
A New Family of Software Anti-Patterns: Linguistic Anti-Patterns

Venera Arnaoudova1,2, Massimiliano Di Penta3, Giuliano Antoniol2, Yann-Gaël Guéhéneuc1

1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
2 Soccer Lab., DGIGL, École Polytechnique de Montréal, Canada

3 Department of Engineering, University of Sannio, Benevento, Italy
E-mails: venera.arnaoudova@polymtl.ca, dipenta@unisannio.it, antoniol@ieee.org, yann-gael.gueheneuc@polymtl.ca

Abstract—Recent and past studies have shown that poor
source code lexicon negatively affects software understandabil-
ity, maintainability, and, overall, quality. Besides a poor usage
of lexicon and documentation, sometimes a software artifact
description is misleading with respect to its implementation.
Consequently, developers will spend more time and effort when
understanding these software artifacts, or even make wrong
assumptions when they use them.

This paper introduces the definition of software linguistic
antipatterns, and defines a family of them, i.e., those related to
inconsistencies (i) between method signatures, documentation,
and behavior and (ii) between attribute names, types, and
comments. Whereas “design” antipatterns represent recurring,
poor design choices, linguistic antipatterns represent recurring,
poor naming and commenting choices.

The paper provides a first catalogue of one family of linguis-
tic antipatterns, showing real examples of such antipatterns and
explaining what kind of misunderstanding they can cause. Also,
the paper proposes a dectector prototype for Java programs
called LAPD (Linguistic Anti-Pattern Detector), and reports
a study investigating the presence of linguistic antipatterns in
four Java software projects.

Keywords-Software antipatterns, Source code lexicon, Tex-
tual analysis of software artifacts.

I. INTRODUCTION

Source code lexicon, i.e., the vocabulary used in naming
software entities, is an essential element of any software
system. A good source code lexicon can positively affect
software quality, in particular comprehensibility and main-
tainability, and even reduce fault-proneness [1], [2], [3].

Several approaches have been developed for better lex-
icon and coding styles. Some researchers have developed
approaches to assess the quality of source code lexicon [2],
[4], [5], and some others provided a set of guidelines to
produce high-quality identifiers [6].

In summary, existing literature analyzed the quality of
source code lexicon solely in terms of what kinds of words
were used, e.g., (i) whether identifiers are composed of
words belonging to the English dictionary or to a domain
specific dictionary; (ii) whether, instead, identifiers contain
abbreviations, acronyms, and other combinations of char-
acters. However, sometimes problems in the source code
lexicon are more subtle and go beyond the occurrence of
words. It may happen that the naming of a method does
not properly reflect the method behavior, describing less (or

more) than the method actually does. One such example,
occurred in Eclipse 1.0, is a method named isClassPathCor-
rect defined in class ProblemReporter. One would expect
that such a method returns a Boolean; instead, the method
does not return any value and sets an attribute and calls
another method to perform the task.

This paper represents the starting point for the definition
of a new family of software antipatterns, named linguistic
antipatterns. Software antipatterns—as they are known so
far—are opposite to design patterns [7], i.e., they identify
“poor” solutions to recurring design problems, for example,
Brown’s 40 antipatterns describe the most common pitfalls
in the software industry [8]. They are generally intro-
duced by developers not having sufficient knowledge and–
or experience in solving a particular problem, or misusing
good solutions, i.e., design patterns. Linguistic antipatterns
shift the perspective from source code structure towards its
consistency with the lexicon:

Linguistic Antipatterns (LAs) in software sys-
tems are recurring poor practices in the naming,
documentation, and choice of identifiers in the im-
plementation of an entity, thus possibly impairing
program understanding.

The presence of inconsistencies can be particularly harm-
ful for developers that can make wrong assumptions about
the code behavior or spend unnecessary time and effort to
clarify it when understanding source code for their purposes.
Therefore, highlighting their presence is essential for pro-
ducing code easy to understand.

The contributions of this paper are:

1) A first catalogue of a family of LAs, focusing on
inconsistencies between method/attribute naming con-
ventions, documentation, and signature. For methods,
such LAs are categorized into methods that (i) “do
more than they say”, (ii) “say more than they do”,
and (iii) “do the opposite than they say”. Similarly,
for attributes we categorize the LAs into attributes
for which (i) “the name says more than the entity
contains”, (ii) “the name says less than the entity
contains”, and (iii) “the name says the opposite than
the entity contains”.
For each category, we report different LAs, explaining

how they occur, what kind of misunderstanding they
can cause, and reporting examples found in open-
source projects. It is important to point out that, since
this paper describes LAs for entity names and their
documentation, these can occur—and therefore can be
detected—in source code, but also in design docu-
ments such as class diagrams and API specifications.

2) Possible implementation algorithms—conceived for
Java programs—to detect the proposed LAs. The
detection is based on a combination of source code
structural and textual analysis.

3) A first study reporting occurrence of the described
LAs in four Java open-source projects, namely two
ArgoUML releases, one release of Cocoon, and one
release of Eclipse.

The paper is organized as follows. Section II describes
the catalogue of LAs. Section III explains how the LA
detection has been implemented. Section IV reports the
study conducted on the four software releases, providing
both quantitative and qualitative analyses of the detected
LAs. Section V discusses the related literature, while Section
VI concludes and outlines directions for future work.

II. LINGUISTIC ANTIPATTERNS (LAS) CATALOGUE

An LA is a bad practice involving program entities, their
names and/or documentation. One among many possible
families of LAs is related to inconsistencies between an
entity naming, documentation, and implementation. Within
this family, LAs that share important characteristics are
grouped into categories. We present six categories of LAs,
three of them regarding behavior—i.e., methods—and three
regarding state, i.e., attributes. For the definition of each LA
we followed the main lines of the software development
antipattern template. Specifically, we provide the following
information: LA name, description, code element to which
it applies (e.g., attribute or method), an example coming
from real software projects, and possible consequences of
the LA. We leave the possible causes and impact as part of
future work, as we believe that they should be inferred by
developers and they require an extensive in-field study.

