the graphic display is tangential to the task of furnishing the
two rooms. Note that (a) is tagged as Task, as color of items is considered as an essential property of
objects in our domain, even if the speaker here is interested in it only because of the graphics update.

3.1 Discussion

In coding this dimension, the coder should remember that every utterance has a Communication component
in some sense, but that utterances should be marked at the CommunicationManagement level only when
they make no direct contribution to performing the task. In other words, CommunicationManagement
level utterances are concerned exclusively with maintaining the conversation: if they were removed, the
conversation might be less fluent but would still have the same content relative to the task and how it was
solved. For instance, the greeting “hi” could be considered at the Task level in the sense that it starts the
process of performing the task. Removing the utterance, however, would have no significant effect on the
task or the way it was performed, thus we know its function is mainly at the CommunicationManagement
level.

Distinguishing TaskManagement from CommunicationManagement or from Task is sometimes difficult.
The DAMSL manual stipulates that in ambiguous cases the tag TaskManagement should be chosen, and we
follow this strategy.

The difficulty in distinguishing between TaskManagement and CommunicationManagement arises be-
cause utterances at either level may not add content directly relevant to the task. For example, consider
the utterance “Sorry for taking so long” which causes problems because it can be interpreted as an apology
both for not answering quickly enough (CommunicationManagement) or for slowing down the interaction
(TaskManagement). If the coder thinks that such an utterance has a component of both types, however, it
should be labeled as TaskManagement.

Making the distinction between Task and TaskManagement can be difficult in dialogues where the task
involves solving a problem and/or developing a plan. Since the task involves building and evaluating plans,
utterances such as “does the plan work?”, and “how does that sound” should be marked at the Task level.
Utterances referring to the current problem to be solved should also be labeled Task: “what is the problem”,
“the problem is we need to get two boxcars of oranges to Avon”, “we have to get two boxcars of bananas
to Corning”, “is there a time limit”, etc. The most complicated utterances appear to have interpretations
at both levels. For instance, the utterance “does that solve the problem?” could be intended as a request
to check if the plan would work (a Task level utterance) or might be intended to ask whether the session is
done (i.e., a paraphrase of “Are we done with the task?” which is a TaskManagement level utterance). In
cases where an utterance seems to do both, it will be marked at the TaskManagement level.

Note that when answering a question at one level, the answer is usually, though not always, at the same
level. Question-answer pairs can occur naturally at these levels as seen in the following examples:

Task Si: (a) How long does it take to get to Corning?
Task S2: (b) Three hours.

TaskManagement Si: (a) Do I have to state the problem?
TaskManagement : S2: (b) Yes.

CommunicationManagement S1: (a) Can you hear me.
CommunicationManagement S2: (b) Yes

4 Forward-Communicative Function

(Adapted from DAMSL Sec. 2.3)

This dimension characterizes the effect that an utterance has on the subsequent dialogue and interaction.?
The purposes behind an utterance are very complex. For instance, as the result of an utterance, is the
speaker committed to certain beliefs, or to performing certain future actions? Often, there are many different
effects simultaneously achieved by an utterance. To allow for this, the coding in this dimension allows four
different aspects of every utterance to be coded: Statement, Influence-on-Listener, Influence-on-Speaker,
Other-Forward-Function.

e Statement

— Assert,
— Reassert

— Other-statement
e Influence-on-Listener (Influencing-addressee-future-action)

— Open-Option
— Directive

* Info-Request

2In previous versions of the DAMSL coding scheme, it used to be called Illocutionary Act.

* Action-Directive
e Influence-on-Speaker (Committing-speaker-future-action)

— Offer

— Commit
o Other-forward-function

— ConventionalOpening
— ConventionalClosing
— ExplicitPerformative

— Exclamation

Tt is often difficult to determine what actions the speaker intended to perform with an utterance. More-
over, the effect that an utterance has on the subsequent interaction may differ from what the speaker initially
intended by the utterance. For this reason, coders are allowed to look ahead in the dialogue to determine
the effect an utterance has on the dialogue.

Naturally, just saying that coders are allowed to look ahead in the dialogue is not specific enough: the
issue is how far ahead can coders look, the whole dialogue, only the next turn, only the rest of the current
turn? Here DAMSL’s and our policies differ. DAMSL allows coders to look at the listener’s turn in order to
determine what effects the speaker’s actions have, whereas we limit lookahead to the current turn, i.e., the
turn to which the utterance under analysis belongs. There are several reasons why we don’t allow coders to
look at the listener’s turn:

e the decision trees (Figures 2, 3, and 4) are devised from the point of view of an observer trying to
infer the speaker’s original intentions, rather than trying to infer how the listener reconstructed those
intentions;

e we have some insights into the speaker’s real intentions by means of the graphics;

e we are interested in studying how the speaker’s intentions may be reconstructed or inferred by the
listener : to do so, we have to try to identify the speaker’s original intentions.

Deciding to limit lookahead to the current turn is not sufficient, as it is still necessary to decide how far
in the current turn to look ahead. We chose to use the whole current turn:

e We can’t see any principled reason to limit lookahead to 1, 2 or more utterances ahead. The end of
the turn seems to provide a natural bound.

e To the extent possible, we use the graphics the subjects update to disambiguate various aspects of the
utterance. In our experiment traces, though, it is not possible to determine exactly when the subject
updates his/her own graphic display: again, the end of the turn provides a natural bound.

Another important point that the coder should keep in mind is that ForwardCommunicative Function
does not capture issues of strength: so for example the Action-Directive tag will apply both to orders
and to proposals or suggestions. The strength of the speaker’s commitment to beliefs or intentions is not
captured in this coding scheme.

Finally, the coder should remember that an utterance may have multiple Forward tags, depending on
how many functions it simultaneously performs. As an example, in the right context, an utterance such as
“There is an engine at Avon” could be both an Assert and either an Open-Option (stating the possibility of
using that engine to move some cargo), or an Action-Directive (directing the listener to use that engine).

4.1 Statement

The primary purpose of statements is to make claims about the world, as in “It’s raining outside” .Figure
2 shows a decision tree for the statement aspect. The top level provides an applicability condition, Does
S make a claim about the world?, that tests whether an utterance should be coded along this aspect. The
applicability condition per se is not sufficient though, as it needs to be operationalized. The DAMSL manual
provides the following test for a statement: could the utterance be followed by “That’s not true”?. However,
we found this test problematic to apply consistently, as there was considerable disagreement in our coder
group as to which utterances can be followed by “That’s not true”. The only utterances we agreed on
that would be filtered by such a test are syntactically imperative utterances, such as Let’s take the train
from Dansville or Bring me that red folder. However, there are sentences such as we should start in the
dining room? that, in the appropriate context, constitute what is informally called a suggestion: intuitively,
we don’t want to mark them as statements, but they pass the “That’s not true” test. Thus, we replaced
DAMSL purely semantic test with a test that appeals to syntax (mood and tense), semantics (stativity),
and domain knowledge (agreement).

Test: S makes a claim about the world, i.e., utters a statement, if the utterance is a declarative sentence
that is

e past; or
e non past, and containing a stative verb; or
e non past, and containing a non-stative verb in which the implied action:

— does not require agreement according to the domain;

— or is supplying agreement.

Convention. If an utterance explicitly expresses the speaker’s opinion by including a matrix such as I think
or I believe, what is tagged along the Statement aspect is the argument to the matrix, not the complete
utterance.

Some statements:

I bought the blue sofa — statement (past tense)

I just logged in your table. — statement (past tense)

I have a yellow sofa for $100 — statement (stative)
The living room looks good — statement (stative)

I think the yellow ones are better — statement (stative)
I think we’re out of money now — statement (stative)

Some non-statements:
Let’s buy your sofa — non-statement (imperative)

30f course, such utterances, as well as syntactic imperatives, could be taken as claims about the speaker’s intentions; however,
in this case the statement tag would be applied to syntactic imperatives as well, and therefore it would not be very useful.

10

[Does speaker make a claim about the world?]

Yes No
Is the speaker trying to change the belief Do not give a Statement tag
of the addressee?

Yes No

[Does the speaker think that the claim has already been made? }
Yes / \ No

[Tag as ReAssert } Tag as Other

Figure 2: Decision Tree for Statement Aspect

We should start in the living room — non-statement (present, requires agreement)
We will have to forget about the lamp — non-statement (future, requires agreement,)

Some utterances that may be statements or non-statements, according to the discourse context:

I'm going to put your table in the living room — a non-statement if unsolicited, a statement if it agrees to
a proposal

We could start in the living room — non-statement if meant as a suggestion, i.e. if it requires agreement; a
statement if it is meant as according to the rules of the game, we’re allowed to start in the living room. Note
that in the latter case it does not require agreement, as that fact is known to both participants.

Now I will do design complete — a non-statement if unsolicited, a statement if it agrees to a proposal

If the statement aspect is applicable, the decision tree then indicates how to select the appropriate tag.
The key distinction for the Assert tag is that the speaker is trying to change the beliefs of the hearer. If this
is not true, then a further distinction is made depending on whether the claim has been made previously in
the dialogue or not.

4.2 Influence-on-listener (Influence-addressee-future-action)

The primary purpose of this aspect is to influence the hearer’s future action, as in the case of requests (“Show
me the congested cities”) or questions (“When will it arrive?”).

Test: can the hearer coherently respond with “I can’t do that” or “I can’t tell you”?

While this test accounts for most cases, there are some examples where an utterance is in this class but
the test fails. For instance, in TRAINS, say the participants are discussing how to get some oranges to Bath,
and one says “There’s an engine at Avon”, suggesting that they could use that engine to move the oranges.
This utterance falls into this aspect but could not be followed by “I can’t do that”, although the variant “I
can’t use that engine” is fine.

There are many verbs in English that describe variations of these acts that differ in strength, including
acts like command, request, invite, suggest and plead. These distinctions in strength are not captured in the
current annotation scheme. What is captured here is the distinction concerning whether the speaker is merely

11

[Is the speaker discussing potential actions of the addressee?]

Yes No

[Is the speaker trying to get the addressee to do something? j [This aspect should not be coded. j

Yes No

[|s the action specific?] [Tag as Open-Option]

Yes No

[|s the addressee supposed to provide information?] [Tag as Open-Option]

Yes No

[Tag as Info-Request] [Tag as Action-Directive]

Figure 3: Decision Tree for Influence-on-listener

laying out options for the addressee’s future action (the Open-Option tag), or actually would personally like
the hearer to perform a certain action (the Directive tags, Info-Request and Action-Directive). An
example of an Open-Option utterance from the TRAINS domain:

Assert S1: I need to get the train at Avon to Bath.
Open-0Option S2: You could go through Corning.

The Directive tags are further subdivided according to whether the action requested involves providing the
speaker with information.

Info-Request includes all questions, including yes/no questions such as “Is there an engine at Bath?”
and “The train arrives at 3 pm right?”, and wh-questions such as “When does the next flight to Paris leave?”.
It also includes actions that are not questions but request information all the same such as “Tell me the
time”, as well as requests for other actions that can be used to communicate, such as “Show me where that
city is on the map”.

All other Directives are in the Action-Directive class, and include examples such as “Take the train
to Avon” and “Please speak more slowly”. Action-Directives are often expressed as questions as in the
common utterance “Can you open the door?”. In such cases, the coder has to decide whether the utterance
counts as an Action-Directive in the dialogue. If it does, then it is tagged as an Action-Directive and
the Info-Request aspect (if any) cannot be tagged. This may be modified in the future.

