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Abstract

Existing reverse-engineering tools use algorithms
based on vague and verbose definitions of UML con-
stituents to recover class diagrams from source code.
Thus, reverse-engineered class diagrams are neither ab-
stract nor precise representations of source code and
are of little interest for software engineers. We pro-
pose an exhaustive study of class diagram constituents
with respect to their recovery from C++, Java, and
Smalltalk source code. We exemplify our study with a
tool suite, Ptidej, to reverse-engineer Java programs
as UML class diagrams abstractly and precisely. The
tool suite produces class diagrams that help software
engineers in better understanding programs.

1 Problem

UML class diagrams describe the static structure of
programs at a higher level of abstraction than source
code. Class diagrams are an invaluable help for soft-
ware engineers—both developers and maintainers—to
understand programs architectures, behaviours, design
choices, and implementations.

However, class diagrams produced during the design
phase are often forgotten during the implementation
phase, under time pressure usually. They present ma-
jor discrepancies with implementation frequently. Such
divergent class diagrams are of little help to maintain-
ers who must support programs after their release.

Thus, maintainers need means to recover class di-
agrams from program implementation. These means
must be automated considering the large size of pro-
grams. These means must produce recovered class di-
agrams with characteristics useful to maintainers.

There exist several characteristics to compare
reverse-engineering tools and to assess recovered class

diagrams. However, we advocate that only abstract-
ness and preciseness of class diagrams matter to main-
tainers. We show with a simple example that no ex-
isting mainstream reverse-engineering tool produce ab-
stract yet precise class diagrams because of the ambigu-
ous definitions of UML class diagrams constituents1

[7, 9, 23] and because of the lack of correspondence be-
tween source code constructs and constituents. Hence,
reverse engineering is a challenge to software engineers
and tool builders. This challenge can be met with a
detailed and systematic study of class diagram con-
stituents and source code constructs only.

The contribution of this paper is two-fold. First,
we propose an exhaustive study of UML class diagram
constituents to assess their abstract and precise auto-
mated recovery from C++, Java, and Smalltalk source
code constructs. Second, we exemplify the correspon-
dence with Java source code using our tool suite for
abstract and precise reverse-engineering, Ptidej. We
compare the results of our tool suite with these of other
reverse-engineering tools and show that they provide
useful detailed pieces of information to maintainers.
This paper is also a step towards unambiguous defini-
tions of UML class diagram constituents through their
correspondence with source code.

Section 2 exemplifies the problem of abstractness
and preciseness of UML class diagrams and defines
our characteristics. It shows that existing reverse-
engineering tools recover neither abstract nor precise
class diagrams. Section 3 details our systematic study
of the abstract and precise recovery of UML class dia-
grams. Section 4 presents our tool suite and a compar-
ison with other existing tools. Section 5 summarises
related work. Finally, Section 6 concludes and intro-
duces future work.

1UML does not claim to be unambiguous. Loose definitions
ease analysis and design but impede automated tools.

This paper has been accepted at APSEC 2004.



2 Abstractness and Preciseness

2.1 Case Study

Source code 1 describes a Java program composed of
a class Example1 that aggregates instances of a class A,
i.e., Example1 declares an array of type A as instance
variable. The class diagram recovered from this source
code must precisely reflect the two classes, their meth-
ods, and the aggregation relationship between them—
these are pieces of information maintainers would re-
cover manually, while abstracting the implementation
details of the aggregation relationship, to grasp quickly
the architecture and the behaviour of the program.
Thus, a class diagram that precisely abstracts Source
code 1 must look like this in Figure 1.

The class diagram in Figure 1 shows the two classes
Example1 and A. It shows their sets of methods as well
as the aggregation relationship between instances of
Example1 and A. Although the addA(), getA(), and
removeA() methods participate in the aggregation re-
lationship, we believe that they must appear in the
class diagram because they would appear in a sequence
diagram of the program and in the bodies of methods
using instances of class Example1.

We could implement the same program using the
Java collection API also, for example as in Source
code 2, using the List interface and its ArrayList im-
plementation. The corresponding class diagram would
not change because it abstracts the program implemen-
tation precisely. Thus, the class diagram in Figure 1
is useful to maintainer because it represents the Java
program implemented by either Source code 1 or 2 ab-
stractly yet precisely.