A. Does more than it says

1) “Get” - more than an accessor: In Java, accessor
methods, also called getters, provide a way to access class
attributes. As such, it is not common that getters perform
actions other than returning the corresponding attribute. Any
other action should be documented, possibly naming the
method differently than “getSomething”.
Applies to: Methods
Example: In the example shown in Figure 1, the method
getImageData(), defined in class CompositeImageDescrip-
tor, is not a simple accessor because it never reads the value
of the corresponding attribute but it rather sets it with a new
object and returns it.

Consequences: The usage of such getters would cause a
unexpected allocation of new objects (which normally does
not happen with getters), or returning a null value when this
should not be the case, i.e., the attribute is not null.

p u b l i c ImageData ge t ImageDa ta () {
P o i n t s i z e = g e t S i z e () ;
RGB b l a c k = new RGB(0 , 0 , 0) ;
RGB[] r g b s = new RGB[2 5 6] ;
r g b s [0] = b l a c k ; / / t r a n s p a r e n c y
r g b s [1] = b l a c k ; / / b l a c k
P a l e t t e D a t a d a t a P a l e t t e =new P a l e t t e D a t a (r g b s) ;
imageData = new

ImageData (s i z e . x , s i z e . y , 8 , d a t a P a l e t t e) ;
imageData . t r a n s p a r e n t P i x e l = 0 ;
drawComposi teImage (s i z e . x , s i z e . y) ;
f o r (i n t i = 0 ; i < r g b s . l e n g t h ; i ++)

i f (r g b s [i] == n u l l) r g b s [i] = b l a c k ;
re turn imageData ;

}

Figure 1. Example of “Get” - more than an accessor (Eclipse-1.0).

2) “Is” returns more than a Boolean: When a method
name starts with the term “is” one would expect a Boolean
as a return type, thus having two possible values for the pred-
icate, i.e., “true” and “false”. Thus, having an “is” method
that does not return a Boolean, but returns more information
is counterintuitive. In such cases, the method should be
renamed or, at least, the fact that it returns a different type
should be documented in the method comments.
Applies to: Methods
Example: The example in Figure 2 shows one such case
occurring in class DelayedValidity. A proper documentation
would include details about the return values.
Consequences: Normally, problems related to such LA will
be detected at compile time (or even by the IDE), however
the misleading naming can still cause misunderstanding from
the maintainers’ side.

p u b l i c i n t i s V a l i d () {
f i n a l long c u r r e n t T i m e =

System . c u r r e n t T i m e M i l l i s () ;
i f (c u r r e n t T i m e <= t h i s . e x p i r e s) {

/ / The d e l a y has n o t pa s s ed y e t −
/ / assuming s o u r c e i s v a l i d .
re turn S o u r c e V a l i d i t y . VALID ;
}
/ / The d e l a y has passed ,
/ / p r e p a r e f o r t h e n e x t i n t e r v a l .
t h i s . e x p i r e s = c u r r e n t T i m e + t h i s . d e l a y ;
re turn t h i s . d e l e g a t e . i s V a l i d () ;
}

Figure 2. Example of “Is” returns more than a Boolean (Cocoon 2.2.0).

3) “Set” method returns: Modifier methods, i.e., setters,
are methods that allow assigning a value to a class attribute
(normally protected or private, hence not directly accessible
from outside); by convention, setters do not return anything.
More generally, the same statement is valid for methods
whose name starts with “set”. Thus, a set method having
a return type different than void should document the return
type/values with an appropriate comment or should be
named differently to avoid any confusion.

Applies to: Methods
Example: In the example shown in Figure 3 the method
setBreadth, defined in class Orientation returns a Dimension.
Consequences: One could use the setter method with-
out storing/checking its returned value, hence useful
information—e.g., related to erroneous or unexpected
behavior—is not captured.

p u b l i c Dimension s e t B r e a d t h
(Dimension t a r g e t , i n t s o u r c e) {

i f (o r i e n t a t i o n == VERTICAL)
re turn new Dimension (sou rce ,

(i n t) t a r g e t . g e t H e i g h t ()) ;
e l s e

re turn new Dimension (
(i n t) t a r g e t . ge tWid th () , s o u r c e) ;

}

Figure 3. Example of “Set” method returns (ArgoUML-0.10.1).

4) Expecting but not getting a single instance: When
a method name indicates that a single object (and not a
collection) is returned, this shall be consistent with its return
type. If, instead, the return type is a collection, the method
shall be renamed or appropriate documentation is needed.
Applies to: Methods
Example: The name of the method in Figure 4—defined
in class DrillFrame—suggests that an object Expansion will
be returned whereas a collection is (the return type is List).
Very likely, the reader would not know what types of objects
are contained in this list.
Consequences: Although this would unlikely cause faults at
run-time, it might cause false expectancies to the developers.
When reading “returnPath”, one would expect to handle a
simple object, whereas it is necessary to deal with multiple
objects.

/∗ R e t u r n s t h e e x p a n s i o n s t a t e f o r a t r e e .
∗ @return t h e e x p a n s i o n s t a t e f o r a t r e e ∗ /

p u b l i c L i s t g e t E x p a n s i o n () { re turn f E x p a n s i o n ;}

Figure 4. Example of Expecting but not getting a single instance (Eclipse-
1.0).

B. Says more than it does

1) Not implemented condition: Comments suggest a con-
ditional behavior, while the code does not.
Applies to: Methods
Example: Figure 5 shows a method defined in class FileEd-
itionEditorInput that always returns the same value.
Consequences: This LA can have two main consequences.
First, clients of the corresponding methods assume the
documented behavior resulting in wrong system behavior.
Second, during testing—especially black box testing—the
tester would invest time and effort to generate test cases for
the different conditions, while one test case will cover all
method statements (or, in general, less test cases are needed).

2) Validation method does not confirm: A validation
method does not return a value to confirm such validation.
Applies to: Methods

/∗ R e t u r n s t h e c h i l d r e n o f t h i s o b j e c t .
∗ When t h i s o b j e c t i s d i s p l a y e d i n a t r e e ,
∗ t h e r e t u r n e d o b j e c t s w i l l be t h i s e l e m e n t ’ s
∗ c h i l d r e n . R e t u r n s an empty a r r a y i f t h i s
∗ o b j e c t has no c h i l d r e n .
∗ @param o b j e c t The o b j e c t t o g e t t h e
∗ c h i l d r e n f o r . ∗ /

p u b l i c O b j e c t [] g e t C h i l d r e n (O b j e c t o)
{ re turn new O b j e c t [0] ; }

Figure 5. Example of Not implemented condition (Eclipse-1.0).

