
A Reverse Engineering Tool for Precise Class Diagrams

Yann-Gaël Guéhéneuc

Département d’informatique et de recherche opérationnelle
Université de Montréal – CP 6128 succ. Centre Ville

Montréal, Québec, H3C 3J7 – Canada
guehene@iro.umontreal.ca

Abstract

Developers use class diagrams to describe
the architecture of their programs intensively.
Class diagrams represent the structure and
global behaviour of programs. They show the
programs classes and interfaces and their rela-
tionships of inheritance, instantiation, use, as-
sociation, aggregation and composition. Class
diagrams could provide useful data during pro-
grams maintenance. However, they often are
obsolete and imprecise: They do not reflect
the real implementation and behaviour of pro-
grams. We propose a reverse-engineering tool
suite, Ptidej, to build precise class diagrams
from Java programs, with respect to their
implementation and behaviour. We describe
static and dynamic models of Java programs
and algorithms to analyse these models and
to build class diagrams. In particular, we de-
tail algorithms to infer use, association, ag-
gregation, and composition relationships, be-
cause these relationships do not have precise
definitions. We show that class diagrams ob-
tained semi-automatically are similar to those
obtained manually and more precise than those
provided usually.

Copyright c© 2004 Yann-Gaël Guéhéneuc. Permis-
sion to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

This work has been partly funded by IBM OTI
Labs – 2670 Queensview Drive – Ottawa, Ontario,
K2B 8K1 – Canada.

1 Introduction

Software developers use UML-like class dia-
grams to describe the architecture of object-
oriented programs intensively during develop-
ment. Class diagrams represent the structure
and global behaviour of programs [13], showing
classes, interfaces, and their relationships [16].
They help software developers by abstracting
implementation details and by presenting an
easier-to-grasp clustered view of the programs
lines of code [17].

Class diagrams would help software main-
tainers to understand programs architecture
and to locate places requiring modifications
during maintenance. However, they are of-
ten obsolete—unsynchronised with the con-
crete implementation of programs—when ex-
isting at all [6].

Software maintainers need tools to recover
class diagrams from programs source code and
binaries, which are the only sources of data
available usually during the maintenance pro-
cess and which can be used to build both static
and dynamic models of programs.

We present Ptidej (Pattern Trace Identifi-
cation, Detection, and Enhancement in Java),
a reverse engineering tool suite to build class
diagrams from static and dynamic models of
Java programs semi-automatically. This paper
summarises our previous work on program ar-
chitecture recovery started in 2000 at École des

This paper has been accepted at CASCON 2004.

Mines de Nantes and being pursued at Univer-
sity of Montréal. The main contribution of this
paper is an overview of our tool suite and a
complete example of static and dynamic analy-
ses, using the JHotDraw program, which ex-
emplifies the need for precise architecture re-
covery for maintainers.

By precise architecture recovery, we mean
that the recovered architecture reflects the im-
plementation of the analysed programs and
that it provides the same data as if recovered
by maintainers manually, in particular with re-
spect to usual UML constituents: Classes, in-
terfaces, inheritance, instantiation, use, asso-
ciation, aggregation, and composition relation-
ships.

In Section 2, we present related work briefly
and discuss their limitations. Then, we intro-
duce the Ptidej tool suite: Its models and
tools. We also sketch the use of the tool
suite. In Section 3, we detail the definitions
and algorithms to identify relationships among
classes, interfaces, and their instances, and dis-
cuss their precision and recall. In Section 4, we
apply our tool suite on the real-world JHot-
Draw program. We show that the class dia-
gram obtained semi-automatically is similar to
one obtained manually yet more precise than
this provided. Finally, in Section 5, we con-
clude and present future work on and with the
Ptidej tool suite.

2 Tool Suite

There exists several reverse engineering tools
to recover class diagrams from program im-
plementation. We present three typical tools
briefly, discuss their limitations, and sum-
marise the contributions of our tool suite.
Then, we detail our models and tools, and
present a short example.

2.1 Related Work

Chava. Korn et al. propose Chava [15], a
reverse engineering tool dedicated to Java ap-
plets. Chava creates a repository that contains
the structure of a program from the source
code or class files of the program. A reposi-
tory stores entities that represent classes, in-
terfaces, packages, files, methods, fields, and

referenced strings. Entities are linked with
subclass, implementation, declaration, field ac-
cess/modification, and method call relation-
ships. A repository contains a model of the
program, which reproduces exactly a program
static model and does not increase its preci-
sion with respect to other kinds of relation-
ships, such as use, association, aggregation, or
composition, or with dynamic data.