2.2 Characteristics

Thus, class diagrams must possess the characteris-
tics of abstractness and preciseness with respect to a
program source code, as shown by the class diagram in
Figure 1 with respect to the Java program implemen-
tations in Source codes 1 and 2. The Random House
dictionary of the English language (1st edition) defines:

• Abstract: Something that concentrates in itself
the essential qualities of anything more extensive
or more general, or of several things; essence.

• Precise: The extent to which a given measurement
agrees with a standard value.

These two characteristics are similar to the concepts
of semantic distance (abstractness) and sematic accu-
racy (preciseness) proposed by Gannod and Cheng [12].
We use nominal data (two-values scales) to measure

public class A { . . . }

public class Example1 {
private A[ ] listOfAs = new A[10];
private int numberOfAs = 0;

public void addA(final A a) {
this.listOfAs[numberOfAs++] = a;

}
public A getA(final int index) {

return this.listOfAs[index];
}
public void removeA(final A a) {

// . . .
}
public static void main(final String[ ] args) {

final Example1 example1 = new Example1();
example1.addA(new A());
// . . .

}
}

Source code 1. A simple case study.

public class Example2 {
private List listOfAs = new ArrayList();

public void addA(final A a) {
this.listOfAs.add(a);

}
public A getA(final int index) {

return (A) this.listOfAs.remove(index);
}
public void removeA(final A a) {

this.listOfAs.remove(a);
}
public static void main(final String[ ] args) {

final Example2 example2 = new Example2();
example2.addA(new A());
// . . .

}
}

Source code 2. Alternative implementation.

the extent to which class diagram possess these char-
acteristics: A class diagram is either abstract or not
abstract, either precise or not precise. By extension,
recovery process of a constituent is abstract (respec-
tively precise) if and only if the recovered constituent
is an abstract (respectively precise) representation of
a(some) source code construct(s), else its recovery is
not abstract (respectively not precise).

2.3 Reverse-engineering tools

Existing reverse-engineering tools do not recover
class diagrams from source code abstractly and pre-
cisely. For example, Rational develops a tool, Rose, to
uphold round-trip engineering between UML diagrams
and program implementation. Figure 2 shows the class
diagram recovered from Source code 1 using Rose ver-
sion 2002.05.20. This class diagram is precise but is not
abstract. It is precise because it reflects the program
implementation: Classes A and Example1, their meth-
ods, and the relationship between classes Example1 and
A, supported by the listOfAs array. The class diagram



is not abstract because the relationship is described
as an association (through an array), whereas a main-
tainer would have described it as an aggregation (not
detailing its implementation), given the array and the
addA(), getA(), and removeA() methods.

Figure 3 shows the class diagrams recovered with
Rose from the alternative implementation in Source
code 2. The class diagram is neither abstract nor
precise. It shows the two classes and their methods.
However, the aggregation relationship between the two
classes is recovered as an association relationship with
the List interface, support of the aggregation relation-
ship: As shown in Source code 1, the aggregation rela-
tionship could be implemented with an array equally.
(In fact, the aggregation relationship could be imple-
mented with any kind of collection.) Thus, the class
diagram is not abstract because it does not hide imple-
mentation details of the aggregation relationship, it is
not precise because it does not reflect what maintainers
would have produced manually.

Other tools, such as ArgoUML version 0.14.1,
Chava [19], Fujaba version 4.0.1 [21], IDEA [3], Bor-
land Together/J version 6.2, and Womble [16] re-
cover neither abstract nor precise class diagrams from
Source codes 1 and 2: Some might be used with fair
success as modelling tools, but they all have limited
recovery capabilities, as we show in Section 4.

3 Class Diagram Constituents

Limitations of existing reverse engineering tools
come from the lack of systematic study of UML class
diagram constituents. Indeed, the abstractness and
preciseness of automatically recovered class diagrams
depends on the possibility to recover abstractly yet pre-
cisely their constituents from source code entirely.

We review all the constituents of UML class di-
agrams, as defined in the UML v1.5 specifications,
Chapter 3, Part 5 “Static Structure Diagrams”, sec-
tions 3.21 through 3.53 [22] (Part 5 in the follow-
ing), i.e., classifiers features, classifiers, classifiers re-
lationships, and miscellaneous constituents. We sug-
gest reverse engineering techniques to recover these
constituents from source code written in C++, Java,
and Smalltalk. We choose C++, Java, and Smalltalk
because these are mainstreams programming languages
which exhibit interesting non-overlapping features with
respect to reverse engineering.

3.1 Classifiers Features

Attributes, methods, and operations define both
the behaviours of classifiers and their implementation.