Example: Figure 6 shows a method defined in class UML-
ComboBoxEntry that neither returns a Boolean nor throws
an exception.
Consequences: One may not know how to handle the
outcome of the validation. Very likely, such an outcome is
stored somewhere—e.g., an instance variable—however this
is not clear from the method specification/documentation.

p u b l i c vo id c h e c k C o l l i s i o n (S t r i n g b e f o r e ,
S t r i n g a f t e r){

boolean c o l l i s i o n =(b e f o r e != n u l l
&& b e f o r e . e q u a l s (shortName)) | |
(a f t e r != n u l l&&a f t e r . e q u a l s (shortName)) ;

i f (c o l l i s i o n) {
i f (longName== n u l l){ longName=getLongName () ; }

disp layName = longName ;
}
}

Figure 6. Example of Validation method does not confirm (ArgoUML-
0.10.1).

3) “Get” method does not return: The name suggests
that the method returns something, however this is not the
case.
Applies to: Methods
Example: The example in Figure 7 shows the source code
of a method named getMethodBodies, defined in class Com-
piler, which suggests a field as result, however nothing is
returned.
Consequences: One would expect to be able to assign the
method return value to a variable. However, since this is not
possible, one has to further understand the code to determine
where the retrieved data is stored and how to obtain it.

4) Not answered question: The method name is in the
form of predicate whereas the return type is not Boolean.
Applies to: Methods
Example: Figure 8 shows an example of a method, declared
in class ISelectionValidator, where the name suggests a
Boolean value as result but nothing is returned.
Consequences: Consequences are similar to those of “Get”
method does not return. In this case, the developer would
even expect to use the method within a conditional control
structure, which is however not possible.

5) Transform method does not return: The method name
suggests the transformation of an object, but there is no
return value.

p r o t e c t e d void ge tMethodBodies
(C o m p i l a t i o n U n i t D e c l a r a t i o n u n i t , i n t p l a c e){
/ / f i l l t h e methods b o d i e s i n o r d e r
/ / f o r t h e code t o be g e n e r a t e d
i f (u n i t . i gno reMethodBod ie s) {

u n i t . i g n o r e F u r t h e r I n v e s t i g a t i o n = t rue ;
re turn ; / / i f i n i t i a l d i e t p a r s e d i d n o t
/ / work , no need t o d i g i n t o method b o d i e s .

}
i f (p l a c e < p a r s e T h r e s h o l d)

re turn ; / / work a l r e a d y done . . .
/ / r e a l p a r s e o f t h e method
p a r s e r . s c a n n e r . s e t S o u r c e B u f f e r (

u n i t . c o m p i l a t i o n R e s u l t .
c o m p i l a t i o n U n i t . g e t C o n t e n t s ()) ;

i f (u n i t . t y p e s != n u l l) {
f o r (i n t i = u n i t . t y p e s . l e n g t h ; −−i >= 0 ;)

u n i t . t y p e s [i] . pa r seMethod (p a r s e r , u n i t) ;
}

}

Figure 7. Example of “Get” method does not return (Eclipse-1.0).

p u b l i c vo id i s V a l i d (
O b j e c t [] s e l e c t i o n , S t a t u s I n f o r e s) {

/ / o n l y s i n g l e s e l e c t i o n
i f (s e l e c t i o n . l e n g t h == 1

&& (s e l e c t i o n [0] i n s t a n c e o f I F i l e))
r e s . setOK () ;

e l s e r e s . s e t E r r o r (” ”) ; / / $NON−NLS−1$
}

Figure 8. Example of Not answered question (Eclipse-1.0).

Applies to: Methods
Example: An example of this LA is method javaToNative
defined in class LocalSelectionTransfer shown in Figure 9.
Consequences: Similar to the previous ones. Specifically,
here one would expect to be able to assign the result of the
method to a variable suggested by the method name (Native
in our example, i.e., a platform-specific representation).

p u b l i c vo id j a v a T o N a t i v e (
O b j e c t o b j e c t , T r a n s f e r D a t a t r a n s f e r D a t a) {

byte [] check = TYPE NAME. g e t B y t e s () ;
super . j a v a T o N a t i v e (check , t r a n s f e r D a t a) ;

}

Figure 9. Example of Transform method does not return (Eclipse-1.0).

6) Expecting but not getting a collection: The method
name suggests that a collection should be returned, however
a single object, or nothing, is returned.
Applies to: Methods
Example: In the example shown in Figure 10, the name
of the method, defined in class SAXParserBase, suggests
that some statistics will be returned, while the method only
returns a Boolean value.
Consequences: A developer would likely expect that the
method will return a set of values (e.g., a time series of
temperature, or an array of monitoring data), suggesting
that appropriate patterns, such as iterators, are needed to
navigate the data structure. Instead, in some cases, the
method may return only one of these values, or, in other
cases, like the one in Figure 10, the returned value is

completely inconsistent with the method name.

p u b l i c boolean g e t S t a t s (){ re turn s t a t s ; }

Figure 10. Example of Expecting but not getting a collection (ArgoUML-
0.10.1).

C. Does the opposite

1) Method name and return type are opposite: The intent
of the method suggested by its name is in contradiction with
what it returns.
Applies to: Methods
Example: The method shown in Figure 11, defined in class
ControlEnableState, is an example of this LA, where the
name and return type are inconsistent because the method
disable returns an “enable” state. With the available doc-
umentation, the reader will infer that the return type is a
control state that can be enabled or disabled.
Consequences: The developers can make wrong assump-
tions on the returned value and this might not be discovered
at compile time. In some cases—e.g., when the method
returns a Boolean—the developer could negate (or not) the
value where it should not be negated (or it should be).