Womble. Jackson and Waingold propose
Womble [13], a tool for the lightweight ex-
traction of object models, which are similar to
class diagrams. The latest version of Womble
is able to analyse programs class files and to
identify inheritance, use, and association rela-
tionships. It proposes heuristics to infer multi-
plicities of the origin and target classes, which
distinguish association and aggregation. How-
ever, the authors do not attempt to identify
composition relationships to increase the level
of precision of the recovered object models.

CASE Tools. CASE tools, such as Ar-
goUML and Rational Rose, offer reverse en-
gineering capabilities, but their capabilities are
very limited. They only distinguish use, as-
sociation, aggregation, and composition rela-
tionships graphically. Indeed, they use iden-
tical algorithms to reverse engineer use, asso-
ciation, aggregation, and composition relation-
ships, which leads to inconsistency with pro-
grams implementations [10].

Discussion. Existing reverse engineering
tools are only capable of identifying structural
relationships, existing physically in the static
models of Java programs. They are incapable
of abstracting relationships, which must be
inferred both from static and dynamic models
of programs. In particular, they lack precise
definitions and algorithms to identify (or to
distinguish) use, association, aggregation, and
composition relationships.

The Ptidej tool suite is different from ex-
isting reverse engineering tools because it uses
both static and dynamic data to infer relation-
ships among classes and interfaces. It is able
to infer inheritance, instantiation, use, associ-
ation, aggregation, and composition relation-
ships among classes and interfaces to represent

2

precisely programs. Thus, it helps software
maintainers to grasp and to understand pro-
grams architecture.

The recovery of programs class diagrams de-
composes in two steps: First, class diagrams
are built from static data provided by Java pro-
grams class files; Second, class diagrams are re-
fined with dynamic data obtained by analysing
the runtime behaviour of the programs.

2.2 Models

We use three different models to represent and
to analyse static and dynamic data about Java
programs and to describe class diagrams.

Static Model. We use class files composing
Java programs as static models. Class files em-
body all the data provided by software devel-
opers about a program architecture and about
its runtime behaviour statically. They are eas-
ier to manipulate than source code, using spe-
cialised tools such as CFParse [8] and Javas-
sist [4], because of their structure and of the
processing performed at compilation-time, in
particular type binding. Also, class files are
always available, whereas source code is not.

Dynamic Model. We use traces as mod-
els of the runtime behaviour of Java pro-
grams. A trace is a history of execution
events: Field accesses/modifications; Class
loads/unloads; Method, constructor, and final-
izer entries/exits; Program end [11]. A pro-
gram has one and only one static model but
several (possibly an infinity of) dynamic mod-
els. Thus, dynamic models approximate pro-
grams behaviour only.

Class Diagram Model. We develop a meta-
model, PADL (Pattern and Abstract-level De-
scription Language) [2], to describe programs
as class diagrams. PADL offers constituents,
such as Model, Class, Method, Relationship,
with which we can build class diagrams repre-
senting programs. It offer also methods to ma-
nipulate class diagrams easily and to generate
other representations of class diagrams, using
the Visitor design pattern.

2.3 Tools

The Ptidej tool suite decomposes into three
tools1: To analyse static models; To generate
and to analyse dynamic models; To build class
diagrams from the analyses.

PADL ClassFile Creator. Different al-
gorithms to analyse static models can be con-
nected to the PADL meta-model, using the
Bridge design pattern, to create class dia-
grams from different sources of data. We of-
fer a default implementation of such a creator,
PADL ClassFile Creator, that analyses
static models of Java programs and create the
corresponding class diagrams by instantiating
the constituents of the meta-model.

For each constituent C of the PADL meta-
model, the PADL ClassFile Creator de-
clares a recognizeC() method used to identify
constructs corresponding to C in static models
of Java programs and to instantiate C with the
appropriate data from the constructs. Meth-
ods recognizeCPriority() order the identi-
fications of constituents. (Creators for AOL
files [3] and C++ files exist also.)

Caffeine. We develop a tool for the dy-
namic analysis of Java programs. Caf-
feine [11] is a 100%-pure Java program that
generates and analyses on the fly dynamic
models of Java programs. Analyses of dy-
namic models are performed with Prolog pred-
icates. We use Prolog because of its unification
and backtrack mechanisms and its high-level
pattern-matching capabilities.

A Prolog engine runs as a co-routine of the
Java program under analysis. It controls the
program execution with the nextEvent/3 pred-
icate. The nextEvent/3 predicate unifies a
Prolog variable with the last event generated
by the program, according to filters and to a
list of expected events. Then, dedicated predi-
cates may analyse the set of events.

We develop two Prolog predicates to
analyse dynamic models and to assess
the presence of composition relationships
among classes, interfaces, and their in-
stances: instanceLevelCompositions/1 and

1All tools are available at:
www.yann-gael.gueheneuc.net/Work/

3

classLevelCompositions/1. We use the
results of these analyses to refine class dia-
grams of Java programs with dynamic data on
relationships among its classes and interfaces.