While the decision tree in Figure 3 provides some necessary basic distinctions, it contains two tests that
need to be operationalized: what counts as a potential action, and what it means to try to get the addressee
to do something. We discuss the former issue in Sec. 4.5.1, and the latter issue in Sec. 4.5.2. Sec. 4.5.1 also
discusses the test regarding specificity of actions in Figure 3, that we added to the original DAMSL decision
tree.

12

Is the speaker potentially committing
to intend to perform a future specific action?

Yes No

[Isthe commitment contingent on listener’ s agreement] [This aspect should not be coded.]

Yes No

Tag as Offer [Tag as Commit]

Figure 4: Decision Tree for Commit-speaker-future-action

4.3 Influence-on-speaker (Commit-speaker-future-action)

The defining property of utterances with this aspect is that they potentially commit the speaker (in vary-
ing degrees of strength) to some future course of action. Moreover, we only code an utterance along the
Influence-on-speaker aspect if the action underlying it is specific (Section 4.5.1). The only distinction
made within this aspect is whether the utterance’s commitment is conditional on the listener’s agreement or
not. Commits that are conditional on the listener’s agreement include what are called offers in English: with
an offer, the speaker indicates willingness to commit to an action if the hearer accepts it. The prototypical
case of a Commit not dependent on the listener’s agreement is a promise, although the category commit may
include other weaker forms of commitment such as “I’ll probably be at the meeting at 3”. Since the speaker
does not need the listener’s agreement in this case, he or she is not making an offer; the commitment is just
not very strong.

Typical 0ffers:

Shall I come to your office
I’m free at 3 (in context of setting up a meeting)

Offers with explicit conditions:

I’11 be free after four if my meeting ends on time
I can meet at 3 if you’re free

Typical Commits:

I’1]1 come to your party
I promise that I’11 be there

A weak Commit:
Maybe I’11 come to your party

Utterances that accept a previous Directive or Open-Option will typically be a Commit, as in the following
dialogues:

13

Assert S1: I don’t know what to do Saturday night

Open-Option, Offer S2: You could go to Bob’s party with me
Commit,Accept S1: Great, I’11 see you there
Action-Directive S1: Take the engine from Corning to Bath.
Commit, Accept S2: OK

In fact, note that in COCONUT a Commit will only rarely co-occur with Initiate (see Sec. 7.1). An
example:

Info-Request S1: and what colors are yours [chairs]?
Commit, Initiate S2: so I can log them in

The coder should also remember that in COCONUT we allow lookahead to the end of the current turn.
This means that sometimes a potential commitment is not a commitment, because it is cancelled later on
in the turn. This happens in the example below, where (b) would qualify as an Offer if (d) were never
uttered. Since the commitment is cancelled, (b) is not tagged along the Influence-on-Speaker dimension.
(We explain how (b)), a relative clause, can potentially qualify as an 0ffer by itself in Section 4.5.6.)

S1: (a) I have 1 sofa for 350
(b) that is yellow
(c) which is my cheapest.
(d) yours sounds good.

4.4 Other-forward-function

Acts under this category do not form a natural category, but are grouped together as they are relatively
rare. They include (1) conventional conversational acts such as greeting and saying goodbye, (2) explicit
performatives, and (3) exclamations.

e Conventional acts:

— ConventionalOpening: Is the utterance a phrase conventionally used to summon the addressee
and/or start the interaction (e.g., “Can I help you?”, “hi”)

— ConventionalClosing: Is the utterance a phrase conventionally used in a dialogueclosing or used
to dismiss the addressee (e.g., “Good-Bye”)

e ExplicitPerformative: Is the speaker performing an action by virtue of uttering the utterance. Typ-
ical examples are expressions of psychological states (e.g., “Thank you”, “I apologize”); and utterances
in which the speaker explicitly declares what is performed, as in firing someone by saying “You’re
fired”, or, in TRAINS, quitting the task by saying “I quit”.

Test: can the word “hereby” be inserted before the verb?

For example, since “You're hereby fired” has approximately the same meaning as “You're fired”,
“You’re hereby fired” is an explicit performative. The utterance “I want to go to the store” is not,
since “I hereby want to go to the store” is difficult to interpret, and in contexts where it might be
understandable, “hereby” changes the meaning of the original utterance.

14

e Exclamation: Is the utterance an exclamation (e.g., “Ouch”)

Note that acts that are conventional openings or closings can be coded along other aspects as well. For ex-
ample, at the start of a dialogue the utterance “Can I help you” could serve both as a ConventionalOpening
and as an Offer.

4.5 Discussion
4.5.1 DPotential Actions

The notions of Influence-on-listener and of Influence-on-speaker rest on what counts as the potential
action underlying a certain utterance, for the listener in one case and for the speaker in the other. We
observed that in COCONUT there are at least two cases that require a precise definition of potential
actions, disjunctions and exhaustive listings. We briefly discuss the problems associated with these two types
of utterances, then we provide a convention for recognizing actions in our domain.

1. Disjunctions. What are the actions underlying an example such as I have a red sofa for 150 or
a blue one for 200: the more abstract buy a sofa or the two more concrete buy my red sofa and
buy my blue sofa? Adopting the latter solution has the consequence that the utterance should be
subdivided into two units of analysis.

2. Lists of items. In many cases, our subjects start out by listing their whole inventory, or at least, by
exhaustively listing all the items of a certain type they possess (lists of items can still be mentioned later
in the dialogue, although the further the negotiation has proceeded, the less likely exhaustive listings
are). Intuitively, marking each furniture item in these cases as both Open-Option and Offer besides
Assert doesn’t seem correct, as no real action is under consideration. This might not be a problem, as
the cooccurrence of Assert, Open-Option, Offer could indeed characterize initial exchanges in the
dialogue; however, our intuition that the “action” labels are not correct arises because it is not clear
what the potential actions are in these cases, other than the very abstract buy furniture items.

Convention. There are two types of potential actions in Coconut; they correspond to meta-actions — all
those actions that are labelled StrategizeAction or GameProcedure at the Task or TaskManagement level
— or to actions in the domain. In both cases, we further distinguish between general (potential) actions and
specific (potential) actions: a specific action is one that has all the necessary parameters set. (Note that our
definition of actions does not concern information giving actions, i.e, those underlying an Info-Request.
Our coding experience shows that they are easy to recognize.)

Specific vs general vs no action. A specific action in Coconut is an action in which all necessary
parameters are known. It is difficult to pinpoint necessary parameters for meta-actions in general: for
example, for the meta-action of starting furnishing one specific room the necessary parameter is the room
itself, as in

(a) Let’s begin from the living room

In general, we assume that a meta-action is specific, unless the disjunction convention below applies.

15

As regards domain actions, in general, necessary parameters are type of furniture item, price and room;
whether color is necessary depends on context. Note that the parameter room should not be taken as set by
default: while room is indeed instantiated by default to living room for sofa and to dining room for table, no
such 1:1 correspondence exists for the other furniture items.

Rule of thumb: specific actions are tagged as Action-Directive in their Influence-on-Listener aspect, as
long as the utterance passes the test regarding the speaker trying to get the addressee to do something, see
Section 4.5.2; and as long as the utterance does not qualify as an Info-Request. Specific actions are also
tagged along the Influence-on-Speaker aspect, when applicable.

General actions. They arise either because not all necessary parameters are set, or the action is an abstraction

of different choices that the speaker may list in a single utterance.

e Lack of necessary parameters.
Any domain level action missing some of its parameters will qualify as a general action, e.g.

(a) I have a blue sofa

In a null context, the necessary parameter price is missing, so this utterance qualifies as a general, not
as a specific, action.

It is hard to find examples where necessary parameters are missing at the meta level.
o Abstraction from explicit choices. This mainly covers explicit disjunctions.
At the meta level

(a) Shall we begin from the living room or from the dining room

can be abstracted as start from room, where the parameter room can be instantiated as 1iving room
or dining room. The disjunction could also regard the actions itself, rather than parameters of a single
action:

(a) Should we color coordinate or match furniture?
At the domain level, let’s consider
(a) I have a red sofa for 150 or a blue one for 200

The underlying action in (a) (in the appropriate context, i.e., excluding the exhaustive listing reading
discussed below) is buy sofa, where the parameter sofa can be instantiated either as my red sofa
for 150 or my blue sofa for 200. It will be tagged as Assert, Open-Option, Offer.*

Rule of thumb: general actions will be tagged as an Open-Option in their Influence-on-Listener aspect;
and they will not be tagged along the Influence-on-Speaker aspect.

No action. When the coder can individuate neither a specific nor a general action, we assume that there
is no potential action underlying the utterance, and that therefore neither Influence-on-Listener nor
Influence-on-Speaker applies.

4The same example in the DAMSL manual is tagged in the same way; however, the assumption there is that the underlying
action directly includes a disjunction , we could buy my red sofa or my blue sofa (DAMSL manual, p. 10).

16

Convention. Exhaustive listings of items still present a problem, as one could recognize either specific
or general actions underlying utterances such as (a), (e), (£f) and (g) below. We tag any occurrence of
exhaustive listings, both at the beginning or later in the dialogue, only as Assert. The definition of exhaustive
listing varies according to whether priority or secondary items are of concern. Any listing of all items of a
certain type qualifies as exhaustive if the item is a priority one (e.g., tables); however, a listing of secondary
items must mention all of them, not just all of the secondary items of a certain type, to be exhaustive.
Namely, if a participant has 6 chairs (primary items), 2 lamps (secondary), and 1 rug (secondary), an
utterance like I have 4 red chairs and 2 green ones is an exhaustive listing, an utterance like I have
two red lamps is not, and one like I have two red lamps and 1 blue rug is.

Note that sometimes there may be ambiguity on whether the subject is listing all his/her items, or
presenting a possible partial solution. This will happen when the number of primary items of a certain type
a participant has is exactly the number required for the solution. For example, in the excerpt below, S2 has
exactly 1 table and 4 chairs; thus, it is not clear whether (e) + (£) + (g) qualifies as an exhaustive listing,
or whether S2 is proposing a partial solution, composed of (e) + (£) + (g):

S1: (a) I have only 1 table- yellow $400, no yel chairs,
but 2 blue chairs-$75, 2 green-$100, and 2 red-$100....
(b) My budget is $400.

S2: (c) my bankroll is $550 this time.
(d) shall we start the same way, with the table and chairs?
(e) i have 1 table.
(f) it’s green - $400.
(g) i also have 2 green chairs for $100 each and 2 yellow chairs for $75 each.

In these cases, we look for other sources of evidence that may help disambiguate. Here, a partial solution
such as (e) + (£) + (g) does not satisfy the secondary goal of choosing furniture items of the same color
in each room; as S2 gives no indication that she is giving up the goal of matching colors, it appears that in
(e) + (£) + (g) sheis only listing all her tables and chairs. Thus, we tag all of these utterances simply as
Assert. Btw, this is a case in which the graphics could help, but it doesn’t.

Other notes and examples.

1. The existence presupposition. Underlying our definition of actions, both general and specific, is the
assumption that the speaker knows whether a certain items exists. Thus Y/N questions that inquire
whether the partner has a certain furniture item don’t count as potential actions.

S1: (a) Red chairs in the dining room.
(b) Do you have 2 chair red to go in the dining room
(c) which will give us 200 pt for the table, 100 pt for chairs +
10 pts. for same color furniture.

There is no meta- or domain action underlying (b), so (b) can only be tagged along the Influence-on-Listener
as an Info-Request. The same applies in hypothetical scenarios:

S1: (a) If you have two red chairs to go with my red table,
(b) we’ll have a nice set for the dining room.