/∗ Saves t h e c u r r e n t e n a b l e / d i s a b l e s t a t e o f
∗ t h e g i v e n c o n t r o l and i t s d e s c e n d e n t s i n t h e
∗ r e t u r n e d o b j e c t ; t h e c o n t r o l s are a l l d i s a b l e d .
∗ @param w t h e c o n t r o l
∗ @return an o b j e c t c a p t u r i n g t h e e n a b l e / d i s a b l e
∗ s t a t e ∗ /

p u b l i c s t a t i c C o n t r o l E n a b l e S t a t e
d i s a b l e (C o n t r o l w){

re turn new C o n t r o l E n a b l e S t a t e (w) ;
}

Figure 11. Example of Method name and return type are opposite (Eclipse-
1.0).

2) Method signature and comment are opposite: The
documentation of a method is in contradiction with its
declaration (e.g., name, return type).
Applies to: Methods
Example: Figure 12 shows a method, declared in class
NavigationHistory, which name suggests that the method
returns true if the forward navigation is enabled. However,
the comment talks about back navigation, i.e., the opposite.
Consequences: Consequences are similar to those of the
Method name and return type are opposite, and can be even
more misleading because the developer is unsure whether to
trust the comment or the method signature. Either the one or
the other is outdated or inconsistent, and has to be updated.
D. Contains more than it says

1) Says one but contains many: An attribute name sug-
gests a single instance, while its type suggests that the
attribute stores a collection of objects.
Applies to: Attributes
Example: Figure 13 shows an attribute, defined in class
TableModelCritics, which name suggests a single object,
whereas its type is a collection.

/∗ R e t u r n s t r u e i f t h i s l i s t e n e r has a t a r g e t
∗ f o r a back n a v i g a t i o n . Only one l i s t e n e r
∗ needs t o r e t u r n t r u e f o r t h e back b u t t o n
∗ t o be e n a b l e d . ∗ /

p u b l i c boolean i s N a v i g a t e F o r w a r d E n a b l e d () {
boolean e n a b l e d = f a l s e ;
i f (i s F o r w a r d E n a b l e d ==1) { e n a b l e d = t rue ;}
e l s e {

i f (i s F o r w a r d E n a b l e d != 0) {
e n a b l e d = n a v i g a t e F o r w a r d (f a l s e) != n u l l ;

}
}
re turn e n a b l e d ;

}

Figure 12. Example of Method signature and comment are opposite
(ArgoUML-0.10.1).

Consequences: Lack of understanding of the class state/as-
sociations. When such attribute changes, one would not
know whether the change impacts a one or multiple objects.

V ec to r t a r g e t ;

Figure 13. Example of Says one but contains many (ArgoUML-0.10.1).

2) Name suggests Boolean but type does not: An attribute
name suggests that its value is true or false, but its declaring
type is not Boolean.
Applies to: Attributes
Example: Figure 14 shows one such case defined in class
ExceptionHandlingFlowContext. The attribute name sug-
gests that the value will be true if something is reached,
false otherwise. However, the declaring type is not Boolean.
Consequence: The developer would expect to be able to test
the attribute in a control flow statement condition. However,
this is not the case, especially in cases like the one in
Figure 14, for which the returned type is an array, therefore
it is not clear how to handle this attribute.

i n t [] i s R e a c h e d ;

Figure 14. Example of Name suggests Boolean but type does not (Eclipse-
1.0).

E. Says more than it contains

1) Says many but contains one: An attribute name sug-
gests multiple instances, but its type suggests a single one.
Applies to: Attributes
Example: In the example shown in Figure 15, the attribute
name, defined in class SAXParserBase, suggests that it
contains statistics whereas its type is Boolean.
Consequences: Lack of understanding of the impact of
attribute changes (see also Says one but contains many).

p r i v a t e s t a t i c boolean s t a t s = t rue ;

Figure 15. Example of Says many but contains one (ArgoUML-0.10.1).

F. Contains the opposite

1) Attribute name and type are opposite: The name of
an attribute is in contradiction with its type.
Applies to: Attributes

Example: The example of Figure 16 shows an attribute of
class ActionNavigability. The contradiction comes form the
use of the antonyms start and end, one being part of the
type of the attribute, the other being part of its name.
Consequences: This kind of misleading attribute naming can
induce wrong assumptions. For example, whether a Boolean
attribute contains information that can be used directly in
a control flow statement condition, or whether it has to
be negated. Similarly, prefixes/suffixes such as “start” and
“end” could confuse the developer about the direction a data
structure should be traversed.

MAssocia t ionEnd s t a r t = n u l l ;

Figure 16. Example of Attribute name and type are opposite (ArgoUML-
0.10.1).

2) Attribute signature and comment are opposite: The
documentation of the entity is in contradiction with its
declaration (e.g., name, type).
Applies to: Attributes
Example: The example in Figure 17 shows an attribute
named INCLUDE NAME DEFAULT, defined in class En-
codeURLTransformer. However, its comment says “Con-
figuration default exclude pattern”. Whether the pattern is
included or excluded is therefore unclear from the comment
and name.
Consequences Without a deep analysis of the source code,
the developer might not clearly understand the role of the
attribute, and the comment is just misleading.

/∗ C o n f i g u r a t i o n d e f a u l t e x c l u d e p a t t e r n ,
∗ i e . ∗ \ / @href | . ∗ \ / @action | f rame / @src ∗ /

p u b l i c f i n a l s t a t i c S t r i n g INCLUDE NAME DEFAULT
= ” . ∗ / @href = | . ∗ / @act ion = | f rame / @src=” ;

Figure 17. Example of Attribute signature and comment are opposite
(Cocoon-2.2.0).

III. TOOL SUPPORT

This section describes possible detection algorithms for
the LAs described in Section II, and the technology we used
to implement those algorithms.