Ptidej. The Ptidej tool is a front-end for
PADL, PADL ClassFile Creator, and
Caffeine. We implement this front-end both
as a stand-alone 100%-pure Java program and
as a plug-in for the Eclipse development en-
vironment for Java.

First, a maintainer selects a program static
model, for example Java class files. The front-
end calls the appropriate creator, for example
the PADL ClassFile Creator, to build the
corresponding class diagram, using the PADL
meta-model. Then, the maintainer refines the
class diagram by loading results from the dy-
namic analysis of the program with the Caf-
feine tool. Figure 1 summarises the data flow
among tools. Thus, a maintainer builds semi-
automatically (with user-interactions) a class
diagram representing the concrete implementa-
tion of a program. The front-end displays class
diagrams with a dedicated graphic library and
different layout algorithms, using the Strategy
design pattern.

Appropriate
static analyses

PADL ClassFile
Creator (CFParse)

Java class
files / Jar files

Class
diagram
model

Appropriate
dynamic analyses

Caffeine
(Prolog engine)

Merge of the
analyses results
and display of the

class diagram

Ptidej

Figure 1: Flow of the data among tools

2.4 Example

We exemplify the Ptidej tool suite with a sim-
ple document description program. We present
a complete example in Section 4. Figure 2(a)
shows the stand-alone Ptidej front-end. It
consists of two panels to display class diagrams
(left) and to control the tool (right). In ad-
dition to classes and interfaces, we can dis-
play the names and graphical representations
of the relationships among classes, interfaces,
and their instances (checkboxes on the right).

Figure 2(b) shows the class diagram dis-
played for the document description program,
with the classes and interfaces declared in the
selected class files (in black) and those that are
only known through references2 (in gray). We
only display graphical representations of inher-
itance, aggregation, and composition relation-
ships, and names of use, association, and in-
stantiation relationships. This class diagram
is built by the PADL ClassFile Creator
tool and laid out with a simple layout algo-
rithm, which minimises the crossing of inheri-
tance representations. It shows an aggregation
relationship (white triangle) between classes
Document and Element, which represent a doc-
ument and its structure respectively.

Figure 3(a) shows the Caffeine tool to
analyse the document description program dy-
namically. This tool runs as a co-routine of the
program and analyses generated events. Fig-
ure 3(b) shows the output generated by the tool
after analysing an execution of the document
description program. The output shows that a
composition relationship exists between classes
Document and Element, which is more pre-
cise than the aggregation relationship found by
static analysis. Figure 3(c) shows the class dia-
gram refined with the results from the dynamic
analysis: A composition relationship (black tri-
angle) replaces the aggregation relationship.

3 Relationships

We now detail the definitions and algorithms
that we use to identify the inheritance, instan-

2We call ghosts classes and interfaces known only by
references from analysed classes and interfaces: They
surround analysed classes and interfaces but we do not
know much about them.

4

(a) The Ptidej front-end.

(b) The Ptidej front-end showing the class diagram obtained from the PADL ClassFile Creator tool.

Figure 2: Use of the Ptidej tool suite on a document description program

5

(a) The Caffeine tool.

Caffeine initialized.
Caffeine started.
(Remote JVM)
(Remote JVM) . . .
(Remote JVM)
List of instance−level compositions:

composition(
jtu.example.composite2.Document, 1006,
jtu.example.composite2.Element, 1011,
true)

List of class−level compositions:
composition(

jtu.example.composite2.Document,
jtu.example.composite2.Element,

true)

(b) Data obtained from the Caffeine tool
when analysing the program dynamically.

(c) The Ptidej tool displaying the class diagram refined with dynamic data.

Figure 3: Use of the Ptidej tool suite on a document description program (cont’d)

6

tiation, use, association, aggregation, and com-
position relationships. The recovery of classes
and interfaces does not pose any problem be-
cause classes and interfaces exist in static mod-
els explicitly.

3.1 Inheritance, Instantiation

The inheritance and instantiation relationships
are direct to identify in programs static models
because they exist in source code or class files
physically.

Inheritance. In a static model of a program,
classes and interfaces declare the classes and
interfaces they implement or extend explicitly.
An algorithm to infer inheritance relationships
needs only to iterate over classes and interfaces
and to retrieve their subclasses/interfaces syn-
tactically.

Instantiation. Static initialisers, instance
initialisers (constructors), and methods may
contain objects instantiations. An algorithm
to infer instantiation relationships needs only
to iterate over the byte-codes of each initialis-
ers and methods, looking for New, NewArray,
ANewArray, MultiANewArray byte-codes.