17

There is no domain action underlying (a), as S1 does not know whether S2 has those two red
chairs; however, (b) presupposes their existence, so it qualifies as a specific action, and thus, as
an Action-Directive.

2. It may happen that there are ill-formed actions, i.e. that an utterance could count as an Action-Directive
and/or as an Offer, but that not all necessary parameters are set. The context and the graphics may
help the coder disambiguate; the coder should annotate in the Comment field which features of the
context help make the decision.

3. It may happen that a single utterance gives rise to two potential actions, one generic, the other specific.
(a) How about your green table and some cheap chairs?

When (a) is uttered, the subjects are discussing furnishing the dining room, and the price of the
table is mutually known. Therefore, the utterance gives rise to the specific action buy your green
table for 200, and to the general one buy (cheap) chairs. Thus it should be tagged as both
Action-Directive and Open-Option; however, these two tags are mutually exclusive, so we tag the
utterance simply as Open-Option.

4. Convention. In some contexts, for instance, when an utterance is associated with both a meta-action
and a regular action, some confusion may arise about which action is being committed to. For instance,
in the following, in (e) S1 both conditionally commits to a regular action (using S1’s yellow rug for
150) and unconditionally commits to a meta-action (not matching colors, given in (d)). In such cases,
the coder should use the Comment field to indicate which Influence-on-Speaker tag refers to which

action.

Accept, Commit Si: (a) Let’s take the blue rug for 250,
(b) my rug wouldn’t match

Open-Option (c) which is yellow for 150.

Action-Directive S2: (d) we don’t have to match...

Accept(d), Offer, Commit Si: (e) well then let’s use mine for 150

4.5.2 Trying to get the addressee to do something

The decision tree in Figure 3 contains a decision point regarding whether the speaker is trying to get the
addressee to do something. While it is hard to devise a comprehensive test regarding whether the speaker is
trying to get the addressee to do something, there is a prototypical case in Coconut in which the speaker is
not trying to get the addressee to do anything. The speaker mentions one action that the participants could
undertake, but, in the same turn makes it clear that that action is not to be performed. For example:

S1: (a) I have a blue sofa for 300.
(b) It’s my cheapest one.

S2: (c) I have one sofa for 350
(d) that is yellow
(e) which is my cheapest.
(f) Yours sounds good.

18

Given our definitions, a specific action (get S2’s yellow sofa for 850) underlies (d), which thus qualifies as
an Action-Directive (btw, also (a) qualifies as such, as it is not an exhaustive listing). However, because
of (£), it is clear that S2 is not offering his own yellow sofa as part of the solution, thus, S2 is not trying to
get S1 to use that furniture item. (d) is therefore tagged as an Open-Option.

The same scenario can occur at the meta level:

S1: (a) we can try to color coordinate with chairs.
(b) i have 3 green (50) 5 yellow (150) 2 red
(c) but colors aren’t that many points...
(d) maybe we should just try to accumulate furnature.

(a) could qualify as an Action-Directive, but given that S1 changes her mind in (d), (a) is tagged as
Open-Option.

Thus, the coder must remember to use lookahead (in Coconut, the whole turn) to decide whether an
utterance qualifies as an Open-Option or as a Action-Directive.

Another problematic case regarding the notion of trying to get the addressee to do something arises when
the specific action is provided as an answer to a question, as we discuss in Section 4.5.5.

4.5.3 Influence-on-Listener and Influence-on-Speaker

Given the nature of our task, we expect that these two aspects will almost always co-occur whenever there is
a specific action underlying an utterance. They will not co-occur in those few cases in which subjects think
each of them can only buy from his/her own furniture list, or when they discuss updating their own private
graphics displays.

4.5.4 Accept, Influence-on-Speaker and Influence-on-Listener

There is a class of utterances such as the lamp floor sounds good, your red set is a good idea, etc,
that Accept an Open-Option or an Action-Directive proposed by the other speaker — see Sec. 7.2. The
question is how they should be tagged at the Forward-Function level. The Statement dimension clearly ap-
plies (they are present declarative sentences that include a stative verb). What about Influence-on-Speaker
and Influence-on-Listener? Our convention is that if we can individuate a specific action underlying such
utterances, either because it is contained in the antecedent, or because the speaker identifies such an option
by means of the utterance itself the utterance should be tagged along those two dimensions.

Rule of thumb. Such utterances will typically be tagged as Action-Directive and Commit.

4.5.5 Answer, Influence-on-Speaker and Influence-on-Listener

The fact that answers are always solicited causes them to be treated slightly differently from other types of
utterances. To see this, compare the exchanges in (a-b-¢) and (a’-b’-¢’):

S1: (a) OK, we’re done in the dining room.
(b) Let’s move on to the living room.

19

S2: (c) I have a blue sofa for $350.

S1: (a’) OK, we’re almost out of money.
(b’) Do you have anything for $50 or under?
S2: (c’) I have a blue rug for $50. (Context: S2 has no other items for under $50.)

There are specific actions underlying both (c¢) and (c’) and, therefore, according to the decision tree in
Figure 3, both of these utterances could potentially be Action-Directives. However, the action get S2’s
blue rug for 50 underlying (c’) comes into focus only because S1 asks for it, whereas in (c) S2 chooses to
mention his blue sofa from among several alternatives. Based on this, it is reasonable to assume that only in
(c), and not in (c?), is S2 actually trying to get S1 to do something. Thus, S2’s response should be tagged
as an Action-Directive in (c) and as an Open-option in (c’)

Similar considerations apply to tagging answers for the Influence-on-Speaker function. In most cases
answers do not involve commitment. This is especially the case with answers that simply provide some
additional information, such as (d) below; in some other contexts, (d) might be tagged as an 0ffer, but
not when it simply answers a question as in this case:

S1: (a) how about 2 of yours [chairs] and 2 of mine?
(b) mine are green.
(c) what colors are yours?

S2: (d) The 2 chairs that i have are red.

In (d), S2 simply answers S1’s questions in (c), and does not provide any further information as regards
the solution proposed by S1 in (a). While the price of S2’s chairs is known, so that there is a specific action
underlying (d) (get S2’s red chairs), it does not appear that S2 is trying to get S1 to use S2’s chairs;
therefore (d) does not pass the test regarding trying to get the addressee to do something.

Answers that express opinions are, however, somewhat less straightforward. For instance, an answer such
as the one in (c) below does seem committal:

S1: (a) I have a lamp floor (blue), a green table and 4 chairs for 100.
(b) What do you think?
S2: (c) The lamp floor sounds good.

But note how making the answer a comparison, rather than a simple evaluation, removes some of that
commitment:

S1: (a) I have a lamp floor (blue), a green table and 4 chairs for 100.
(b) What do you think?
S2: (c) The lamp floor sounds better than the table.

The reason why a comparison seems less committal might be that saying x is better than y does not
commit the speaker to the view that x is a good solution; it is just better than y. However, a response such
as The lamp floor sounds good does potentially commit a speaker to that solution. Thus, there seems to
be a general tendency for answers that are opinions to be less committal if they relate two solutions than
if thay simply state a positive or a negative opinion about one. However, always consider the context when
making a decision about this dimension.

20

4.5.6 Elaborations, Influence-on-Speaker and Influence-on-Listener

It often happens that an item is introduced and then elaborated in subsequent utterances: the question is,
given that often introducing and elaborating items gives rise to potential actions, and therefore to tagging
the utterance with Influence-on-Speaker and/or Influence-on-Listener tags, should these tags be used
on every such utterance? Here we provide some guidelines on when to include and when to omit these tags.

When to omit the Influence-on-Speaker/Listener tag Proposals which consist of more than one con-
secutive utterances raise the question of how to indicate that these utterances share their Influence-on-Speaker
and Influence-on-Listener functions. These cases could be treated in three different ways: (1) all the
utterances could be tagged for the appropriate communicative functions individually, (2) the utterances
could be grouped together as a segment and the functions could be tagged at the segment level or (3) one

of the utterances could be treated as the main proposal and the others as elaborations which, in a sense,
“inherit” the communicative functions of the main proposal. Since the first option seems quite redundant,
and the second would introduce more segments (which we try to use conservatively), we opt for the third
option. Thus, in the following, even though at an intuitive level (a) and (b) together form an Offer and

an Action-Directive, only (a) is given these tags:

Action-Directive, Offer S1: (a) I have a blue sofa 300
ElaborateItem, SameItem(a) (b) it’s my cheapest omne.

(b) is linked to (a) via elaboration and via coreference (SameItem), thus it “inherits” the Action-Directive,
Offer tags.

When not to omit the Influence-on-Speaker/Listener tag

Changes in function. Note that the elaboration in (b) above does not give rise to an action description
different from the one underlying (a), at least in the terms we have defined actions in this manual.
However, other elaborations change the action description from general to specific, and therefore change
the Influence-on-Speaker/Listener functions from one utterance to the next: obviously in this case
those functions should be annotated for.

This most often happens when the initial introduction of an item does not qualify as a specific action
(see Section 4.5.1 on potential actions). In these cases it is often the elaboration that fixes the missing
parameters and makes the action specific. For instance, in the example below, (a) is not specific
enough to be an Action-Directive or an 0ffer. Therefore, it is just an Open-Option.’ The missing
color parameter is then filled in in (b), which is, hence, tagged as an Action-Directive and an Offer.

Open-Option S1: (a) I have one table for 350.
Action-Directive, Offer (b) it is green.

Given that non restrictive relative clauses are considered as independent units of analysis (Section 14),
this convention explains how a non restrictive relative clause that elaborates on an item description
may be tagged as Action-Directive, Offer. If we change (b) from the preceding example to a non
restrictive relative clause, as follows:

5However, in a context where the color matching goal had explicitly been given up, (a) would qualify for an Action-Directive
and an Offer.

21

Open-option S1: (a) I have one table for 350,
Action-Directive, Offer (b’) that is green.

exactly the same analysis applies.

Lookahead. Another situation in which the communicative function of an elaboration should be coded for
is when the function of the "main proposal” and the elaboration is the same only because the speaker
later on in the turn backtracks out of a commitment or a request. Such a case is illustrated below.
In this example (d) would be an Action-Directive and an Offer, just like (b) and (b’) in the
examples above, if it were not followed by (£). However, since (£) makes it clear that S2 does not
want her sofa to be bought, (d) is only an Open-option. By not omitting this tag we indicate that
(d) is an Open-option not because of inheritance, but because its actual communicative function was

cancelled.

Action-Directive, Offer S1: (a) I have a blue sofa for 300.
(¢‘inherits’’ AD, Offer from (a)) (b) It’s my cheapest one.
Open-option (non-specific) S2: (¢) I have 1 sofa for 350.
Open-option (d) that is yellow.
(¢‘inherits’’ 00 from (d)) (e) which is my cheapest
Accept (a), Commit (f) yours sounds good.

4.5.7 Conventional acts

The previous version of DAMSL had a separate category for conventional acts like thanking and apologizing.
These acts now fall into different categories based on the tests presented. For instance, an utterance like
“I’'m sorry” is an Assert as it makes a claim about the world, in fact it is a present, declarative utterance
that contains a stative verb. The utterance “Thank you”, on the other hand, cannot be analyzed in such a
way and only falls into the explicit performative category (observe that “I hereby thank you” is fine).