Figure 1. Class diagram recovered manually.

Figure 2. Class diagram recovered from
Source code 1 using Rational Rose.

Figure 3. Class diagram recovered from
Source code 2 using Rational Rose.

Thus, presence of attributes, methods, and operations
in source code guides the recovery of classes, types, and
interfaces (details follow in Section 3.2). Attributes are
named slots that describe ranges of values. Operations
are services that instances of classifiers offer. They
may be implemented using several methods. Opera-
tions specify behaviours of classifiers whereas methods
implement these behaviours. Although methods are
not defined in Part 5, we believe important to distin-
guish methods and operations.
Attribute. It is possible to recover the attributes of a
classifier precisely and abstractly using static analyses
because attributes are source code constructs.
Method and Operation. Operations do not ex-
ist as such in source code written in C++, Java, or
Smalltalk, which define methods only. However, it is
possible to distinguish operations from methods be-
cause methods concretely realise operations. Thus, we
propose four overlapping rules to recover methods and
operations from source code:
• Any abstract public methods2 defined in a
2Abstract protected methods in C++ and Java define tem-

plate methods [11].



classifier describes operations of this classifier.
Thus, operations can be recovered syntacti-
cally: Virtual pure methods in C++, abstract
methods in Java, methods with body self
subclassResponsibility in Smalltalk, and the
methods implementing these operations.

• Public methods (as well as protected and private
methods in C++ and Java) can be recovered syn-
tactically as methods in class diagrams.

• Overloaded methods can be recovered as a sin-
gle operation because they offer a semantically-
equivalent service on instances of different clas-
sifiers, e.g., methods compareTo(Date) and
compareTo(Object) of class java.util.Date can
be recovered as operation compareTo(Object).

• Operations could be inferred using data provided
by methods comments or programs documentation
also. However, it is yet unclear how techniques
using comments and documentation could help in
reverse engineering programs automatically.

Thus, it is possible to recover methods and opera-
tions from source code abstractly and precisely using
static analyses of source code constructs and the pre-
ceding classification of operations and methods.

3.2 Classifiers

Classifiers are either classes, nested classes, inter-
faces, parameterised classes, bound elements, or data
types. Data types are not defined in Part 5 but are of-
ten referenced so it is important to detail their recovery.
Classes decompose through stereotypes in either Enu-
meration, ImplementationClass, Metaclass, Powertype,
Type, or Utility. The C++, Java, and Smalltalk pro-
gramming languages do not distinguish among all these
possible classifiers. Recovery of classifiers requires to
infer the roles of classes in source code as well as the
roles of structures in C++ and of interfaces in Java.

Table 1 summarises the definitions and possible fea-
tures of classes, implementation classes, interfaces and
types. Other kinds of classifiers are discussed in the
following. Table 1 shows that it is possible to distin-
guish classes, implementation classes, interfaces, and
types according to their definitions using the presence
of attributes, operations, methods, and relationships
to other classifiers or from other classifiers. Recovery
of these classifiers from source code can be based on
attributes, methods, and operations only, because re-
lationships do not further distinguish these classifiers.
Class. Classes can be recovered from source code
automatically. Indeed, classes exist as syntactical
constructs in class-based object-oriented programming

languages such as C++, Java, and Smalltalk. Any class
declaring attributes, operations, and methods can be
recovered as a class abstractly and precisely
Nested Class. Nested classes can be recovered from
source code written in C++ or in Java syntactically.
Smalltalk does not allow nested classes. In Java, nested
classes can be defined in methods bodies also. Such lo-
cal and anonymous classes should not appear on class
diagrams because they participate in the inner working
of methods only and UML does not define constituents
to describe classes in methods explicitly. Thus, recov-
ery is not abstract but precise.
Type and Implementation Class. Types and im-
plementation classes can be recovered from source code
syntactically. Classes in source code declaring at-
tributes and only concrete methods can be recovered
as implementation classes. Classes declaring attributes
and only operations can be recovered as types.
Interface. It is possible to recover interfaces in Java
source code syntactically. In source code written in
programming languages such as C++, abstract classes
defining only pure virtual methods can be recovered as
interfaces. In source code written in Smalltalk, inter-
faces do not exist because of dynamic typing. However,
a set of instances answering a same set of messages
could be considered as implementing a common inter-
face (if the set of messages changes dynamically, more
than one interface must be created). Thus, interfaces
can be recovered from C++ and Java source code ab-
stractly and precisely. In Smalltalk, interface recovery
requires dynamic analyses or type inference and is thus
abstract but not precise.
Parameterised Class. Parameterised classes exist
in source code written in C++ (and in Java v1.5, which
includes the Java Specification Request no14, intro-
ducing parameterised classes) syntactically. Thus, it
is straightforward to recover parameterised classes ab-
stractly and precisely. They do not exist in Smalltalk
and thus cannot be recovered abstractly nor precisely.
Bound Element. As for parameterised classes,
bound elements exist in C++ source code as well as
in Java v1.5 syntactically. Thus, it is possible to re-
cover bound elements from source code abstractly and
precisely. Bound elements do not exist in Smalltalk.
Metaclass. Metaclasses as such do not exist in C++
and Java. In these programming languages, it is not
possible to declare a metaclass explicitly. Smalltalk
provides classes that represents metaclasses and that
can be manipulated to modify the behaviours of
classes. Thus, it is possible to recover metaclasses from
Smalltalk source code abstractly and precisely.