3.2 Use, Association, Aggrega-
tion, Composition

The use, association, aggregation, and compo-
sition relationships are difficult to identify be-
cause they lack precise definitions. They do
not appear in programs static models explicitly
and they require the use of dynamic models.

From the literature, we propose consensual
definitions of these relationships [10], which de-
compose in four properties: Exclusivity, invo-
cation site, lifetime, and multiplicity. The four
properties are minimal and we use these to de-
velop algorithms to identify the relationships.

Definitions. Links among classes, interfaces,
and their instances exist at runtime to allow
method invocations and data access. These
links are described by different relationships
in class diagrams. Conceptually, as in the
UML, a relationship is non-oriented and may

exist among two or more classes (or inter-
faces). Practically, however, most authors
agree (see [10]) that use, association, aggrega-
tion, and composition relationships involve the
instances of two classes, an origin and a target,
respectively A and B, and that these relation-
ships are oriented, irreflexive, anti-symmetric
at instance and class level, and asymmetric at
instance level [12].

First, we propose that an association be-
tween A and B defines the ability of an instance
of A to send a message to an instance of B.
Nothing prevents other relationships to exist
between classes B and A.

Second, we say that an association between
A and B is an aggregation relationship if the
definition of A, the whole, contains instances of
B, the part. The whole must define a field (or
an array field, or field of type collection) of the
type of its part. Instances of the whole send
messages to the instances of the part. Sub-
classes inherit the aggregation relationship be-
tween A and B, because subclasses inherit the
structure and behaviour of their superclasses.

Third, we define a composition as an ag-
gregation with constraints on the lifetimes of
the whole and of the parts and on the own-
ership of the parts. An instance of the whole
owns the instances of its part. The instances of
the part are exclusive to the instance of their
whole. Parts can be exchanged during the life-
cycle of the whole, but all the parts owned
by a whole at the moment of its destruction
are also destroyed. A composition relationship
only allows an association relationship between
its part and whole, to ensure the exclusivity
and lifetime properties.

Finally, the use relationship is the default re-
lationship between two classes when these are
not linked through an association, an aggrega-
tion, or a composition relationship. For exam-
ple, a use relationship exists between two in-
terfaces IA and IB if interface IA defines meth-
ods which signatures use interface IB. The use
relationship is similar to the association rela-
tionships but only suggests that messages may
be sent. We do not further consider use re-
lationships in the rest of this section, because
their recovery is fairly easy from source code
(method parameters, return types. . .).

7

Table 1 summarises the possible links among
classes, interfaces, and their instances, and
their representations as relationships. For ex-
ample, Table 1 states (third row, on the right)
that an aggregation relationship exists between
two classes A and B if two instances of these
classes, respectively a and b, are linked to-
gether such as a sends messages to b and b is
a field of A (on the left).

Properties. The definitions of the relation-
ships use four language-independent proper-
ties. The association relationship allows mul-
tiple instances of A and B to take part in the
relationship, while the aggregation and compo-
sition relationships allow multiple instances of
B to be in a relationship with one instance of
A. With an aggregation relationship, instances
of A access instances of B through a particu-
lar invocation site: Field, array field, or field
of type collection. With a composition rela-
tionship, instances of B are exclusive to their
corresponding instance of A and instances of A
and B have related lifetimes.

The exclusivity property states whether an
instance of a class involved in a relationship
can be in another relationship at a given time.

EX(A, B) ∈ {true, false}

We name B the set {true, false}. The
value true states that an instance of B can
take part in another relationship with another
instance of A or of another class. The value
false indicates that it cannot. The exclusivity
property holds at a given time only. It does
not prevent possible exchanges.

The invocation site property indicates that
instances of A, involved in a relationship, send
messages to instances of B.

IS(A, B) ⊆ {field, array field,
collection, parameter, local variable}
The values of the IS property summarise

possible invocation sites for messages sent from
instances of A to instances of B. There can be
no message sent from A to B: IS(A, B) = Ø, or
messages can be sent from A through a {field}
of type B, an {array field}, a field of type
{collection}, a method {parameter}, or a

method {local variable}. We name yes
the set {field, array field, collection,
parameter, local variable}.

The lifetime property constrains the lifetime
of all the instances of B with respect to the life-
time of all the instances of A. It corresponds to
the time elapsed between the times of destruc-
tion LTd of two instances of A and B [5]. The
time is in any convenient unit, for example in
seconds or in CPU ticks.

In programming languages with garbage col-
lection, LTd matches the moment where an in-
stance is ready for garbage collection.

LT (A, B) = LTd(A)− LTd(B)
∈ {+,−}

We name ‖ the set {+,−}. LT (A, B) = +
if instances of B are destroyed before the
corresponding instances of A, LT (A, B) = − if
destroyed after, and LT (A, B) ∈ ‖ if their times
of destruction are unrelated (either + or −).