Short utterances such as “okay” and “yes” can have many different interpretations depending on how
they are being used. In fact, they can be Asserts, Commits and even Other-forward-functions. If the
utterance conveys information in answering a question, then the utterance is only an Assert, as in:

Info-Request S1: (a) is there a train at Chicago?
Assert S2: (b) yes.

On the other hand, if the utterance commits the speaker to a certain action, say in response to a request or
invitation, then it should only be labeled as a Commit

Action-Directive S1: (a) tell me if the route gets too long
Commit S2: (b) okay

Cases where the speaker utters an “okay” to accept a request and then performs the act requested are also
marked as a Commit, even though the action to which the speaker is committing is performed immediately
after:

Action-Directive S1: (a) can you tell me the time?
Commit S2: (b) okay.
Assert (c) three o’clock.

22

Utterances such as “okay” can be used not only to convey information but also to manage the dialog, possibly
to hold the turn, or to signal the introduction of a new topic. In these cases, the Forward Function of these
utterances is not directly captured in the annotation scheme, and they should be marked as (an unspecified)
Other-forward-function.

5 Topic

This menu tries to capture what the utterance is about. There are two semi-independent aspects we code
for in this dimension: what could be called Topic proper — whether the utterance concerns furniture items,
money or points; and Attitude, which indicates the speaker’s attitude towards the furniture items, budget or
point accumulation under discussion, or towards a (possibly partial) solution or plan. Note that most of the
time only one of these two aspects will be tagged — see below for some notes on when to tag with both.

Tags related to Topic proper are: concerning furniture items, needltem, haveltem, getltem, elaborateltem,
otherItem; concerning money, budgetAmount, budgetRemains, costAccum; concerning points, pointAmount,
pointAccum.

Tags expressing an Attitude of the speaker are Fval and Relate.

Tags related to Furniture Items.

e needltem, haveltem, getltem. They closely reflect the surface form of the utterance: e.g. We need a
cheaper sofa is tagged as <needItem - pos>. However, surface form is not all: for example buy the
chairs (2) is tagged as <getItem - pos>, even if no explicit get is included in the utterance.

Rule of thumb. The criterion for inferring one of these tags if they don’t explicitly appear in surface
form is that the corresponding verb (need, have, get) can be either substituted or inserted in the
utterance (if e.g. the utterance is elliptical).

For example, Your table deal is good in the exchange below is not tagged as getltem, because no
direct lexical substitution or insertion of get is possible.

S1: (a) This time I have all of 550.
(b) I have a red high table for 300 and a blue sofa for 300.
(c) Also 2 red chairs for 50,
(d) which would match the table.

S2: (e) Your table deal is good

On the other hand, utterances such as (a) and (b) below are tagged as <getItem pos>, as they’re
paraphrasable as in (a’) and (b’) respectively:

(a) I was thinking about your yellow table and 2 blue chairs and my 2 yellow chairs
(a’) I was thinking about [getting] your yellow table and 2 blue chairs and my 2 yellow
chairs

(b) What do you plan on doing, with this 100 we saved?
(b’) What do you plan on getting, with this 100 we saved?

A further requirement for inferring one of these tags is that the utterance must concern a specific item

23

or a type of item. Therefore, (c) below is would not be labeled as getItem, even though the verb
accumulate could be replaced by get.

(c) Maybe we should just try to accumulate furnature.

However, if the utterance is a question, such as (b) - (b’) above, getItem applies as long as the
expected answer concerns specific items.

The value pos(itive) that appears in the tags just given as examples corresponds to the semantic
polarity of the utterance (a tag for syntactic polarity is available, see Sec. 6). The value neg(ative) is
also available. It it is often used when an explicit negation is present, as in I don’t have a cheaper sofa,
tagged as <haveItem - neg>: note that here the tag doesn’t mean that the speaker doesn’t have a
sofa, but that he doesn’t have a cheaper sofa. However, an explicit negation is not necessary: We will
have to forget about the lamp is tagged as <getItem - neg>.

For questions, neg / pos corresponds to the polarity of the question: Do you have a blue rug will be
tagged as <haveIltem - pos>, Don’t you have any green chair as <haveltem - neg>.

It may happen that when speakers give a list of items they own or need, they also mention things
they don’t have or don’t need. Such lists consist at times of a main verb plus a string of coordinated
NPs: as we don’t consider NPs to constitute independent utterances in such contexts (Section 14), the
utterance will be tagged as haveItem or needItem, without specifying pos or neg.

e claborateltem: used to code elaborations on a description of a specific item already introduced. It is
used both when the speaker asks for values of certain features (How much is the red sofa) or asks for
clarification on the values of certain features (so are the chairs 25 each?); and when further information
is provided (No, the chairs are 100 each). It is the only value on the Topic menu that points to the
TtemFeature submenu — we think that when an item is elaborated in some way it may be important to
encode which particular feature is specified; however, we decided not to code for the features mentioned
in utterances tagged e.g. as haveltem. Also note that elaborateltem is independent from the coreference
tag sameltem, see discussion in Sec. 7.4.

Rule of Thumb. elaborateltem should be preceded by haveltem or getltem, unless the “antecedent”
appears in a question. For example, (a) below is tagged as otherItem; then (b) should not be tagged
as elaborateltem, but as haveltem.

S1: (a) I say let’s start with a blue sofa;
(b) I have one for 300

e otherItem. The utterance concerns (an) item(s) of furniture, but none of the other z-Item tags applies.
(a) above — so I say let’s start with a blue sofa — is an example of otherltem.

Note. To be tagged as otherltem, the utterance should contain an explicit reference to a furniture item:
namely, either the furniture item is present in surface form, or it is recoverable if it’s not verbalized
(as in ellipsis). A case such as

(a) I think we should change our ugly red dining room around

is not tagged as otherItem (it’s tagged as <Eval - Neg - Color>).
Tags related to budget.

o budgetAmount: to tag utterances where the available initial budget is mentioned, such as I have 550.

24

e budgetRemains: to tag utterances where the amount of money left is discussed, as (b):

S1: (a) let’s do the yellow/blue mix,
(b) leaving us with 250.

e costAccum: to tag utterances where the costs of various choices are summed up:

(a) we spent: 300 (sofa), 250 (lamp), 200 (table), and 300 on chairs
Tags related to points.

e pointAmount: to tag utterances where the points associated with a certain choice or choices are
mentioned:

(a) Gained 200 for sofa, 200 for high table, 10 points for
matching in livingroom and 10 points for the yellow chair
in diningroom.

e pointAccum: to tag utterances where the points associated with the solution are summed up.
(c) in the excerpt below is tagged pointAccum:

S1: (a) How about I buy two of these Beautiful 50 green chairs over here.
(b) that would expire our money
(c) and give us 630 pts.

Evaluate and Relate.

e FEwal(uate), with the two possible values: pos, neg.

e Relate, used for comparisons, with possible values better, worse, same, dfft (different).

These tags concern the attitude of the speaker towards: either furniture items, budget amounts and costs,
and point amounts; or a (possibly partial) solution or plan. They don’t apply to utterances that express an
attitude towards other things talked about, such as Btw, your screen is right, or to utterances tagged
as CommunicationManagement.

Eval and Relate point — through their values pos, neg and better, worse, same, dfft — to the Item
Features submenu, that details the particular features that are evaluated or compared. For example The
chairs sound too expensive is tagged as <Assert - Eval - Neg - Price>; I do not have a sofa for a better
price as <Assert — Relate - Worse - Price>.

Note. Sometimes the evaluation or comparison is not directly explicit in the utterance, but requires some
inference. We use this tag only when inferencing is minimal, and derives only from the utterance being
tagged and the previous context — in particular, it shouldn’t be inferred by looking ahead to the rest of the
turn.® Thus, Eval / Relate will be used only

e when the utterance explicitly conveys an evaluation or comparison, as in the examples just mentioned.
Other examples are That sounds good; I like red; etc.

8We don’t regard this as inconsistent with using the full turn as lookahead for determining the forward function of the
utterance.

25

e or when the utterance conveys an evaluation or comparison via explicit signals such as contrastive cues.

(b) is tagged as <Assert - Relate - Better - Price>:

S1: (a) The blue sofa costs 400.
(b) My yellow sofa is only 350 however.

(c) below will be tagged as <Assert - Eval - Neg - Price> — in the immediately preceding ex-
change, the two speakers have eliminated a lamp they had previously agreed upon because it costs
$250, and exceeds their budget.

S1: (a) do you have a rug or something blue?
S2: (b) I have a blue rug,
(c) but it is 250 also.

An example that should not be tagged as Eval is (b) below. While the speaker must think this is a good

solution, there isn’t anything clearly evaluative about his utterance:

S1: (a) do you have 2 chair red to go in the dining room
(b) which will give us 200 pt for the table, 100 pt for chairs
+ 10 pts. for same color furniture.
Conventions.

1. Better / Worse refers to the conceptual level of comparison between the two entities X and Y, where

X is the item mentioned in the utterance, or the first item mentioned if both X and Y appear. In I
do not have a sofa for a better price, X is my sofa, Y is your sofa.

. Often an utterance tagged with Eval or with Relate will be linked via a sameltem or subset coreference

tag to a previous utterance that mentions the same item(s) (see Sec. 7.4). In the case of a Relate, as
two items are compared, it is possible that the current utterance is linked to two antecedents. As will
be discussed below, we will edit the link value to include both references, but only when computing
these 2 links is immediate. For example:

S1: (a) I have a red sofa for 300.
S2: (b) I also have a red sofa,
(c) but it’s only 200.

In (¢), X is So’s red sofa, and Y is S;’s red sofa. Therefore, (¢) will be tagged as <Relate - better
- Price> and <sameItem - (b), (a)>, where (b) indicates coreference to X and (a) to Y.

When to use two Topic tags. As mentioned, we don’t intend pairs of topics to appear on every utterance.
Obviously, the Attitude tags won’t appear unless the utterance expresses an attitude of the speaker; but even
when an Attitude tag is warranted, doubly tagging the utterance with one of the other topic tags should
happen only when the coder thinks that the utterance really mentions two topics. This is more likely to
happen when the utterance comprises more than one clause, each of which actually conveys one of the two
topics. For example, in

26

S1: (a) Just curious,
(b) how much do your green chairs cost
(c) because i have a green table over here worth only 200!!!

(c) is tagged with a double topic, <haveItem - pos> and <Relate - better - price>.
This can of course happen in other cases, such as

(a) I do not have a sofa for a better price

which is tagged as <haveItem - neg>" and as < Relate - worse - price>.

Although two topics most commonly occur when a speaker introduces a referent in the domain and expresses
an attitude towards it in the same utterance, there are also other cases where two topics clearly exist. For
example,

(a) Alright, we will go with the two red chairs (310 pts.!)

is tagged with both pointAccum and getItem. What shouldn’t happen is that an utterance is tagged as
both otherItem and with an Attitude tag, given that otherItem doesn’t really add any information in this
case.

5.1 ItemFeature

This menu specifies which properties of items are discussed, compared or evaluated:

e obviously, price, color, type, points
e the possible combination of the furniture item properties: typeColor, typePrice, colorPrice, all.

o genl, for general. Tt should be used for general assessment about a solution or a plan, such as That
sounds good (in the appropriate context).

Note. The coder should be as specific as possible in individuating the relevant features, and use genl only
as a last resort. When specific items are mentioned, such as in

the lamp and table sound good

the specific properties relevant from context should be tagged for, such as type or typeColor. If no specific
properties are relevant, then all should be used. genl should be used only when no specific furniture items
are explicitly discussed, as in (b), or when a global solution is discussed:

S1: (a) We should start from the living room.
S2: (b) That sounds good.