Classifiers Roles Attributes Operations Methods
Relationships

to other from other
classifiers

Class
Define a set of objects with similar struc-
ture, behaviour, relationships

X X X X X
Implementation
class

Define the physical structure and meth-
ods of objects, as in C++. . .

X × X × ×

Interface
Define a limited part of the behaviour of
an actual class

× X × × X

Type
Define a domain of objects with opera-
tions, without implementation

X X × X X

Table 1. Features of classes, implementation classes, interfaces, and types. (X = Yes, × = No)

Powertype. A powertype is a type which instances
are subtypes of another type [20]. It is impossible to
encounter power types in source code written in C++,
Java, or Smalltalk, because instances of classes cannot
be classes. Thus, power types are a “conceptual, or
analysis, notion” [20, page 256] which cannot be recov-
ered from source code abstractly and precisely.
Data Type. Data types are either primitive types,
enumerations, or classes with pure functions only. It is
possible to recover primitive types from C++ and Java
source code automatically because these programming
languages possess primitive types. In Smalltalk, the
virtual machine handles the instantiation of a subset
of all classes, such as SmallInteger or Float, to man-
age “primitives” values, thus the recovery of primitive
types in Smalltalk is possible using this subset. Classes
with pure functions can be recovered from source code
only by analysing method bodies to ensure that pa-
rameters are not modified. However, such analyses
are time- and space-consuming and often undecidable.
Moreover, a class qualifies as a data type only if it in-
herits from other data types (or from Object in Java
and Smalltalk): Classes with pure functions but ex-
tending non-data types are not data types. Thus, re-
covery of data types is abstract yet not precise.
Enumeration. Enumerations are data types which
instances are sets of literals. Enumerations are source
code constructs in C++ and in Java v1.5, which in-
cludes the Java Specification Request no201. In Java,
interfaces declaring constant values only (public static
final fields) can be recovered as enumerations also. In
Smalltalk, variables shared by one or more objects and–
or one or more classes are grouped in pools. Pools
are used to share constant data. For example, the
TextConstants pool, shared by classes displaying and
editing texts, stores ASCII character codes. Thus, it
is possible to recover enumerations from source code
abstractly and precisely.
Utility Class. Utility classes are programming con-
venience constructs only. They declare shared global
variables and procedures. We propose to recover util-
ity classes from classes declaring only static methods
(and–or attributes) to distinguish utility classes from

classes and implementation classes. Thus, it is possible
to recover utility classes abstractly and precisely.

3.3 Classifiers Relationships

UML defines several relationships among classifiers:
Generalisations, associations, aggregations, composi-
tions, links, and dependencies. These relationships
express high-level design concepts and allow software
engineers to design and to understand programs at a
higher-level of abstraction than source code. Recov-
ery of relationships is important because these rela-
tionships differentiate source code and design. We dis-
cuss the recovery of binary association, aggregation,
and composition relationships briefly, because these re-
lationships present interesting difficulties. We discuss
other kinds of relationships separately.