“Get” - more than an accessor (Section II-A1) Find
accessor methods (i.e., the method name starts with “get”
and ends with a substring that corresponds to an attribute in
the same class) and identify those that are performing more
actions than returning the corresponding attribute (e.g., using
measures such as LOC or McCabe’s Cyclomatic Complex-
ity). Cases where the attribute is set before it is returned
(i.e., Proxy and Singleton design patterns) should not be
considered as part of this LA.
“Is” returns more than a Boolean (Section II-A2) Find
methods starting with “is” whose return type is not Boolean.
“Set” method returns (Section II-A3) Find modifier methods
(or more generally methods whose name starts with “set”)
and whose return type is different from void.
Expecting but not getting a single instance (Section II-A4)
Find methods returning a collection (e.g., array, list, vector,

etc.) but whose name ends with a singular noun.
Not implemented condition (Section II-B1) Find methods
with at least one conditional sentence in comments but with
no conditional statements in the implementation (e.g., no
control structures or ternary operators).
Validation method does not confirm (Section II-B2) Find
validation methods (e.g., method names starting with “vali-
date”, “check”, “ensure”) whose return type is void and that
do not throw exceptions.
“Get” method does not return (Section II-B3) Find methods
whose names suggest a return value (e.g., names starting
with “get”, “return”) and whose return type is void.
Not answered question (Section II-B4) Find methods whose
name is in the form of predicate (e.g., starts with “is”, “has”)
and whose return type is void.
Transform method does not return (Section II-B5) Find
methods whose name suggests a data transformation
(e.g., toSomething, source2target) but its return type is void.
Expecting but not getting a collection (Section II-B6) The
method name suggests that it returns (e.g., starts with “get”,
“return”) multiple objects (e.g., ends with a plural noun),
however the return type is not a collection.
Method name and return type are opposite (Section II-C1)
Find methods with antonyms in name and return type.
Method signature and comment are opposite (Section II-C2)
Find methods whose name or return type have an antonym
relation with its comment.
Says one but contains many (Section II-D1) Find attributes
having a name ending with a singular noun, as well as a
collection as return type.
Name suggests Boolean but type does not (Section II-D2)
Find attributes whose name is structured as a predicate
i.e., starting with a verb in third person (e.g., “is”, “has”)
or ending with a verb in gerund, or present participle, but
whose declaring type is not Boolean.
Says many but contains one (Section II-E1) Find attributes
having a name ending with a plural noun, however their type
is not a collection neither it contains a plural noun.
Attribute name and type are opposite (Section II-F1) Find
attributes whose name and declaring type contain antonyms.
Attribute signature and comment are opposite (Section
II-F2) Find attributes whose name or declaring type have
an antonym relation with its comment.

In the subsequent paragraphs we provide details on the
technology we used to implement the detection. The source
code analysis consists in three parts: (i) fact extraction from
source code, (ii) analysis of source code identifiers and
comments, and (iii) establishing semantic relations between
terms contained in identifiers and comments.

Fact extraction from source code. To this aim, we use
the srcml tool [9], which parses source code and produces
an XML-based parse tree. With this step, we identify the
various source code elements of interest for our analysis,
namely attribute names and types, method names, return

types, parameter names and types, exceptions. In addition,
we can also extract from source code other pieces of
information needed for our analysis, i.e., the presence of
control flow or conditional statement, the usage of particular
variables/parameters in conditional statements, and excep-
tion handling.

The fact extractor also identifies comments in the source
code. In general, a comment is attached to the entity it
precedes. However, when a comment follows an entity
declaration and it starts at the same line then it is attached
to the preceding entity.

Analysis of source code identifiers and comments. This
step aims at identifying term composing identifiers, and
performing a part of speech analysis. First, identifiers are
split using the camel case and underscore heuristics. For
Java, this is largely sufficient [10].

After having extracted terms, we perform a part of speech
analysis using the Stanford natural language parser [11]. This
allows to: (i) identify whether a term is a noun, an adjective,
an adverb or other parts-of-speech; (ii) distinguish singular
from plural nouns; and (iii) identify dependencies between
words, e.g., between subjects and predicates, as well as
negative forms, e.g., not possible.

Relating terms occurring in source code and com-
ments. The last part of the analysis aims at relating terms
appearing in various source code elements and comments,
e.g., synonymy and antonymy relations. Such relations are
established using the WordNet ontology [12]. Although we
are aware that WordNet may not necessarily be the most
suitable ontology to analyze source code, as pointed out by
Hindle et al. [13]—at the moment WordNet represents, to
the best of our knowledge, the most suitable technology for
this task. Also, the approach is perfectly applicable even if
replacing WordNet with a domain-specific ontology.

IV. STUDY DESCRIPTION

The goal of this study is to investigate the presence of
LAs in software systems, with the purpose of understanding
the relevance of the phenomenon. The quality focus is
software comprehensibility that can be hindered by LAs.
The perspective is of researchers interested to develop rec-
ommending systems aimed at detecting the presence of LAs
and suggesting ways to avoid them. The context consists
of four Java systems, namely two versions of ArgoUML,
one version of Cocoon, and one version of Eclipse. Table I
reports some information about the systems, namely number
of lines of code and comments, number of classes, methods,
and attributes. ArgoUML1 is an UML modeller and reverse
engineering tool. Cocoon2 is a framework based on Spring
that allows to develop Web applications by integrating com-
ponents into pipelines. Eclipse3 is a well known framework

1http://argouml.tigris.org
2http://cocoon.apache.org
3http://www.eclipse.org

Table I
ANALYZED SYSTEMS.

System Vers. Code Comm. Classes Meth. Attr.
Argo- 0.10.1 82K 40K 896 5 363 2 986

UML 0.34 195K 150K 2 426 10 876 6 102
Cocoon 2.2.0 60K 43K 748 3 947 2 717
Eclipse 1.0 475K 248K 6 388 35 508 21 985

and IDE. We have chosen systems having different size, and
for one of them both an old version and a new one.

The study aims at answering the research question:

RQ: To what extent do the analyzed systems
contain the LAs defined in Section II?

In Section IV-A we describe the qualitative study, in
Section IV-B we discuss the precision of the approach,
whereas in Section IV-C we analyze LAs over time. It is
important to point out that, rather than a large, quantitative
study, this is more a qualitative investigation. Other than
reporting the number of LAs each program contains, we
will discuss in detail some examples to better understand
the nature of the phenomenon.