The multiplicity property describes the num-
ber of instances of B allowed in a relationship
with A.

MU(A, B) ⊂ N ∪ {+∞}
For the sake of simplicity, we use an interval

of the minimum and maximum numbers of in-
stances to represent the multiplicity. We con-
sider multiplicity at the target end of a rela-
tionship only. The interested reader may refer
to [13] for a discussion on multiplicities at both
ends of a relationship.

Formalisation. We now formalise the
definitions of the relationships with the four
properties to build identification algorithms.
We define an association relationship between
A and B, AS(A, B), as:

AS(A, B) =
(IS(A, B) ⊆ yes) ∧ (IS(B, A) = Ø) ∧
(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖) ∧

(MU(A, B) = [0, +∞]) ∧
(MU(B, A) = [0, +∞])

8

Link

Is
d
e
sc

ri
b
e
d

b
y

Relationship
Origin Means Target Origin Name Target

Class/Interface Any Class/Interface Class/Interface Use Class/Interface
Instance Direct Instance Class/Interface Association Class/Interface
Instance Field Instance Class Aggregation Class/Interface

Instance
Field +

Instance Class Composition Class/Interface
Lifetime property

Table 1: Definitions and applicability of the relationships

We define an aggregation relationship be-
tween A and B, AG(A, B), as:

AG(A, B) =
(IS(A, B) ⊆ {field, array

field,
collection}) ∧

(IS(B, A) = Ø) ∧
(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖) ∧

(MU(A, B) = [1,+∞]) ∧
(MU(B, A) = [0,+∞])

We define a composition relationship be-
tween A and B, CO(A, B), as:

CO(A, B) =
(IS(A, B) ⊆ {field, array

field,
collection}) ∧

(IS(B, A) = Ø) ∧
(EX(A, B) = true) ∧
(EX(B, A) = false) ∧

(LT (A, B) = +) ∧ (LT (B, A) = −) ∧
(MU(A, B) = [1, +∞]) ∧
(MU(B, A) = [1, 1])

We show in two steps that the four properties
are minimal with respect to our definitions and
to other properties of the association, aggrega-
tion, and composition relationships: First, we
show that the properties are minimal for our
definitions; Second, we show that the proper-
ties appear in all definitions of the relationships
in literature. For lack of space, we cannot de-
tail here these two steps. The interested reader
may refer to [10] for the demonstration.

Typically, in the first step, we remove a prop-
erty from the formalisation of a relationship
and we show that we cannot distinguish it from

another formalisation. For example, the exclu-
sivity property is the only mean to distinguish
an aggregation from a composition relationship
because values of the other properties of the ag-
gregation relationship satisfy the composition
relationship.

In the second step, we study the definitions
of the relationships from the literature and we
show that they are all expressed using, at least,
these four properties. For example, the defini-
tions of the aggregation and compositions rela-
tionships by Henderson-Sellers and Barbier [12,
table 4, page 356] use several characteristics,
among which: C1. Propagation of one or more
operations and C5. Propagation of destruction
operation related to the invocation site and life-
time properties; C2. Ownership related to the
exclusivity property; P1. Whole–part related
to the multiplicity property. Thus, algorithms
based on these four minimal properties identify
and only identify association, aggregation, and
composition relationships.

Algorithms. Identification of association re-
lationships requires collecting the value of the
IS property only, values of the other properties
being indifferent. Identification of aggregation
relationships requires inferring the values of the
IS and MU properties. Identification of the
composition relationships requires the values of
the IS and MU properties and the values of the
EX and LT properties. We compute values of
the invocation site, IS, and multiplicity, MU ,
properties on static models. We infer the val-
ues of the exclusivity, EX, and lifetime, LT ,
properties from dynamic models.

The computation of the static values (IS
and MU) of the three relationships is simple
to perform by analysing programs static mod-
els. The values of the MU property corre-

9

sponds to the fields and arrays and their mul-
tiplicities (i.e., multiplicity 1 and +∞). A dif-
ficulty arises when fields are typed as Java col-
lections (Collection, Map), because these col-
lections are not typed. If we assume that these
kinds of collections are homogeneous (contain-
ing elements with a common superclass differ-
ent from Object), it is possible to determine
their types using well-known Java program-
ming idioms, such as pairs of add()–remove()
accessors [13, 18].

We assign a value to the IS property ac-
cording to invocation sites and message types
of method calls. We iterate through the
class files, looking for byte-codes corresponding
to method calls: InvokeInterface, Invoke-
Static, InvokeSpecial, and InvokeVirtual.