Several authors studied the definitions and–or the
recovery of binary association, aggregation, and com-
position relationships, see [6, 8, 14, 15, 16, 17] to cite
but a few. Difficulties in the recovery of these relation-
ships come (1) from the lack of definitions of the rela-
tionships at implementation- and design-level and (2)
from the lack of precise algorithms to recover these rela-
tionships in source code [13]. In particular, we disagree
with the assertion by Booch et al. that “Simple aggre-
gation is entirely conceptual and does nothing more
that distinguish a ‘whole’ from a ‘part’.” [5, page 146].
Thus, we propose in another work [13] consensual defi-
nitions for these relationships using four programming
language-independent properties: Exclusivity, invoca-
tion site, multiplicity, and lifetime. We show that the
three relationships can be distinguished from one an-
other using their properties and that their recovery de-
composes in two steps: Recovery of binary association
and aggregation relationships; Conversion of appropri-
ate aggregation in composition relationships.
Association. Association is a generic term denoting
binary association relationships, aggregation and com-
position relationships, and n-ary association relation-
ships. Binary association is used to denote the partic-
ular association relationship. Recovery of associations
depends on the recovery of the different forms entirely.



Binary association. Binary association relation-
ships can be recovered by analysing the source code
syntactically: A binary association relationship exists
whenever a method invocation exists between a class
A and a class B (or their instances), because the dis-
tinguishing property of an association relationship is
the presence of a method invocation [13]. Recovery of
binary associations is abstract and precise.
Association End. Association ends describe the vi-
sual display of associations. They show multiplicities,
aggregation and composition adornments. The recov-
ery of association ends depends on the recovery of the
different possible adornments only [17].
Multiplicity. Multiplicities specify the number of in-
stances of two classifiers involved in an association.
Recovery of multiplicities can be performed both in
a static [13, 16] and in a dynamic way [17]. Statically,
multiplicities can be recovered by analysing the source
code of classifiers declaring fields. If the field is nei-
ther an array nor a collection, then multiplicity is [0, 1].
If the field is an array or a collection, then multiplic-
ity is [0, +∞]. More extensive analyses of source code
can narrow multiplicities, for example to infer instance
creations. However, such analyses are generally unde-
cidable. Dynamically, multiplicities can be recovered
by counting numbers of instances created [17]. How-
ever, dynamic analyses possess well-known limitations
and thus should be used in addition to static analysis.
Recovery of multiplicities is abstract but not precise.
Qualifier. Qualifiers are attributes (or set of at-
tributes) used to identify instances of a classifier at the
target-end of an association uniquely. Thus, it is pos-
sible to recover qualifiers for associations when these
associations are implemented using arrays or collec-
tions. Qualifier for an association implemented with
an array (or a collection) is an integer value, which
distinguishes instances of the association target classi-
fier uniquely. Qualifier for an association implemented
with a map3 reflects the type of the keys used to store
and to retrieve instances uniquely. Recovery of qual-
ifiers for maps requires to analyse the use of methods
handling contents of maps in source code. Thus, qual-
ifier recovery is abstract but not precise.
Association Class. Association classes are associa-
tions with class properties (attributes, methods, oper-
ations). The C++, Java, and Smalltalk programming
languages do not offer support for association classes.
An association class could be recovered by identifying
a class B which stands in between two classifiers A and
C linked by two associations, between A and B and be-

3A map maps keys to values, as template class map in C++,
interface Map in Java, and class Dictionary in Smalltalk.

tween B and C. However, this recovery is not satisfying
as a great number of classes would then qualify to be
association classes. Thus, we do not believe possible to
recover association classes abstractly and precisely.
N-ary Association. N-ary associations are associ-
ations among three or more classifiers. We disagree
with Kollmann and Gogolla [17] that only classes at the
centre of webs of associations with multiplicities 1 at
the target ends are candidates to be n-ary associations.
The UML specifications do not constrain multiplicities
of classifiers participating in n-ary associations. Thus,
we believe difficult to recover n-ary associations from
source code abstractly and precisely.
Aggregation. Aggregation are not defined in Part 5
but are often referenced so it is important to detail
their recovery. Aggregation relationships can be recov-
ered from source code constructs using their properties
[13]. Static analyses of source code can compute values
of the invocation site and multiplicity (greater than 1)
properties for two given classifiers, from which data to
infer the presence of aggregation relationships. Recov-
ery of aggregation relationships is abstract and precise.
Composition. Composition relationships can be re-
covered from source code after aggregation relation-
ships have been recovered only [13]. Dynamic analyses
must be performed to compute the values of exclusivity
and lifetime properties of instances of classifiers linked
by aggregation relationships. Values of the exclusivity
and lifetime properties are used to promote aggregation
relationships to composition relationships as required.
Thus, composition recovery is abstract but not precise.
Generalisation. The generalisation relationship ex-
ist in most object-oriented programming languages as
syntactic constructs. However, each programming lan-
guage gives its own semantics to the generalisation
relationship, in particular with respect to static and
dynamic binding, co-variance, and contra-variance [4].
We advocate that recovered generalisation relation-
ships should be augmented with data (stereotypes or
notes) either on the input programming language or on
implementation choices. Thus, generalisation recovery
is not abstract but precise.
Dependency. Dependencies indicate semantic rela-
tionships between constituents of UML class diagrams.
Dependencies add semantics to class diagrams, which
does not reflect the structure and–or behaviour of the
program being modelled necessarily. Dependencies
cannot be recovered from source code only. We be-
lieve that there are no means to recover dependencies
generically, because recovery of dependencies depends
on the semantics given by developers.