A. Study Results

Table II reports, for each system, the number of detected
and validated LAs, as well as the precision of the im-
plemented algorithms. The validated sample for each LA
is randomly selected and its size is statistically significant
considering a confidence level of 95% and a confidence
interval of ±10% [14].

“Get” - more than an accessor (Section II-A1): Inter-
esting examples of this LA are cases where the method
performs some calculations and returns the result. This
is the case of getCurrentCommentOffset, defined in class
CodeFormatter (Eclipse), which computes and returns the
number of characters and tabs between the beginning of a
line and the beginning of a comment.

“Is” returns more than a Boolean (Section II-A2): In
all of the detected cases of this LA the return type is either
int or String. In the first case, the integer values distinguish
different situations. One may argue that int is used instead of
Boolean to encode logical values, as it happens in C, i.e., 0
corresponds to false and 1 to true. However, this is not the
case in the analyzed LAs. For example, the method shown
in Figure 2 has three possible return values: −1 (which
corresponds to “invalid”), 1 (“valid”), and 0 (“don’t know”).

“Set” method returns (Section II-A3). Detected cases
of this LA share several common characteristics. When the
return value is Boolean, it often indicates whether the as-
signment has been successful or not. Some implementations
create an object—possibly using the received parameters—
assign it to an attribute, and finally return it. Sometimes, as
in the example of Figure 3, no assignment is performed, and
a new object is created and returned. The example of method
setResponseHandler declared in class Client (Eclipse) is

even more counterintuitive, as it returns the old value, or
null if no old value existed.

Expecting but not getting a single instance (Section
II-A4): Examples of this LA are cases where the returned
object represents a data structure that is not encapsulated in a
separate class, such as method getObjectModel of class Ab-
stractEnvironment, returning a Map (Cocoon), and method
getCriticRegistry of class Agency, returning a Hashtable
(ArgoUML-0.10.1).

Not implemented condition (Section II-B1): Examples of
this LA can be grouped into those returning always the same
value. For example, method loadUnspecified from class Con-
figurationHandler (ArgoUML-0.10.1) is documented with
the comment “@return true if the load was successful,
otherwise false.”. However, the method always returns false.
The same LA exists in version 0.34. There are also cases
where the implementation is temporary, as method getValue
of class EvaluationResult (Eclipse) where the body always
returns null accompanied with the comment “Not yet imple-
mented”).

Validation method does not confirm (Section II-B2):
Examples of this LA are methods that, other than checking
the condition, also perform some action. One example is
method checkJVMVersion of class Main (ArgoUML-0.34),
which checks if the JVM is not supported, and, in that
case, terminates the program. Another one is method en-
sureFirstCharLowerCase of class FormatingStrategyUML,
which implementation returns a new object following the
specification, rather than ensuring if the parameter follows
the specification. Other examples are those where the result
is stored in an instance variable as in method checkForEn-
coding of class EncodeURLTransformer (Cocoon).

“Get” method does not return (Section II-B3. We
observe two main practices when this LA occurs. The
first one occurs when the result is assigned to instance
variable(s), as in method getPreferences of class VirtualMa-
chineManagerImpl (Eclipse), where loadPreferences would
better reflects the functionality as the comment also suggests
“Loads the user preferences from the jdi.ini file”. The
second one occurs when parameters are modified rather than
returning a value, as in method getTypeQualifiedName of
class JavaModelUtility, where the qualified name of the type
(first parameter) is stored in a buffer (second parameter).

Not answered question (Section II-B4). We found exam-
ples, in which methods are modifiers for a Boolean attribute,
e.g., method isSelected of class ComponentEntryDescriptor
(Eclipse). Others throw exceptions instead of returning a
Boolean value, as method isNotNull of class Assert (Eclipse).
Finally, there are cases of methods that perform some
undocumented actions, as method isClassPathCorrect of
class ProblemReporter (Eclipse), where an attribute is set
after which the method handle is invoked. The latter in turn
delegates to its parent, finally throwing a runtime exception
in case there is no reference context.

Table II
DETECTED LAS

ArgoUML ArgoUML Cocoon Eclipse Validated TP Precision
0.10.1 0.34 2.2.0 1.0

“Get” - more than an accessor (Section II-A1) 0 2 1 15 18/18 12 67%
“Is” returns more than a Boolean (Section II-A2) 2 0 4 26 24/32 24 100%
“Set” method returns (Section II-A3) 4 30 6 53 47/93 46 98%
Expecting but not getting a single instance (Section II-A4) 7 3 8 33 34/51 26 77%
Not implemented condition (Section II-B1) 20 28 43 232 74/323 58 78 %
Validation method does not confirm (Section II-B2) 1 8 11 235 70/255 52 74%
“Get” method does not return (Section II-B3) 1 3 2 57 38/63 37 97%
Not answered question (Section II-B4) 0 2 0 34 36/36 36 100%
Transform method does not return (Section II-B5) 0 86 15 44 59/145 58 98%
Expecting but not getting a collection (Section II-B6) 8 39 12 135 66/194 49 74%
Method name and return type are opposite (Section II-C1) 0 0 0 6 6/6 3 50%
Method signature and comment are opposite (Section II-C2) 7 20 12 243 72/282 6 8%
Says one but contains many (Section II-D1) 15 92 42 103 70/252 40 57%
Name suggests Boolean but type does not (Section II-D2) 14 13 21 138 64/186 36 56%
Says many but contains one (Section II-E1) 45 117 24 116 73/302 55 75%
Attribute name and type are opposite (Section II-F1) 1 0 0 0 1/1 1 100%
Attribute signature and comment are opposite (Section II-F2) 1 0 3 19 23/23 2 9%

Transform method does not return (Section II-B5).
A common characteristic in the examples of this LA is
that the expected return value is assigned to a parameter
rather than being returned, e.g., method readerToWriter of
class ZargoFilePersister (ArgoUML-0.34), method ToSource
of class IdentifierExpression (ArgoUML-0.34), and method
toString of class Parameter (a member class in Cocoon).
Also, there are cases of methods with no parameters, modi-
fying an attribute rather than returning a value, e.g., method
d2f (double to float) of class CodeStream (Eclipse).