The computation of the dynamic values (EX
and LT) of the composition relationship is
based on the dynamic models of programs.
We check the exclusivity and lifetime prop-
erties of composition relationships with the
Caffeine tool and dedicated Prolog predi-
cates, as presented in Section 2. The pred-
icates instanceLevelCompositions/1 and
classLevelCompositions/1 compute the val-
ues of the exclusivity and lifetime properties
using the order in which field modifications,
finalizer exits, and program-end occur. They
infer the presence of composition relationships
among instances and their respective classes
from the values of EX and LT .

We performed extensive testing of our algo-
rithms on several programs, in particular Java
AWT v1.2.2, JHotDraw v5.1, and JUnit
v3.7. We analysed each program manually and
compared the results of our analyses with these
of our algorithms. We find that the identifi-
cation of association relationships has a preci-
sion of 100% and a recall of 100% (4,925 ex-
isting), the identification of aggregation rela-
tionships has a precision of 75% and a recall
of 96% (32 existing, 24 found, 1 false hit), and
the identification of composition relationships
has a precision of 100% and a recall of 100%
(3 existing). The identification of aggregation
relationships does not have a precision and a
recall of 100% because the developers did not
respect some of the idioms used in our detec-
tion algorithms to compute values for the MU
properties. Also, precision and recall for com-

Figure 4: JHotDraw core classes

position relationships may vary depending on
the execution paths taken when running pro-
grams. Identification of composition relation-
ships suffer from the common limitations of dy-
namic analyses.

3.3 Precision

The Ptidej tool suite provide precise class di-
agrams, representative of programs implemen-
tations. Indeed, class diagrams are built with
both the static and dynamic models of Java
programs using the PADL ClassFile Cre-
ator and Caffeine tools. They describe the
programs classes and interfaces, and their re-
lationships accurately, using precise definitions
and formalisations of the relationships and re-
peatable algorithms. In particular, we use pre-
cise formalisations of the association, aggrega-
tion, and composition relationships with four
minimal properties, which allow our algorithms
to identify these relationships accurately.

4 Application

We present an experimentation of our tool
suite on the JHotDraw program. We choose
JHotDraw because it is an independent
medium-size real-world program. We want
to show that class diagrams recovered using
Ptidej are (1) easily obtained and (2) more
precise than class diagrams usually provided

10

Figure 5: Top view of JHotDraw core classes in Ptidej and their concrete relationships

with programs documentation. Thus, we com-
pare the architecture of JHotDraw as de-
scribed by class diagrams from its documen-
tation with the class diagram obtained us-
ing Ptidej. For each class, interface, and
their relationships in the automatically reverse-
engineered class diagram of JHotDraw, we
assess their consistency (existence, absence,
characteristics) with the JHotDraw core
classes diagram, on Figure 4.

4.1 JHotDraw

JHotDraw is a highly customisable two-
dimensional graphic framework for structured
drawing editors [14]. It simplifies the devel-
opment of drawing applications, such as for
Pert diagrams, UML diagrams. The 5.1 version
weighs 155 classes, distributed across 11 pack-
ages, for about 16,000 lines of Java source code.
Its source code and binaries are freely available
at http://members.pingnet.ch/gamma/. Its
core classes, interfaces, and their relationships

are shown on the class diagram, Figure 4, as
provided in the framework documentation.

A DrawingWindow is a window, subclass
of Frame, displaying a Drawing through a
DrawingView, subclass of Panel, with a
Tool to manipulate the drawing. An in-
stance of DrawingWindow aggregates instances
of DrawingView, Drawing, and Tool (white
lozenges). An instance of DrawingView
knows its containing DrawingWindow, con-
tained Drawing, and selected Figure (ar-
rows). Instances of Drawing use instances of
DrawingView (dash arrow). A Drawing is com-
posed of Figures (white lozenge with black
circle) which know their containing Drawing
(arrow) and create Handles to allow user-
interactions (dash arrow with black circle).

4.2 JHotDraw and Ptidej
The class diagram shown in Figure 4 does not
reflect the real implementation of the JHot-
Draw framework: It is obsolete and inaccu-

11

rate. It is neither complete nor precise enough
to allow maintainers to perform modifications
with confidence. The class diagram shows
classes and relationships that do not exist in
the real implementation and only represents a
simplification of the framework. Indeed, we
built the JHotDraw class diagram using the
Ptidej tool suite and we found several differ-
ences with the provided class diagram. Fig-
ures 5 and 6 show the JHotDraw core classes,
from the documentation, in Ptidej.

The DrawingWindow class has been renamed
DrawingEditor in the implementation. Core
classes are in facts interfaces (<<interface>>
stereotype) and only use relationships exist
among them (-u--> symbol). We must add
classes implementing these interfaces to display
relationships really existing among them. Fig-
ures 5 and 6 show the JHotDraw core inter-
faces and implementation classes, recovered by
static and dynamic analyses.