Note. The composite tags in the [temFeature menu, especially those involving type — typeColor and
typePrice — rarely appear with FEval or Relate. An evaluation or comparison on Type by itself seems rare
as well; it could occur with either non-priority items — The lamp is better than the rug, we need some light
in the living room — or with priority items when the money available is so scarce that one can’t afford all
of them — I prefer the sofa to the table.

7A reminder that, as discussed above, <haveItem - neg> does not mean that the speaker doesn’t have any sofas.

27

6 SurfaceFeatures

There are two menus that capture the surface features of the utterance, Word-Surface-Features, and
Syn-Surface-Features. The former include Matrix, Modal and Subject, and the latter Tense, Mood and
NegPolarity. They are not conceptually different, they are separated in the Nb configuration file simply for
efficiency reasons. A tensed utterance will be coded for all surface features (apart from NegPolarity, used
only if the utterance includes an explicit negation). Fragments will be coded only for those features that
have non-nil or non catch-all values, see Section 9 for details.

Word-Surface-Features includes three cascaded menus, Matriz, Modal and Subject. Note that Modal
and Subject are used to tag for features of the embedded proposition, if there is a matrix, or of the main
clause, if there is no matrix.

e Matriz. Its possible values are surface matriz indicators, iSay, iGuess, iThink, iKnow, letMeKnow,
otherMatriz, noMatrix. Notice that we consider matriz indicators only those expressions that have a
full tensed clause as argument — thus, I want to buy those two chairs is tagged as noMatrix.

e Modal has possible values: howAbout, lets, can, could, must, should, would, otherModal, noModal.
Convention. otherModal is used for all the other modals, such as have to or may, that are not
explicitly listed in the menu.

o Subject has possible values: i, you, we, otherSubject.
Convention. otherSubject is used whenever the subject is not i or you or we, or when there is no
subject.

Syn-Surface-Features comprises three cascaded menus, Tense, Mood, Neg-Polarity. They apply to the
embedded proposition, if there is a matrix, or to the main clause, if there is no matrix.

e Tense has possible values: pres, past, future, presProg, pastProg, presPerfect, pastPerfect, otherTense,
noTense.

e Mood has possible values: questionY/N, questionWH, indir(ect)-question (e.g. I forgot how much the
sofa was), imperative, declarative, otherMood

o Neg-Polarity is used only when an explicit negation is present.
Conventions.

o let’s. Tt is tagged as imperative (Mood) and as we (Subject).

e would, should, could. The value of the tense feature is present when they are followed by a bare
infinitive, as in it would expire our money.

7 Backward Communicative Function

(Adapted from DAMSL, sec. 2.4.)

Backward Looking communicative functions indicate how the current utterance relates to the previous dis-
course. For example, an utterance might answer, accept, reject, or try to correct some previous utterance or

28

utterances. To capture these Backward functions, we need to both identify the type of Backward function
and indicate the previous stretch of discourse that is being affected.

The previous utterance or segment (set of utterances) being responded to by the current utterance will
be called the antecedent. The relations we consider here are local: their antecedent typically is either the
previous utterance or segment, and usually appears in the previous turn. Constraints on what can be an
antecedent and how to annotate complicated cases will be discussed after the basic set of tags is introduced.

There are four semi-independent aspects coded in this dimension. The first concerns relations affecting
agreement about the task or whatever the topic of discussion is. The second concerns relations that sig-
nal understanding (or non-understanding). The third marks utterances that answer previous information
requests. The fourth concerns the relationships between the informational content in the utterance and its
antecedent and is for now left unspecified in DAMSL: we provide a minimal set of such relations below, in
Sec. 7.4.

We include here the DAMSL hierarchy for Backward communicative function. In the following list,
boldface identifies tags we add to DAMSL; tags in boldface and in parentheses are those that we don’t
include, as they do not occur in our corpus.

¢ Initiate
e Agreement

— Accept

— Accept-Part

— Maybe

— Reject-Part

— Reject

— Hold

— ClarificationRequest

e Understanding

— Signal-non-understanding
— Signal-understanding

* Acknowledge

* RepeatRephrase

* (Completion)
— CorrectMisspeaking

— CorrectAssumption
e Answer
e Informational Relations

e Coreference / Set Relations

29

7.1 Initiate

The utterance is unsolicited. It may appear odd to include Initiate as a value for Backward-Looking
function; after all, Initiate means that the utterance does not perform a Backward-Looking function.
However, we keep marking for Initiate, whereas DAMSL leaves initiatives unmarked, mainly to make sure
that the coder has not forgotten to tag for Backward Function.

7.2 Agreement

The agreement aspect codes how the current utterance unit affects what the participants believe they have
agreed to, typically at the task level. These relations occur in contexts where one agent has made some kind
of proposal such as a request that the hearer do something, an offer that the speaker do something, or a claim
about the world. The current utterance then indicates the other participant’s view of the proposal. In general,
the agent may explicitly accept or reject all or part of the proposal, or may simply be noncommittal on the
proposal, or may leave the proposal open by requesting additional information or exploring its consequences.
Note that agreement does not necessarily require that the agent proposing and the agent (dis)agreeing be
distinct: occasionally an agent may accept or, more likely, reject his/her own proposal:

S1: (a) we can try to color coordinate with chairs.
(b) i have 3 green (50) 5 yellow (150) 2 red
(c) but colors aren’t that many points...
(d) maybe we should just try to accumulate furnature.

In (d) S1 rejects (a), her own proposal about color coordination.

Assuming the current speaker directly addresses a previous proposal, they could respond in one of the
five ways shown in the example below. Note that the label of Maybe applies to cases like the one below where
the speaker explicitly states that they cannot give a definite answer at that moment.

S1: (a) Would you like the book and its review?
Accept(a) S2: Yes please.
Accept-Part(a) S2: I’d like the book.
Maybe (a) S2: I’11 have to think about it
(intended literally rather than a polite reject)
Reject-Part(a) S2: I don’t need the review.
Reject(a) S2: No thanks

Agreement can apply to cases other than proposals, as shown in the two examples below. In the first
example, a is an Open-Option as it simply presents a possible option for solving a problem. (b) is still
considered an Accept though. Note, Accept’s are often words such as “alright”, “yes”, and “okay” as well
as repetitions.

Open-Option S1: (a) we can unload them and then reuse the boxcars
on the way to Corning
Accept(a) S2: (b) alright

An Accept can also be used as a response to an Info-Request. In this example, the possible action
accepted is that of supplying information (see Figure 5).

30

Info-Request S1: (a) can you tell me the time?
Accept(a) S2: (b) yes
Answer (a) (c) it’s 5 o’clock

(c) is marked as an Answer, as discussed later.

Although an utterance tagged with an Agreement tag will most often be linked to an utterance or segment
tagged as a Influence-on-Listener, it is also possible for it to Accept an Influence-on-Speaker or the
content of an Assert. In this example, the Accept indicates that the information conveyed in the Assert is
accepted.

Assert S1: (a) boxcars don’t travel by themselves
Accept(a) S2: (b) okay

Accept-Part / Reject-Part. An issue arises with respect to Accept-Part/Reject-Part: namely, should
one code for the implicit “Reject-Part” in the case of an “Accept-Part”, and vice versa? The assumption
in DAMSL is that we code only for what is explicitly addressed in the utterance; the implicated part is not
coded for, as it could be cancelled right away, as in (c) below:

S1: (a) Would you like the book and its review?
Accept-Part(a) S2: (b) I’d like the book,
Accept-Part(a) (c) and I also want the review.

A response like I°11 take the book but not the review will be segmented into two units, ¢ ‘1’11 take
the book’’ and ‘‘[..] but not the review’’, respectively tagged as Accept-Part and Reject-Part.

Hold. The Hold tag applies to cases in which the participant does not address the proposal but performs an
act that leaves the decision open pending further discussion. This includes cases such as counter-proposals
and questions that request additional information in order to help the participant make a decision (i.e.,
one sense of clarification request). This tag does not apply to cases where the speaker explicitly expresses
uncertainty such as uttering “maybe”.

In the dialogue below, S1’s request is vague since there are two possible paths; S2 makes a clarification
request by asking a question.

Action-Directive S1: (a) take the train to Corning
Info-Request, Hold(a) S2: (b) should we go through Dansville or Bath
Assert, Answer(b) S1: (c¢) Dansville

Instead of answering a question, a responder may make a clarification statement as shown below. This is
also marked as a Hold.

Info-Request S1: (a) how long will that take
Hold(a) S2: (b) you want to go from Avon to Dansville
Answer (a) (c) that’s 5 hours

31

In the examples below, 52’s suggestion of an alternative route should be marked as a Hold if the coder thinks
that S2 is leaving the original option open, but as a Reject-Part if not.

Action-Directive S1: (a) take the train to Avon via Bath
Open-Option, Hold(a) S2: (b) How about we go via Corning instead
Action-Directive S1: (a) take the train to Avon via Bath
Action-Directive, Reject-Part(a) S2: (b’) Go via Corning instead

The following exemplifies an instance of Hold in the Coconut domain. Instead of directly addressing S1’s
proposal, S2 provides a list of of his chairs, thus putting the proposal on hold. Since this Backward Function
is shared by three utterances, they are marked as a Segment. (See Section 8 for more specific instructions
on how to use segments.)

S1: (a) How about your green table and some cheap chairs?
S2: <Segment><Hold>

(b) I have 6 chairs

(c) that are green for 100

(d) or 2 chair for 507</Hold></Segment>

(d) so what do you think?

Hold, however, should not be used if the utterance provides information that was requested for. For
instance, in the following S1 makes a proposal in (a) to which S2 does not respond. Instead, S2 provides
further information about the items in question, which makes his response look like a Hold. However, since
the information in (d) was requested for, S2 is responding to something in S1’s turn. Thus, we have no
evidence for claiming that by saying (d), S2 holds the proposal in (a).

Offer, Action-Directive S1i: (a) How about 2 of your chairs
(b) and I have two also.
Info-Request (c) What colors are yours?
Answer (c) S2: (d) The 2 chairs that I have are red.

ClarificationRequest. We add this tag to DAMSL. As mentioned above, Hold captures one sense of
a clarification request, i.e., the request of additional information in order to help the participant make
a decision. However, there are at least two other senses of clarification request captured by our explicit
ClarificationRequest tag.

¢ A ClarificationRequest may occur when the participants review their decisions, because they have
forgotten what was previously decided, the decision was after all not so clear, or they’re wrapping up
the game:
Did we decide on the red sofa?

e A ClarificationRequest may also cooccur with a SNU (Signal-non-Understanding), or may occur
while trying to repair a SNU.8

80ne possibility is therefore that ClarificationRequest’s belong to the Understanding, rather than to the Agreement,
dimension. We put them under Agreement because one sense of ClarificationRequest is captured by Hold. We will reconsider
this issue in the future.

32

I's the speaker addressing a previous
possible action or claim?

Yes No
[Isthe speaker stating their attitude/ability towards the action or claim? j [This aspect should not be coded j
Yes No
[Is the speaker agreeing to part of the possible action or claim? j Tag asHold
Yes No
I's the speaker agreeing to all of the action [Is the speaker disagreeing with part of the action or claim?]
or clam?
Yes No Yes No

of the action or claim?