Expecting but not getting a collection (Section II-B6).
Concerning this LA, we found cases, in which the source
code performs some kind of aggregation over multiple
objects and returns the result. One example is method
getRows of class ClassdiagramLayouter (ArgoUML-0.10.1)
which returns the number of rows of a table. Another
is method getTabs of class StyledText (Eclipse) where, as
the comment suggests, the method returns the “tab width
measured in characters”. In other cases, the parameter is
modified and nothing is returned, as in method getEdges
of class PgmlUtility (ArgoUML-0.34), where the method
iterates over a collection of edges (passed as parameter) and
adds them to another collection of edges (again passed as
parameter) if they are of specific type.

Says one but contains many (Section II-D1). Exam-
ples from this LA include attribute methodIndex of type
HashMap defined in class AbstractMultiAction, attribute
objectModel of type Map defined in class XModuleSource,
attribute uploadStatus of type Hashtable defined in class
MultipartParser (all three from Cocoon), attribute fExpan-
sion of type List defined in class DrillFrame (Eclipse).
Such cases can be easily fixed by renaming the attributes,
e.g., uploadStatus → uploadStatuses.

Name suggests Boolean but type does not (Section
II-D2). In the examples we found, we can distinguish cases

where the attribute type is int and its value corresponds to a
specific state. Examples include IsArrayType (class TagBits
of Eclipse), which value is 0x0001, and DONE SAVING
(class SaveManager of Eclipse), with value 3. For these
attributes, having an appropriate documentation is crucial.
Other examples include attributes of type String, such as
KEY MISSING (class ComponentSpecPage of Eclipse) as-
signed to value “NewComponentWizard.SpecPage.missing”,
HAS EXPIRED NO (class WebContinuationDataBean of
Cocoon) assigned to value “no”. For those examples, a
renaming is recommended. Finally, other examples from var-
ious types are attributes requiresParent of type Composite,
defined in class RequiresSection (Cocoon), and needsCom-
pileList of type Vector defined in class WorkQueue (Eclipse).

Method name and return type are opposite (Section
II-C1). All detected examples of this LA are from Eclipse.
Other than the example shown in Figure 11, we found
method implicitSuperConstructorCall of class SuperRefer-
ence, which return type is ExplicitConstructorCall where
the words “explicit” and “implicit” are antonyms. In this
example a clarifying documentation would ease the com-
prehension process. The other three cases of detected LAs
are false positives as the opposite words are “query” (in
method name) and “result” (in the method return type)
which does not bring contradiction. One such example is
method queryEntriesMatching defined in class BlocksIndex-
Input (Eclipse), returning IEntryResult.

Method signature and comment are opposite (Section
II-C2). Examples of this LA include method remove, de-
fined in class AdaptableList (Eclipse), where the comment
is “Adds the given adaptable object to this list”, and
method endTransformingElement, defined in class Abstract-
SAXTransformer (Cocoon), where the comment begins as
follows: “Start processing elements of our namespace”.

Says many but contains one (Section II-E1). Examples

include attribute METHODS of type int declared in Lexi-
calSorter (Eclipse) whose value is 5 represents a numeric
encoding for the type of an element (5 for method, 6 for
static fields, etc.) and attribute EXAMPLES of type String is
the defined in interface IDocumentSection, where the value
corresponds to a section identifier.

Attribute name and type are opposite (Section II-F1).
The only detected example of this LA is the one shown in
Figure 16. In essence, this kind of LA is less likely to occur
than others, at least based on our preliminary analysis.

Attribute signature and comment are opposite (Sec-
tion II-F2). Except the example shown in Figure 17, the
only other example from the validated sample is attribute
RESULT DOCID ATTR, defined in class XPathTraversable-
Generator (Cocoon), with comment “The document contain-
ing a successful XPath query”, where the words “result” and
“query” are antonyms.

B. Detection Performance

Based on the validated sample, LAPD has an average
precision of 72% (see Table II). There are two cases in
which the precision is below 10% and those are Attribute
signature and comment are opposite and Method signature
and comment are opposite. This is due to the difficulty
of capturing opposite meaning. An example of the latter
is method close, defined in class DeltaProcessor (Eclipse),
with comment “Closes the given element, which removes it
from the cache of open elements”, which will be detected
because of the antonyms “open” and “close”.

C. LAs across multiple releases of ArgoUML

The 126 LAs detected in ArgoUML-0.10.1 occurred in
81 Java files from which 29 exist (with the same name)
also in ArgoUML-0.34, being it in the same package or in
a different one. From the 44 LAs detected in those files,
7 were discarded because they were false positives. From
the remaining 37, 8 were true positives, one of which was
removed and the other 7 remained unchanged in ArgoUML-
0.34. The LA that was removed was Says many but contains
one (Section II-E1) where the attribute PROPERTIES, of
type String was renamed to propertyLocation.

D. Threats to Validity

Being this a qualitative analysis, we mainly discuss threats
to construct and external validity, while other threats such
as internal and conclusion validity do not apply.

Threats to construct validity concern the relationship
between the theory and the observation, and in this work
are mainly due to the mapping between the LA definitions
and their detection procedure. In terms of precision, we have
mitigated such a threat by manually analyzing a sample of
the detected LAs. However, we are aware that the provided
LA implementation may suffer of false negative problems,
i.e., may not capture all actual LAs. As said, one limitations

of the current detection is the used WordNet ontology, which
might not be fully suitable to analyze software artifacts [13].

Threats to external validity concern the generalization of
our findings. As said above, this is merely a qualitative
analysis aimed at illustrating examples of LAs, rather than
at empirically characterizing the phenomenon.

V. RELATED WORK

Several authors, such as Caprile and Tonella [15], Caprile
and Merlo [4], [5], and Anquetil et al. [16] conducted
studies on the structure and informativeness of source code
identifiers. They found that identifiers are one of the most
important source of information about system concepts, and
that the information carried by identifiers is often the starting
point for program comprehension. Abebe et al. [17] showed
that lexicon bad smells—identified in terms of excessive
use of contractions or odd grammatical structure—can cause
problems during software maintenance, specifically for what
concerns concept location. Last, but not least, Abebe et
al. [18] showed that lexicon bad smells improve fault
prediction. While those works focus on smells related to
single identifiers, the LAs described in this paper shift
the perspective to a higher level of details, considering
inconsistencies between method names, parameters, return
types and comments, and inconsistencies between attribute
names, types, and comments.