The DrawApplication class, implementing
the DrawingEditor interface, is composed of
(black lozenge) the Drawing interface (and its
implementation class StandardDrawing). It
is also composed of the StandardDrawingView
and Tool classes. These composition relation-
ships are conform to what we could expect: An
instance of class DrawApplication represents
the JHotDraw editor, composed of a view
and a drawing panel, when the editor is de-
stroyed (closed), view and drawing panel are
destroyed also.

The StandardDrawingView class is com-
posed of instances of classes implementing
the Figure interface, through the com-
posed instance of class StandardDrawing,
implementing the Drawing interface and
extending the CompositeFigure class.
The StandardDrawingView class aggre-
gates instances of classes implementing the
Drawing and DrawingEditor interfaces (white
lozenges). Instances of StandardDrawingView
use instances of the class implementing in-
terface DrawingEditor as backpointers to
send messages to their parents (instances of
DrawApplication).

The CompositeFigure class implements the
Composite design pattern: The Figure in-
terface plays the role of Component, the
CompositeFigure of Composite, and other

classes implementing interface Figure play the
role of Leaves.

Finally, classes are associated with, use,
or create various instances of other classes
to perform their tasks, for example class
DrawApplication creates its composing in-
stances of classes StandardDrawing and
StandardDrawingView.

4.3 Class Diagrams Comparisons

The class diagram shown in Figures 5 and 6
provides maintainers with a more precise view
of the JHotDraw framework than this pro-
vided by the authors, in Figure 4.

The class diagram is more precise because it
is built from both static and dynamic models
of JHotDraw, using precise and consensual
definitions of the use, association, aggregation,
and composition relationships and all data re-
quired to distinguish these relationships. Thus,
it distinguishes clearly classes, interfaces, and
inheritance, instantiation, use, association, ag-
gregation, and composition relationships.

The class diagram is built semi-
automatically (with user-interactions), using
the Ptidej tool suite, and does not require
any manual analysis. It is created by the
PADL ClassFile Creator tool in about 2
seconds (along with its graphical representa-
tion) on an AMD Athlon 64bits processor at
2GHz. It is refined with data obtained from
Caffeine, which computation-time depends
on the number of generated events [11].
Typically, execution time may be slowed down
by a factor between 100 and 5,000 because of
the inefficient yet frequent exchange of data
between the Prolog engine performing the
analyses and the analysed program.

5 Conclusion

We presented Ptidej, a tool suite for the
precise semi-automatic reverse engineering of
Java programs as UML-like class diagrams;
i.e., classes and interfaces, inheritance, in-
stantiation, use, association, aggregation, and
composition relationships. Ptidej uses both
static and dynamic models of programs. Static
models are analysed using the PADL Class-
File Creator tool, dynamic models using the

12

Figure 6: Bottom view of JHotDraw core classes in Ptidej and their concrete relationships

Caffeine tool. PADL ClassFile Creator
and Caffeine compute values of four mini-
mal properties (exclusivity, lifetime, multiplic-
ity, and invocation site) that we use to for-
malise the use, association, aggregation, and
composition relationships. We exemplified the
Ptidej tool suite on a simple document de-
scription program and detailed its application
on the JHotDraw framework. We showed
that the class diagram obtained for the JHot-
Draw framework semi-automatically is more
precise than the class diagram provided with
the documentation from the authors.

Currently, we work on replacing dynamic
analyses with type analyses of single uses of val-
ues. Also, we are extending PADL, using its
implementation of the Visitor design pattern,
with recovery algorithms for more UML con-
stituents, such as data-types, implementation
classes, utility classes. Future work includes
analyses of real-world programs (thousand of
classes), such as telecommunication systems or
development environments to assess the use-

fulness of recovered class diagrams for main-
tainers. Also, we intend to implement sophis-
ticated layout algorithms to improve the visual
appealing of the reverse engineered class di-
agrams [7, 17]. Finally, we investigated the
use of the reverse engineered class diagrams
to identify automatically design patterns [1].
We plan to extend our experience to design de-
fects [9] to help maintainers further.

References

[1] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël
Guéhéneuc, and Narendra Jussien. Instanti-
ating and detecting design patterns: Putting
bits and pieces together. In Debra Richardson,
Martin Feather, and Michael Goedicke, edi-
tors, proceedings of the 16th conference on Au-
tomated Software Engineering, pages 166–173.
IEEE Computer Society Press, Nov. 2001.

[2] Hervé Albin-Amiot and Yann-Gaël
Guéhéneuc. Meta-modeling design pat-
terns: Application to pattern detection and

13

code synthesis. In Bedir Tekinerdogan, Pim
Van Den Broek, Motoshi Saeki, Pavel Hruby,
and Gerson Sunyé, editors, proceedings of
the 1st ECOOP workshop on Automating
Object-Oriented Software Development Meth-
ods. Centre for Telematics and Information
Technology, University of Twente, Oct. 2001.
TR-CTIT-01-35.