3.4 Miscellaneous

Stereotype Declaration. Stereotypes are user-
defined constituents that extend the semantics of UML
class diagrams. Stereotypes cannot be recovered from
source code automatically because they depend on the
designers entirely. However, it is possible to recover
some stereotypes when they are well-defined and ap-
plied by designers and developers systematically. For
example, the authors of the JHotDraw framework
[10] documented the design patterns used in their
framework using well-defined JavaDoc constructs. This
information could be recovered using techniques close
to natural language processing and added to the class
diagram using stereotypes to show participation of
classes to design patterns. Thus, stereotype recovery
is abstract but not precise.
Class Pathname. Class pathnames reference classi-
fiers declared in different packages. They can be recov-
ered from source code syntactically. They correspond
to fully-qualified classifiers names in C++ and in Java.
In Smalltalk, there is no namespace per se, thus any
class possesses a unique name.
Accessing or Importing a Package. Packages are
syntactic constructs of source code written in Java. It
is possible to recover accesses and importations syn-
tactically. Packages do not exist as such in source code
written with C++ or Smalltalk. In C++, header files
using #define and #include directives could be re-
covered as packages. For example, in SGI STL library,
the #define STL H directive defines a package STL H,
the #include <algo.h> directive declares an access
to the SGI STL ALGO H package. Similarly, name-
spaces define packages (using the namespace and using
namespace directives). Recovery of access and package
import is abstract and precise. In Smalltalk, Applica-
tions group classes together but do not create name-
spaces. Cincom VisualWorks for Smalltalk version 5
includes namespaces but there are not part of the lan-
guage: Recovery is abstract but not precise.
Object. Objects are instances of classifiers. We are
interested in UML static class diagrams only, not in
UML object diagrams. We do not consider the recov-
ery of objects (their recovery depends on capacities of
static and dynamic analyses).
Composite Object. Composite objects are in-
stances of composite classes, i.e., classes with composi-
tion relationships to other classifiers. We are interested
in UML static class diagrams only, not in UML object
diagrams. We do not consider the recovery of compos-
ite objects (their recovery depends on the recovery of
composition relationships directly).

Link. Links are instances of associations. They de-
fine tuple of instances, whose classifiers are linked
through associations. We are interested in UML static
class diagrams only, not in UML object diagrams. We
do not consider the recovery of links (their recovery
depends on the recovery of association relationships).
Instance Of. Instantiation relationships exist be-
tween a metaclass and classes (classes are instance of
the metaclass) or between a class and objects (objects
are instance of the class). A UML static class dia-
gram shows metaclasses and classes, not objects, thus
only instantiation relationships among metaclasses and
classes should appear. However, metaclasses cannot be
recovered from C++ and Java, thus recovery is nei-
ther abstract nor precise. Instantiation relationship
recovery is possible for Smalltalk source code only, ab-
stractly and precisely.
Derived Element. Derived elements are con-
stituents computed from other constituents of UML
class diagrams. They help when designing a program
and add no semantics. Derived elements do not exist in
source code because they were either eliminated or con-
verted into source code constructs during implementa-
tion. There are no means to recover derived elements
from source code either abstractly and precisely.
List Compartment. List compartments describe
the visual organisation and display of data recovered
from source code. Thus, list compartments constraint
the layout of data recovered from source code. The re-
covery of list compartments from source code depend
on the recovery of their contents completely.
Name Compartment. Name compartments are
containers for data related to classes and interfaces
only: Names, stereotypes, tagged values. Thus, the
recovery of name compartments from source code de-
pend on the recovery of their contents entirely.