Tag as Accept Tag as Accept-Part Elsthe speaker disagreeing with all } Tag as Maybe

Yes No

[Tag as Reject j [Tag as Reject-part j

Figure 5: Decision Tree for Agreement Aspect

S1: (a) I have a lamp floor (blue), a green table and 4 chairs for 100.
S2: (b) The lamp and table sound good,

(c) but the chairs seem expensive.

(d) I have 4 blue for 100

(e) they should look OK together
S1: (f) again that sounds good.

(g) So the chairs are 25 a piece?

(g) is tagged as a SNU (see below) and as a ClarificationRequest. Note that (g) is not a Hold,
because in (f) S1 agrees to S2’s proposal. The fact that (f) is marked as Accept deserves further
discussion. It is true that (f) represents an agreement conditional on the chairs costing $25 each, which
in fact turns out to be false in this dialogue; however, it does not qualify as a Hold, as S1 is expressing
his attitude towards (d). Often the conditional aspect of a (dis)agreement will be captured at the
Informational relation level, via the act:condition tag.

Convention. We have chosen not to distinguish utterances that ask for confirmation from utterances
that ask for clarification. Therefore, the tag ClarificationRequest should also be used for confirmation
requests, such as (b) below:

S1: (a) I’m going to do ’design complete’.
(b) OK?

The link value of a ClarificationRequest should point back to the action that is hindered by the lack of
clarity.

33

7.2.1 Discussion

There may be cases in which it is unclear whether an utterance is an Initiate or an Accept (or another
Agreement tag). Sometimes the graphics information may help the coder decide. The coder should annotate
these ambiguities in the Comment field and if a choice is possible, an explanation of the choice.

Convention. Even though in conversation proposals can be accepted more than once, in COCONUT we
make the assumptions that acceptances are not generally re-accepted. Thus, we do not allow the same
proposal or claim to be accepted or rejected more than once.

It is also worth mentioning that acceptances are not always explicit. Sometimes they are inferred from
other conversational behavior, such as silence. While in COCONUT we do not explicitly analyze implicit
acceptances, the coder should still be aware of them, as sometimes they may affect the functions of some
other utterances. For instance, in the example below, S1 infers that S2 has accepted the table from S2’s not
mentioning it during his turn. To make this inference explicit, she utters (g). If (g) was uttered by S2,
it would be coded as an Accept. However, since (g) is uttered by S1, who originally made the proposal,
there is reason to believe that she thinks the proposal has already been accepted, and just wants to make
the hearer aware of this, too. By tagging (g) only as a Commit and not also as an Accept, we indicate (g)
functions more as a reminder of the acceptance than as the acceptance itself (see also the convention above
about multiple acceptances).

S1: (a) How about your green table and some cheap chairs?
S2: (b) I have 6 green chairs for 100

(c) or 2 chairs for 50.

(d) What do you think?
S1: (e) Let’s take the 50 ones

(f) and I have two also.

(g) I just put in your table.

7.3 Understanding

This aspect concerns the actions that speakers take in order to make sure that they are understanding each
other as the conversation proceeds. There are many levels of “understanding”, ranging from merely hearing
the words to fully identifying the speaker’s intention. Here we group most of these levels together so that
if the hearer is said to have understood the speaker, then the hearer knows what the speaker meant by the
utterance.

7.3.1 Signal-Non-Understanding

Utterances that explicitly indicate a problem in understanding the antecedent are labeled as Signal-non-
understanding (SNU).

Test: the coder should be able to roughly paraphrase a Signal-non-understanding utterance as “What did
you say/mean?”.

A: Take the train to Dansville
SNU B;: Huh? (i.e., What did you say?)
SNU By: What did you say? (i.e., What did you say?)

34

SNU
SNU
SNU
SNU

B3: to Dansville? (i.e., What did you say?)
B4: did you say Dansville? (i.e., What did you say?)
B5: Dansville, New York? (i.e., What did you mean?)
Bg: Which train? (i.e., What did you mean?)

On the other hand, responses that query how to comply with the speaker’s request/proposal, or that
question its desirability (“why are we doing this”) are marked as Hold at the Agreement level and are not
marked as SNU. Clarification questions labeled as Hold involve acquiring additional information about how
or why something was requested or proposed, and do not signal misunderstanding. B; through Bg provide

examples.
A: (a) Take the train to Dansville
Hold(a) B7: through Avon? (i.e, How shall we take the train)
Hold(a) Bg: to get the oranges? (i.e., Why are we taking the train)
Hold(a) Bg: Should it leave immediately? (i.e., When should we take the train)

Note. We expect that SNU’s of the What did you mean? type will often be marked as ClarificationRequest
as well.

Discussion.? The reader may be puzzled by the fact that SNU is used also when an utterance has been
heard, but the hearer has not recovered its meaning. The problem is “where to draw the line” in order to
say that the hearer has “recovered” the explicit semantic content of the antecedent. Possible criteria are:

1. Has the hearer fully identified the speaker’s intention in uttering the antecedent?

2. Has the hearer correctly identified the senses of the lexical items and the roles that constituents play

in the semantic structure? Under this proposal, recovering the semantic content implies that no lexical
or syntactic ambiguities remain, but does not imply that the hearer was able to resolve referents.

Using this criterion, B1—B, would be marked as signal non-understanding, whereas B;-By im-
plicitly qualify as signal understanding. However, B; and Bg do not provide any evidence of
non-understanding: the hearer has heard the correct words, but can’t perform reference resolution.
Thus, Bs and Bg are not SNU’s under this criterion.

The acceptance test: Could an indication of acceptance have been included in the response? For
example:

S1: (a) Take some oranges to Dansville.
S2: (b) OK I will. Should it leave immediately?

sounds fine, whereas

S1: (a) Take some oranges to Dansville.
S2: (b) OK I will. Dansville New York?

sounds odd.

Using this criterion, B;—Bg above are all marked as signal non-understanding, whereas B;-By still
qualify as signal understanding.

Criterion 3 is adopted because Criterion 1 requires too much subjective reasoning about intentions and the
recognition of intentions and Criterion 2 is difficult to explain without resorting to terms like “reference
resolution” and “cospecification”. Criterion 3 seems to have a simple test, and thus, it makes it easy to write
clear instructions that enable coders, who are not necessarily trained in linguistics, to reliably code the data.

9The following discussion is taken from Johanna Moore’s report from the Dagstuhl meeting.

35

7.3.2 Signal-Understanding

Utterances that explicitly signal understanding are marked with a Signal-understanding tag. Note that
any utterance that doesn’t explicitly indicate non-understanding implicitly indicates understanding. It is
not necessary to mark such cases. Rather, there are some specific mechanisms used to explicitly signal
understanding that we are interested in. In many cases, such utterances may also count as Accept acts at
the Agreement level. However, the examples below are Signal-understanding utterances (acknowledgments)
that are not acceptances.

Acknowledgments are utterances consisting of short phrases such as “okay”, “yes”, and “uh-huh”, that
signal that the previous utterance was understood without necessarily signaling acceptance, as in b:

S1: (a) Take the Avon train to Dansville
Ack(a) S2: (b) Okay
Hold(a) (c) But wouldn’t using the Bath train be faster?

Acknowledgments may also interrupt or overlap with the other speaker’s sentence. Given that in COCONUT
the interaction is written and turn taking is strictly enforced, these kinds of acknowledgements do not occur.

RepeatRephrase. The RepeatRephrase tag is used for utterances that repeat or paraphrase what was
just said in order to signal that the speaker has been understood. Like acknowledgments, a RepeatRephrase
does not necessarily make any further commitment as to whether the responder agrees with or believes the
antecedent. We do not expect RepeatRephrase to often occur in COCONUT.

S1: (a) do you need the bananas [in boxcars] (1) at Bath
RepeatRephrase (a) S2: [the bananas] (1)

CorrectMisspeaking. The CorrectMisspeaking tag is used for utterances that offer a correction and
indicate that the hearer believes that the speaker has not said what he or she actually intended. In the
example below, S1 misspeaks by saying “engine E” instead of “engine E one” and S2 offers a correction.

S1: (a) so we should move the engine at Avon engine E to
CorrMisspeak(a) S2: (b) engine E one
Accept(b) S1: (¢) E one to Bath

This category only applies to cases where another speaker makes a correction. If S had corrected himself
then no CorrectMisspeaking label would be applied to this section of the dialogue. There is currently
no dimension in this scheme for annotating such speech repairs. We don’t expect this tag to occur in the
COCONUT corpus.

CorrectAssumption. In the previous version of DAMSL, Correction was used to tag corrections of
either misspeaking or wrong assumptions. While DAMSL now only codes for corrections at the speaking
level, we provide a tag to code for corrections at the semantic level as well. CorrectAssumption should,
however, only be used when there is direct evidence for the wrong assumption. (i) below is marked as

36

CorrectAssumption. Note that (i) is a self-correction: we consider this acceptable for CorrectAssumption
(as opposed to CorrectMisspeaking, that does not allow for self-corrections).

S1: (a) I have a lamp floor (blue), a green table and 4 chairs for 100.
S2: (b) The lamp and table sound good,
(c) but the chairs seem expensive.
(d) I have 4 blue for 100
(e) they should look OK together
S1: (f) again that sounds good.
(g) So the chairs are 25 a piece?
S2: (h) I goofed
(i) the chairs are 100 each.

7.4 Answer

The Answer aspect is simply a binary dimension where utterances can be marked as complying with an
Info-Request action in the antecedent. A standard question answer pair is shown here:

Info-Request S1: (a) can I take oranges um on tankers from Corning
Assert, Answer(a) S2: (b) no you may not they must be in boxcars

Test. An Answer can occur only if its antecedent is an Info-Request.
Rule of thumb. An Info-Request and its Answer will generally share the same InformationLevel.

Most questions are answered with one or more declarative sentences although it is possible to answer a
question with an imperative as shown in the direction giving example below. The answer is an Open-Option
because it describes one option for S1’s future action, but there is no indication that S2 is trying to get S1
to do it.10

Info-Request S1: (a) How do I get to Corning?
Open-Option, Answer(a) S2: (b) Go via Bath.

Sometimes a speaker will answer an implicit or indirect question. The general rule of thumb is to con-
sider whether the implicit or indirect question was obvious enough to lead you to make the antecedent an
Info-Request. The example below is similar to the previous one except that SI has not asked a question
and we would not mark (a) as an Info-Request. Thus S2’s utterance is an Action-Directive, and is not
considered an Answer that gives information and makes a suggestion.

Assert S1: (a) I need to get the train to Corning.
Action-Directive S2: (b) Go via Bath.

Of course there are borderline cases where these distinctions are a matter of degree. For instance, if S7 says
“I don’t know how to get oranges to Corning”, in many contexts this strongly suggests an implicit question
and implies that a response like “You could get them from Bath” is an Answer. These difficult cases are left

10Qur analysis of this example is different from DAMSL’s. In DAMSL, this imperative answer is also marked as an Assert,
as it also provides information. However, syntactic imperatives do not pass out Statement test.

37

to the coder’s intuition, but the two utterances should be annotated consistently, so that if the second is an
Answer, the first is an Info-Request.

Consider an unambiguous case where (b) is not marked as Info-Request, and hence, c is not marked
as Answer. Here Sl is trying to avoid going to a meeting, but S2 does not cooperate.

S1: (a) I should be at the meeting.
(b) Luckily, I don’t know what time it is.
S2: (¢) It’s 3 o’clock.

Note that clarification requests and other utterances that refuse to answer an Info-Request are not
considered answers. For instance, in the following dialogue fragment S2 states that he doesn’t know the
answer (and hence can’t answer the question). Thus, (b) is treated as a Reject, just as in cases for non-
information requests as in the next dialogue fragment:

Info-Request S1: (a) How can I get oranges to Corning?
Assert, Reject(a) S2: (b) I don’t know.