[3] Giuliano Antoniol, Roberto Fiutem, and
L. Cristoforetti. Design pattern recovery in
object-oriented software. In Scott Tilley and
Giuseppe Visaggio, editors, proceedings of the
6th International Workshop on Program Com-
prehension, pages 153–160. IEEE Computer
Society Press, Jun. 1998.

[4] Shigeru Chiba. Javassist – A reflection-based
programming wizard for Java. In Jean-Charles
Fabre and Shigeru Chiba, editors, proceedings
of the OOPSLA workshop on Reflective Pro-
gramming in C++ and Java. Center for Com-
putational Physics, University of Tsukuba,
Oct. 1998. UTCCP Report 98-4.

[5] Franco Civello. Roles for composite objects
in object-oriented analysis and design. In An-
dreas Paepcke, editor, proceedings of the 8th

conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages
376–393. ACM Press, Sep. 1993.

[6] Serge Demeyer, Stéphane Ducasse, and Oscar
Nierstrasz. Finding refactorings via change
metrics. In Doug Lea, editor, proceedings of
15th conference on Object-Oriented Program-
ming Systems, Languages and Applications,
pages 166–177. ACM Press, Oct. 2000.

[7] Holger Eichelberger and Jürgen Wolff von Gu-
denberg. On the visualization of Java pro-
grams. In Stephan Diehl, editor, proceed-
ings of the 1st international seminar on Soft-
ware Visualization, pages 295–306. Springer-
Verlag, May 2002.

[8] Matt Greenwood. CFParse Distribution. IBM
AlphaWorks, Sep. 2000.

[9] Yann-Gaël Guéhéneuc and Hervé Albin-
Amiot. Using design patterns and constraints
to automate the detection and correction of
inter-class design defects. In Quioyun Li,
Richard Riehle, Gilda Pour, and Bertrand
Meyer, editors, proceedings of the 39th con-
ference on the Technology of Object-Oriented
Languages and Systems, pages 296–305. IEEE
Computer Society Press, Jul. 2001.

[10] Yann-Gaël Guéhéneuc and Hervé Albin-
Amiot. Recovering binary class relation-
ships: Putting icing on the UML cake. In

Doug C. Schmidt, editor, proceedings of the
19th conference on Object-Oriented Program-
ming, Systems, Languages, and Applications.
ACM Press, Oct. 2004. To appear.

[11] Yann-Gaël Guéhéneuc, Rémi Douence, and
Narendra Jussien. No Java without Caffeine –
A tool for dynamic analysis of Java programs.
In Wolfgang Emmerich and Dave Wile, edi-
tors, proceedings of the 17th conference on Au-
tomated Software Engineering, pages 117–126.
IEEE Computer Society Press, Sep. 2002.

[12] Brian Henderson-Sellers and Franck Barbier.
A survey of the UML’s aggregation and com-
position relationships. L’objet : Logiciel, Base
de données, Réseaux, 5(3/4):339–366, Dec.
1999.

[13] Daniel Jackson and Allison Waingold.
Lightweight extraction of object models from
bytecode. In David Garlan and Jeff Kramer,
editors, proceedings of the 21st International
Conference on Software Engineering, pages
194–202. ACM Press, May 1999.

[14] Wolfram Kaiser. Become a programming pi-
casso with JHotDraw – Use the highly cus-
tomizable GUI framework to simplify draw
application development. JavaWorld, Feb.
2001.

[15] Jeffrey Korn, Yih-Farn Chen, and Eleftherios
Koutsofios. Chava: Reverse engineering and
tracking of Java applets. In Kostas Kontogian-
nis and Françoise Balmas, editors, proceedings
of the 6th Working Conference on Reverse En-
gineering, pages 314–325. IEEE Computer So-
ciety Press, Nov. 1999.

[16] Object Management Group, Inc. UML v1.5
Specification, Mar. 2003.

[17] Jochen Seemann. Extending the Sugiyama
algorithm for drawing UML class diagrams:
Towards automatic layout of object-oriented
software diagrams. In Giuseppe Di Battista,
editor, proceedings of the 5th international
symposium on Graph Drawing, pages 415–424.
Springer-Verlag, Sep. 1997.

[18] Paolo Tonella and Alessandra Potrich. Re-
verse engineering of the UML class diagram
from C++ code in presence of weakly typed
containers. In Gerardo Canfora and An-
neliese Amschler Andrews-Von Maryhauser,
editors, proceedings of the 9st International
Conference on Software Maintenance, pages
376–385. IEEE Computer Society Press, Nov.
2001.

14