4 Implementation and Comparison

From the previous study of the recovery of UML
class diagrams constituents in C++, Java, and
Smalltalk source code, we implement Ptidej, a tool
suite for the abstract and precise recovery of class dia-
grams from Java source code. Figure 4 shows the UML
class diagrams recovered from Source codes 1 automat-
ically. The UML class diagram is abstract and precise
with respect to the Java program implementation. It
shows the two classes Example1 and A, their sets of
methods, and existing relationships:

• The aggregation relationship between Example1
and A: Arrow with white diamond head.



Constituents Abstract Precise Tools4 Constituents Abstract Precise Tools4

Attribute X X All Composition X × IDEA, Ptidej
Method X X All Association Class × × IDEA
Operation X X Ptidej N-ary Association × × IDEA
Class X X All Multiplicity X × IDEA, Ptidej
Nested Class × X IDEA, Ptidej Qualifier X × IDEA
Type X X Ptidej Generalisation × X All
Implementation Class X X Ptidej Dependency × × None
Interface X X (×Stk) All Link N/A N/A N/A
Parameterised Class X (×Stk) X (×Stk) None Object N/A N/A N/A
Bound Element X (×Stk) X (×Stk) None Composite Object N/A N/A N/A
Metaclass X × (XStk) None Derived Element × × None
Powertype × × None Instance Of XStk XStk None
Data type X (×Stk) X (×Stk) Ptidej Name Compartment N/A N/A N/A
Enumeration X X Ptidej List Compartment N/A N/A N/A
Utility Class X X Ptidej Class Pathname X X All
Binary Association X X IDEA, Ptidej,

Womble
Accessing or Import-
ing Package

X X Ptidej, Rose,
Together/J

Aggregation X X IDEA, Ptidej,
Womble

Stereotype
Declaration

X × None

Table 2. Summary of the recovery of UML class diagram constituents 4. (X = Yes, × = No)

• The binary association relationship resulting
from the instantiation of A in Example1:
“-*--> ptidej.example.apsec.A”.

• The binary association relationship resulting from
the use of A as parameter of methods of Example1:
“-u--> ptidej.example.apsec.A”.

• The aggregation relationship be-
tween Example1 and A textually:
“<>-->* ptidej.example.apsec.A”. (It em-
phasises that the aggregation relationship has
cardinality zero or more using the “*” symbol.)

• The binary association relationship resulting
from the instantiation of Example1 within itself:
“-*--> ptidej.example.apsec.Example1”.

• The binary association relationship result-
ing from the use of strings in Example1:
“-u--> java.lang.String”.

A similar class diagram is produced when reverse
engineering the alternate implementation of the Java
program implementation in Source code 2.

We applied our tool suite on many well-known pro-
grams. For the sake of brevity, we cannot detail here
the recovered class diagrams. However, we found that
our tool suite indeed produces class diagrams that are
useful to maintainers. For example, the class diagram
recovered from the JHotDraw framework contains
89% more pieces of information than the one from its
documentation, and 67% more than the class diagram
recovered using Rational Rose5.

Table 2 compares our tools suite with other exist-
ing reverse engineering tools. It summarises all the

4Subsection 2.3 details the set of tools, Stk means Smalltalk.
5We relate the numbers of constituents provided by the docu-

mentation and by Rational Rose with the number of constituents
recovered by our tool suite.

Recovered UML constituents (in %)
ArgoUML 21

Chava 21
Fujaba 21
IDEA 48
Ptidej 62
Rose 24

Together/J 24
Womble 28

Table 3. Percentage of recovered UML class
diagrams constituents per tool.

UML class diagrams constituents, indicates if their re-
covery is possible abstractly and precisely, and shows
which existing reverse-engineering tools recover these
constituents. Table 3 presents the percentage of recov-
ered UML constituents per tools and emphasises that:
• Existing revere-engineering tools recover a small

subset of all UML class diagram constituents only.
• Different programming languages require different

recovery techniques. Our study provides concrete
evidence to support this well-known point.

• UML provides a rich set of constituents to describe
the architecture, the design, and the implemen-
tation of programs. These constituents require a
greater attention regarding their definitions.

Also, Table 3 shows that it is possible to offer ab-
stract and precise recovery of UML class diagrams with
a thorough study of class diagrams constituents.