Action-Directive S1: (a) Please open the door

Assert, Reject(a) S2: (b) I can’t, my arm is broken.

It is also often the case that a question is answered by more than one utterance. In these cases the coder
should try to determine whether one of the utterances functions as the direct response and the others as
elaborations. If this is the case, only the direct response should be tagged as an Answer. For example, in
the following, (b) is the Answer and (c) an elaboration.

Info-Request S1: (a) Do you have any high tables?
Answer (a) S2: (b) Yes I do,
ElaborateItem (c) A high table blue, green, red, at 400, 200, 400 respectively.

The same principle should also be applied for some other backward function, such as when Accept is expressed
my multiple utterances.

Rule-of-thumb. To test whether an utterance can function by itself as Answer (or as Accept), substitute
the elaboration with something that e.g. changes the item in focus, like

(c’) but let’s think about sofas for now
in the example just discussed. (b) still functions as an answer in this revised context, so only (b) in the
original example should be tagged as an answer.

Finally, it is possible that an Answer also functions as an Accept (or Reject). For example, in the

situation in which only $50 is left, (b) can be taken as an Accept:

Info-Request S1: (a) Do you have a rug or something blue?
Answer, Accept S2: (b) yes, I do have a blue rug for $50

38

Some of these ambiguities may be solved by looking at the graphics, see Sec 13. For example, if S2 updates
his own display after uttering (b) and the graphics indicates that the blue rug has become part of the
solution, we can safely conclude that (b) is both an Answer and an Accept. The fact that we use the tag
Accept even if the antecedent does not qualify as a potential action may be puzzling but it is possible that
the acceptance is for an inferred action. Note that (a) does not qualify as a potential action because the
existence presupposition is not satisfied, as discussed in Section 4.5.1.

7.5 Informational Relations

Informational relations are used mostly to capture information about budget and about specific furniture
items. We provide only the following three:

e Act:Condition. Act depends on a Condition, namely, Condition is a necessary condition (precondition)
for Act. The Condition may be either a state or another act. Condition may already hold, or (be
hypothesized to) hold in the future.

e Act:Consequence. Act can be expressed as an action or a state, i.e., it refers either to a previous
action that had an effect or to the effect directly. Consequence refers to necessary consequences.
Act:Consequence is used especially for budgetary consequences or for including / excluding certain
furniture items from the solution.

Note that to use this relation there must be an Act, even if expressed through its effects as a state.
(d) below should not be tagged as Act:Consequence, but as otherInfo, as there is no Act here, only
initial conditions:

S1: (a) I have got 550.
(b) How much have you got
S2: (c) I have 450
S1: (d) That gives us in total 1000

e otherInfo: catch all label for all the rest. It is used when the coder has a strong intuition that utterances
are related at the informational level, as in the preceding example, and neither Act:Condition nor
Act:Consequence apply.

Both Act:Condition and Act:Consequence point to another menu, that includes the two values LabelOrder
and ReverseOrder. These are used to mark whether the two related utterances appear in the order mentioned
in the label or not; i.e. LabelOrder is used when Act precedes Condition/Consequence, ReverseOrder is used
for the reverse order.

Convention. As mentioned, informational relations are used mostly to capture information about budget
and about specific furniture items; (d) below is tagged as < act:consequence LabelOrder (c) >

S1: (a) we spent: 300 (sofa), 250 (lamp), 200 (table), and 300 on chairs.
(b) I had 550.
(c) We overspent $50.
(d) We will have to forget about the lamp.

They should not be taken to have intentional content, i.e. they should not be used to capture relations
such as ’support’ or ’evidence’, which are not annotated for in Coconut. We are not trying to capture how

39

arguments are constructed. In the example above, the fact that (a) and (b) are support for (¢) is not going
to be annotated. The constraint that Condition must be a precondition to qualify as Act:Condition is meant
to help the coder exclude these other informational relations.

7.6 Coreference / Set Relations

We provide three tags that allow us to capture a limited notion of coreferentiality: sameltem, subset, and
MutEzclusive.

o sameltem. It is used when an utterance discusses the same item as its antecedent. We also use it
when the utterance discusses the same type of items as its antecedent, but no MutEzclusive relation
obtains. For example, (c) below is tagged <sameItem (b)> (here (b) is interpreted as referring to a
type rather than to the specific red chairs in (a), otherwise (c) couldn’t refer to (b)):

S1: (a) Ok, I have a red table and two chairs in DR.
S2: (b) Red chairs in dining room.
(c) Do you have two chairs red to go in dining room?

Thus, sameltem is not strictly a coreference relation. However, if an utterance has two possible
antecedents, one discussing the same item and the other the same type, it should be linked according
to strict coreferentiality. If the antecedent discusses more than one item, to be tagged as sameltem the
current utterance must discuss exactly the same items, otherwise the tag subset should be used — see
below.

Note. We allow a specific item to refer back to a type, but we don’t allow a type to refer back to a
specific item. We do allow sameltem to link two utterances that discuss the same type of item but
only when the type is exactly the same. For instance, an utterance discussing red chairs cannot be
linked to an utterance discussing cheap chairs.

Note. sameltem is different from elaborateltem, discussed above under the Topic menu. sameltem
does not mean that the utterance provides more information about a certain item, only that it is about
the same item as its antecedent. elaborateltem and sameltem will certainly co-occur, but this is not
necessary.

e subset. We use this label when the current utterance refers to a subset of the items discussed in its
antecedent. For example:

S1: (a) I have a red table for 200, a blue one for 300, and a yellow one for 400.
S2: (b) Let’s go with your red table.

(b) will be tagged as < subset (a)>.

Note: Accept-Part/Reject-Part and subset. Since we explicitly code for subset as part of our
coreferential relations, Accept-Part/Reject-Part usually co-occur with <subset>. For example,
(b) will be tagged as <Accept-Part (a)> and <subset (a)>, (c) as <Reject-Part (a)> and
<subset (a)>.

S1: (a) I have a lamp floor (blue), a green table and 4 chairs for 100.

S2: (b) The lamp and table sound good,
(c) but the chairs seem expensive.

40

There are few cases in which Accept-Part/Reject-Part occur, but subset doesn’t. This happens
when the accepted or rejected part of the proposal is not an item, but an item feature or a room, as
in the example below:

S1: (a) How about my red sofa for the living room for $4007
<Accept-Part (a)> S2: (b) A red sofa for the living room sounds good,
<Reject-Part (a)> (c) but I have a cheaper one for $300.

In (b), S2 accepts the color, type and room, but in (c) s/he rejects the specific item.

o Mut(ually)Ezclusive. Tt is not really a coreferential relation, rather, it is a set relation. MutFEzclusive is
the relation linking two propositions p; and ps, where p; mentions a set of items Sy, and ps provides an
alternative Sy to that same set of items. Note that MutEzclusive holds when §; and S are mutually
exclusive, not when there are several open options that are not mutually exclusive, and one is selected.
Examples:

1. (b) — spoken by a different speaker than (a) — is tagged <Reject (a)> and <MutExclusive
(2)>.

S1: (a) Let’s get a blue sofa
S2: (b) No, let’s get a yellow table.

Note that (b) in this (constructed) example constitutes an alternative only when the blue sofa
and the yellow table are mutually exclusive: this will happen when the budget is too tight to
allow the participants to satisfy all the priority item constraints (get a sofa for living room and a
table and four chairs for dining room).

2. (a) and (b) are spoken by the same speaker Sy, after Sy has mentioned 4 other chairs. (b) is
tagged as <Initiate > and <MutExclusive (a)>:

S1. (a) ... but the chairs seem expensive.
(b) I have 4 blue for 100.

3. (a) and (c) are spoken by different speakers. (c) is tagged as <Accept (a)> and <MutExclusive
(a)>:

S1: (a) I have a blue sofa for $300.
(b) What do you think?
S2: (c) Sure, I don’t have a sofa for a better price.

4. (a) and (b) are spoken by the same speaker. (b) is tagged as <Initiate > and <MutExclusive
(a)> — this example shows that the label MutExclusive can be used also when a certain item
has been already explicitly rejected, as the lamp is in (a):

S1: (a) We will have to forget about the lamp.
(b) Do you have a rug or something that is blue?

Note that MutFzclusive is purely a set relation, and does not constitute per se a counterproposal.
In fact, we want to explore whether MutEzclusive is one of the characterizing features of (certain)
counterproposals.

Note: Antecedents. Coreferential/set relations can apply to both explicit and elliptical referents. The two
excerpts below illustrate coreference where the linked referent is elliptical. The material in square brackets
indicates ellipsis.

41

S1: (a) Do you have any high tables?
sameItem(a) S2: (b) Yes, I do [have high tables].

S1: (c) I have 6 chairs for 150
(d) or 2 for 50.
sameItem(c), (d) (e) What do you think [of these]?

However, the elliptical argument must be specific in a prior utterance; the antecedent cannot be something
derived from the context. Also, be careful in distinguishing elliptical arguments from implicit ones, to which
coreference/set relations do not apply. In the following two excerpts, (b) exemplifies ellipsis with a specific
argument, and (b’) non ellipsis with an implicit argument:

S1: (a) Who ate the cake?
S2: (b) John did.

S1: (a’) Why is the table set?
S2: (b’) John ate.

Comparisons are elliptical.

Note: Multiple Labels. It is possible that a single utterance refers to several items, which are contained
in different utterances. If the potential multiple labels are all the same, then a single label with appropriate,
multiple Links will suffice. Instead, multiple coreference labels must be assigned if different labels, such as
sameltem and subset, apply. In the dialogue excerpt below, (e) is tagged <samelItem (d) > — linking to
(d), the most recent explicit reference to S2’s lamp — and <subset (a)> — linking to (a), the most recent
explicit reference to S1’s green chairs:

S1: (a) I have 1 blue floor lamp 50, 2 green and 2 red chairs both for 100 each,
also a red rug for 200.
S2: (b) i dont think i have anything that would match any of that in our budget.
(c) the only thing I have that could work is a floor lamp for 150.
(d) it is green.
(e) we could use it and one of your green chairs.

7.7 Link

The Answer tag and all the tags under the Agreement, Understanding, Informational and Coreference
menus point to the Link menu. The link between Informational and Link is via LabelOrder | ReverseOrder.

The Link menu is just a list of numbers (1 through 9), and it refers to the label for p;, where p; contains
the closest antecedent for p,. As mentioned above, only explicit and elliptical, not implicit, antecedents
count. The value for Link will often need to be edited.

Convention. p» may actually be linked to more than one p;; in this case, if it is clear what the multiple
links are, we edit the link value by adding all the utterances the one being tagged is linked to, starting with
the closest one.

Example:

S1: (a) i do have a lamp-floor, blue (250).

42

(b) i also have a green table (200).
(c) (d) (e)

S2: (£) (g) (W
(i) the lamp and table sound good

(i) is tagged as < sameItem (b), (a) >: (b) is the closest utterance where the table is mentioned, and
(a) is the closest utterance where the lamp is mentioned.

Convention. Even if the coder has recognized the existence of an informational or of a coreference relation
between the current utterance and the previous context, it is not always possible to mark Link explicitly:
this happens when the relation between the current utterance and the previous ones is too complex, e.g. if
the current utterance is a summary of many things previously discussed. No value for Link will be provided
then.