5 Related Work

Many studies exist that assess characteristics of
reverse-engineering tools and of tools by-products. Bel-
lay and Gall [2] proposed a comparison of four re-
verse engineering tools: Refine/C, Imagix 4D, Rigi,



Figure 4. Class diagram recovered from Source code 1 using Ptidej.

and Sniff+ to evaluate their applicability to embed-
ded software, their usability, and their extensibility.
They introduced four functional categories to assess
the tools: Parsing capabilities, by-products represen-
tation, editing and browsing capabilities, and general
capabilities. The authors performed a thorough as-
sessment of four tools with respect to their functional
capabilities. However, they did not focus on the tools
by-products particularly. Moreover, the tools assessed
do not attempt to produce UML class diagrams from
source code. Thus, we cannot use the criteria and re-
sults of this study for recovered UML class diagrams.

Gannod and Cheng [12] developed a framework to
classify and to compare reverse engineering techniques.
They classified tools according to the techniques used
to reverse engineer programs and according to four se-
mantic dimensions of the tools by-products. The four
semantic dimensions are: Semantic distance (levels of
abstraction between source code and by-products), se-
mantic accuracy (confidence that a by-product is cor-
rect with respect to source code), semantic precision
(degree of formality of by-products), and semantic
traceability (degree to which by-products can be used
to build a program). Then, the authors studied many
different reverse-engineering tools. However, none of
the assessed tools attempt to produce UML class dia-
grams from source code.

Storey, Fracchia, and Müller [24] studied cognitive
issues related to the design of software visualisation
tools. They proposed a taxonomy of fourteen cogni-
tive design elements that support the construction of a
mental model by maintainers to ease program under-

standing. Tool builders should integrate these cogni-
tive design elements when designing software visuali-
sation tools to overcome common deficiencies. Cogni-
tive design elements relate to program understanding
(bottom-up and top-down) and to maintainer’s cog-
nitive overhead (navigability). The authors provided
criteria to evaluate the ease of use of the by-products:
How to enhance understanding, how to ease naviga-
tion. Moreover, They did not assess characteristics nor
emphasise on reverse engineering tools producing UML
class diagrams.

Bassil and Keller [1] reported on a survey and on
an analysis of software visualisation tools. More than
one hundred participants filled a questionnaire includ-
ing twenty-one questions. The questionnaire aimed
at providing quantitative data on several characteris-
tics of software visualisation tools: Functional, prac-
tical, cognitive, and code analysis aspects. The ques-
tionnaire surveyed the usefulness of thirty-four func-
tional aspects and of thirteen practical aspects. Among
functional aspects were search capabilities, source code
visualisation, and hierarchical representations. This
study provided important quantitative data on many
aspects of software visualisation tools. This data
helped to assess the usefulness of functional and prac-
tical features of software visualisation and reverse engi-
neering tools. However, this survey focused on charac-
teristics of the software visualisations tools rather than
on characteristics of their by-products.

Kollmann et al. [18] recognised that the reverse
engineering capabilities of CASE tools are limited
because of the lack of one-to-one mapping between



class diagrams constituents and source code constructs.
They introduced a case study of four CASE tools (Ra-
tional Rose, Borland TogetherJ, IDEA, and Fu-
jaba) on a Java program and compared the tools using
properties of the recovered class diagrams and of the
reverse engineering algorithms: Number of classes and
of associations, handling of associations, of interfaces,
of collection classes, of multiplicities, of role names,
of inner classes, and of compartment details. They
compared tools by-products using a common research
platform automatically also. They concluded on the
capacities of current CASE tools to recover but the
simplest constituents of class diagrams. However, they
did not assess systematically the feasibility to recover
class diagrams from source code.

6 Conclusion and Future Work

We define two characteristics to qualify recovered
UML class diagrams: Abstractness and preciseness, in-
spired by the work of Gannod and Cheng. These two
characteristics are important to assess the usefulness
of recovered class diagrams for maintainers. We show
that existing mainstream reverse-engineering tools pro-
duce neither abstract nor precise class diagrams from
source code. We advocate that the limitations of tools
come from a lack of systematic study of the UML class
diagram constituents. We perform an exhaustive study
of these constituents with respect to their abstract and
precise recovery from C++, Java, and Smalltalk source
code constructs, which depends on programming lan-
guages and on the constituents. We implement algo-
rithms to recover class diagrams abstractly and pre-
cisely from Java source code in our tool suite, Ptidej.
We show the usefulness of the recovered class diagrams
using a case study. Future work includes refining the
characteristics of recovered class diagrams, studying
the new 2.0 version of the UML specifications, and
improving our algorithms. Also, we plan to study al-
ternative techniques (natural language processing) and
other programming languages, such as Eiffel.
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