8 Segment Tag

The link menu just discussed captures links between a single utterance and one or more individual previous
utterance. Sometimes, though, a group of utterances functions as a whole, i.e., as a segment. While other
coding schemes, in particular RDA [Moser et al., 1996] and HATT [Nakatani et al., 1995] are based on
complex notions of segmentation, we use the segment tag in the same way as in DAMSL, to mark portions
of the dialogue motivated by one single Backward function. Thus, we only allow the Agreement tags and
the Answer tag to motivate a segment. As a consequence, either response or antecedent segments may arise.

N consecutive utterances within a single turn will form a Response segment only in the following two cases:

1. if the same type of Agreement tag or the Answer tag applies to each of the n utterances; or

2. if no single utterance performs the backward function of Agreement or Answer by itself. E.g., if the
answer to the question What tables do you have? indicates 1 item per utterance when there are multiple
tables, then no single utterance can count as the answer.

N consecutive utterances within a single turn will form an Antecedent segment, if the Backward function
associated with a subsequent utterance or segment requires those n contiguous utterances as antecedent.

Note. In our current scheme, no other functions or dependencies are grounds for segmentation. In particular,
neither two members of an informational pair, nor two utterances linked by syntactic dependence or by
coreference constitute a segment. For example, in the following excerpt (a) constitutes the Act and (b)
constitutes the Consequence of an Act:Consequence relation, and moreover, (b) is syntactically dependent
on (a): neither reason warrants tagging (a) and (b) together as a segment.

S1: (a) let’s do the yellow/blue mix,
(b) leaving us with 250.

Convention. When coding a response segment, only the backward functions should be coded at the segment
level, while all other tags will be at the utterance level. When coding an antecedent segment, no tag other
than Segment should apply to the whole segment. Also, when a segment is both an antecedent and a response

43

segment, it should be doubly coded with the Segment tag, and a comment should be added to make it clear
which tag refers to the segment as an antecedent, and which to the segment as a response.

Even if the backward function of a response segment is coded at the segment level, utterances internal
to the segment can still have further backward functions. For example, in the following (c), (d) and (e)
constitute a response to (b) and thus share a single Answer tag. However, (d) is also an Answer to (a),
and therefore it is individually linked to (a).

S1: (a) I forget what you had.
(b) what do we have left if anything?

S2: <Segment_1><Backward_1="Answer (b)">
(c) we spent: 300 (sofa), 250 (lamp), 200 (table), and 300 on chairs.
(d) <Backward_2="Answer (a)">
I had 550. </Backward_2>
(e) We over spent $50.
</Segment_1></Backward_1>

Convention. It is not necessary to tag utterances internal to a response segment as Initiate, when they
only carry the segment Backward function.

Convention. When we link an utterance (or segment) back to an Antecedent segment, we need to indicate
that Link points to a segment. As there are no absolute segment labels, we’ll use the segment position,
relative to its response. To do so, we edit the Link values as follows: we add seg to the appropriate number,
as in <Backward 2="Answer 1seg">. The back pointer skips over single utterances and counts segments
only: namely, 1seg refers to the first preceding segment, independently of any intervening utterances between
the current utterance and the segment.

9 Fragment

Fragment is a top level tag which is used for untensed clauses. If the utterance is a cue word such ok or well,
it is marked only as a Fragment and no other Surface-Features are specified. In the other cases, a Fragment
is coded for all the surface features that apply. For example, in the following the fact that (c) is a question
should be captured by tagging it as question WH even though it is a Fragment:

S1: (a) I have two [chairs] also
(b) mine are green and red
(c) which?

Similarly, an utterance such as How about my red chairs? should be annotated as a howAbout at the modal
dimension and as a questionY/N at the mood dimension even though it has no other Surface-Features.

Given that some of our Surface-Features menus are embedded, if the coder needs to code for an embedded
feature, s/he should go through the appropriate no-X or other-X values at the higher level, but should stop
as soon as no other embedded features are applicable.

As regards tags other than Surface-Features, there are no clear guidelines, but the coder should code
only for those tags that don’t result in a nil or catch-all label. So for example a particle such as OK in the

44

appropriate context is tagged as Accept at the Backward level, and as Task at the Information-level;
however, it should not be tagged at the other levels, as the corresponding tags are nil or catch-all.

10 Summary

A summary of the items purchased often occurs at the end of a dialogue. These are annotated with the label
Summary and marked as a segment if they are longer than one utterance. No further coding is performed
on summaries.

11 Comment

This tag is used to record notes, doubts etc. In fact, whenever the coder is not sure about a particular coding
decision, s/he should make a comment about it, i.e. a note about the ambiguity or the alternatives that one
cannot decide between.

12 Non-Relevant

If the utterance is not relevant to the coding purposes, it is tagged as such, and no further tagging is
performed on it. For example, in the Coconut domain, all comments of a social nature (e.g. let’s have some
fun, My Mom hit the lottery, Which year are you?) are marked as NonRelevant, and no further tagging is
performed on them.

Note. In the current version of DAMSL, the tag NonRelevant has been discarded. It used to be included
under Communicative-Status (DAMSL sec. 2.4), together with tags such as Uninterpretable, Self-Talk,
etc. We don’t include the aspect Communicative-Status in this manual, as tags such as Uninterpretable
or Self-Talk don’t occur in our corpus.

13 Miscellaneous Conventions

¢ Missing values. At any level, if the coder wants to code for a certain feature X and has a specific
value Y in mind, but there is neither a tag that applies, nor a “catch-all” tag of the type otherValue
is provided, the coder must leave the feature empty, and possibly add a comment. This will mainly
happen with the Topic tags. For example, none of our listed topics applies to the following utterance,
s0 it is coded as follows:

<Topic_17><Comment_1 Topic=Room>
(a) so let’s begin in the dining room.
</Topic_17></Comment_1>

Note that the previous coding does not mean that (a) has no topic, but that it has a Topic whose value

is left undefined. Utterances with no Topic, such as fragments like OK, will not have Topic among
their tags at all.

45

e Using the graphics. The coder can use the graphics if it helps disambiguate; eg. for coreference, for
understanding speaker’s intentions and effects on conversation, etc. In general, not too much should
be expected from the graphics, as subjects were not too consistent in using it.

14 File format

We preprocess the files to be tagged by defining the minimal units for tagging; each will correspond to a
single line. We follow Passonneau’s approach [Passonneau, 1994] in segmenting the dialogue into functionally
independent clauses. Passonneau’s criteria to identify a functionally independent clause are:

e it must contribute a proposition to the discourse that is semantically complete and fully specified, and
if it is a full syntactic clause it must be syntactically independent and maximal

e it must not be a formulaic clause serving the function of an interjection

As a consequence, functionally independent clauses include, besides main tensed clauses, coordinate clauses,
subordinate adjuncts, non restrictive relative clauses, clauses containing verb phrase ellipsis and response
fragments.

We differ from Passonneau in considering backchannels, some gerundives and some interjections as sep-
arate units, as well.

Conventions

1. Cue words, such as ‘yes’, ‘no’ and ‘alright’. When ‘yes’ or ‘no’ are part of a response, as in ‘Yes, I have
a blue rug’, they are are not treated as independent utterances. Cues such as ‘OK’ and ‘alright’ can
similarly share a backward tag with the following utterance. But this is a matter of analysis. Therefore,
in preprocessing the files, we treat ‘OK’ and‘alright’ as separate units. If the coder considers them part
of a larger response, s/he should make a segment of the cue and the rest of the response. An example
in which ‘OK’ is part of a response:

S1: (a) I guess you can buy the yellow rug for $150.

S2: <Segment_1><Backward_1=Accept>
(b) OK,
(c) I’11 buy the rug for $150. <Coref=sameIltem (a)">
</Segment_1></Backward_1>

An example in which ‘OK’ is independent:
S1: (a) What do we have left if anything?
S2: (b) OK.
(c) We spent: 300 (sofa), 250 (lamp), 200 (table), and 300 on chairs...
2. Gerunds. There appears to be two different kinds of gerunds: we call one type resultative, as it

describes the effect of a possibly complex action, and the other depictive, as it denotes a state. The
excerpt below provides examples of both, resultative in (f), and depictive in (b) and (d):

46

S1: (a) That means we just bought two chairs
(b) that are yellow costing 75 a piece
(c) and two chairs
(d) that are green costing 100 a piece
(e) for a total of 675,
(f) leaving us with 275

The excerpt also shows the consequences of this distinction for segmentation: only resultative gerunds
are considered as independent utterances.

While the distinction is not totally clear cut, we think it may be related to the distinction proposed in
[Stump, 1985] between weak and strong free adjuncts.

(a) Having unusually long arms, John can touch the ceiling.
(b) Standing on the chair, John can touch the ceiling.

(a) Being a businessman, Bill smokes cigars.
(b) Lying on the beach, Bill smokes cigars.

Stump calls the adjuncts in both (a) sentences strong, because their actual truth is uniformly entailed.
and those in the (b) sentences weak, because their actual truth can fail to be entailed. Our examples
may correlate with Stump’s weak / strong distinction: costing 100 a piece would be ‘strong’, as it is
an unchangeable property in the context of the game, whereas leaving us with 100 would be ‘weak’, as
its truth depends on the chosen solution.

3. List of NPs. When a list of items is given via coordinated NPs — e.g. I have a green table, two sofas,
one blue and one yellow, and lots of chairs — individual NPs are not considered as separate utterances.

Acknowledgements

This work is supported by the National Science Foundation under Grant No. IRI-9314961, “Integrated
techniques for natural language generation and interpretation.”

We also acknowledge all the researchers who actively participate in DRI, and whose efforts have shaped the
DAMSL manual. Among them, a special thanks to Johanna D. Moore for feedback on this manual, to David
Traum for many discussions, electronic and otherwise, and to Mark Core and James Allen for assembling
the DAMSL manual, and making it available to us.

References

[Allen and Core, 1997] James Allen and Mark Core. Draft of DAMSL: Dialog act markup in several
layers. Available from http://www.georgetown.edu/luperfoy /Discourse-Treebank /dri-home.html, under
Tools and resources, 1997.

[Flammia, 1995] Giovanni Flammia. N.b.: A graphical user interface for annotating spoken dialogue. In
AAAI Spring Symposium on Empirical Methods in Discourse Interpretation and Generation, pages 40-46,
Stanford, CA, 1995.

47

[Moser et al., 1996] Megan Moser, Johanna D. Moore, and Erin Glendening. Instructions for Coding Ex-
planations: Identifying Segments, Relations and Minimal Units. Technical Report 96-17, University of
Pittsburgh, Department of Computer Science, 1996.

[Nakatani et al., 1995] Christine H. Nakatani, Barbara J. Grosz, David D. Hahn, and Julia Hirschberg.
Instructions for annotating discourses. Technical Report TR-25-95, Harvard University Center for Research
in Computing Technology, 1995.

[Passonneau, 1994] Rebecca J. Passonneau. Protocol for coding discourse referential noun phrases and their
antecedents. Technical report, Columbia University, 1994.

[Stump, 1985] Gregory Stump. The semantic variability of absolute constructions. D. Reidel Publishing
Company, 1985.

[Walker, 1993] Marilyn A. Walker. Informational Redundancy and Resource Bounds in Dialogue. PhD thesis,
University of Pennsylvania, December 1993.

[Whittaker et al., 1993] Steve Whittaker, Erik Geelhoed, and Elizabeth Robinson. Shared workspaces: How
do they work and when are they useful? IJMMS, 39:813-842, 1993.

48