Takang et al. [1] investigated the role played by iden-
tifiers and comments on source code comprehensibility.
Their study showed that commented programs are more
understandable than non-commented ones and that programs
containing full-word identifiers are more understandable
than those with abbreviated identifiers. Lawrie et al. [2],
[3] performed an empirical study to assess the quality of
source code identifiers. Their study results suggest that the
identification of words composing identifiers, and, thus, of
the domain concepts associated with them, could contribute
to a better comprehension.

Some authors proposed approaches aimed at supporting
the improvement of source code lexicon. Deißenböck and
Pizka [6] provided guidelines for the production of high-
quality identifiers. Corbo et al. proposed SMARTFORMAT-
TER [19], a tool able to learn coding styles from an existing
code base, and recommend new developers about indentation
styles, usage of comments, and naming conventions used
for different kinds of identifiers. Another approach for
recommending coding styles was proposed by Reiss [20]. De
Lucia et al. proposed COCONUT [21], a tool highlighting
the (lack of) consistency between terms in requirements
and related source code artifacts. Tan et al. [22] proposed
@TCOMMENT to detect inconsistencies between Javadoc
and implementation with respect to null values and excep-
tions. Again, LAPD is complementary to these approaches,
as it deals with inconsistencies between different parts of
the source code (e.g., method comments versus it’s name)

as opposed to COCONUT, and is domain independent as
opposed to @TCOMMENT.

VI. CONCLUSION AND FUTURE WORK

This paper introduces the concept of Linguistic Antipat-
terns (LAs), and details one family of LAs intended as
recurring inconsistencies in method name, signature, and
comments, as well as in attribute name, signature, and
comments. The paper reports a catalogue of LAs concerning:

• methods, categorized in cases where a method (i) does
more than it says, (ii) says more than it does, and (iii)
does the opposite than it says.

• attributes, categorized in cases where an attribute (i)
contains more than it says (ii) says more than it
contains, and (iii) contains the opposite than it says.

The catalogue provides examples of LAs from real sys-
tems, illustrated their possible consequences, and outlines
possible strategies for their detection.

We have carried out a study investigating the presence of
LAs in four Java systems, i.e., two ArgoUML releases, one
release of Cocoon, and one release of Eclipse. The study is
based on a first implementation of detector, named Linguistic
AntiPattern Detector (LAPD), with a precision of 72%.

Future work aims at investigating a wider set of LAs,
at enhancing the detection approach with further heuristics,
and performing an extensive empirical study on the presence
of LAs in a large number of software projects, developed in
languages other than Java. We also plan to survey developers
on possible causes and impact of LAs.

REFERENCES

[1] A. Takang, P. A. Grubb, and R. D. Macredie, “The effects
of comments and identifier names on program comprehensi-
bility: an experiential study,” Journal of Program Languages,
vol. 4, no. 3, pp. 143–167, 1996.

[2] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective
identifier names for comprehension and memory,” Innovations
in Systems and Software Engineering, vol. 3, no. 4, pp. 303–
318, 2007.

[3] ——, “What’s in a name? a study of identifiers,” in Proceed-
ings of the International Conference on Program Comprehen-
sion (ICPC). IEEE CS Press, 2006, pp. 3–12.

[4] B. Caprile and P. Tonella, “Restructuring program identifier
names,” in Proceedings of the International Conference on
Software Maintenance (ICSM). IEEE CS Press, 2000, pp.
97–107.

[5] E. Merlo, I. McAdam, and R. De Mori, “Feed-forward and re-
current neural networks for source code informal information
analysis,” Journal of Software Maintenance, vol. 15, no. 4,
pp. 205–244, 2003.

[6] F. Deissenbock and M. Pizka, “Concise and consistent nam-
ing,” in Proceedings of the International Workshop on Pro-
gram Comprehension (IWPC). IEEE CS Press, 2005.

[7] E. Gamma, R. Helm, R.Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object Oriented Software.
Boston, MA, USA: Addison-Wesley, 1995.

[8] W. J. Brown, R. C. Malveau, H. W. M. III, and T. J.
Mowbray, AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis, T. Hudson, Ed. John Wiley & Sons,
Inc., 1998.

[9] M. Collard, H. Kagdi, and J. Maletic, “An XML-based
lightweight C++ fact extractor,” in Proceedings of the In-
ternational Workshop on Program Comprehension (IWPC).
IEEE CS Press, 2003, pp. 134–143.

[10] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “Recognizing words from source code identifiers
using speech recognition techniques,” in Proceedings of the
European Conference on Software Maintenance and Reengi-
neering (CSMR). IEEE CS Press, 2010, pp. 68–77.

[11] K. Toutanova and C. D. Manning, “Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger,”
in Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC-2000). Association for Computa-
tional Linguistics, 2000, pp. 63–70.

[12] G. A. Miller, “WordNet: A lexical database for English,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41,
1995.

[13] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,
“Automated topic naming to support cross-project analysis
of software maintenance activities,” in Proceedings of the
International Working Conference on Mining Software Repos-
itories (MSR), 2011, pp. 163–172.

[14] D. J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures. Chapman & All, 2007.

[15] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the
language of function identifiers,” in Proceedings of Working
Conference on Reverse Engineering (WCRE), 1999, pp. 112–
122.

[16] N. Anquetil and T. Lethbridge, “Assessing the relevance of
identifier names in a legacy software system,” in Proceedings
of CASCON, 1998, pp. 213–222.

[17] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon
bad smells in software,” in Proceedings of the Working
Conference on Reverse Engineering (WCRE). IEEE CS
Press, 2009, pp. 95–99.

[18] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and
Y.-G. Guéhéneuc, “Can lexicon bad smells improve fault
prediction?” in Proceedings of the Working Conference on
Reverse Engineering (WCRE), 2012, pp. 235–244.

[19] F. Corbo, C. Del Grosso, and M. Di Penta, “Smart formatter:
Learning coding style from existing source code,” in Proceed-
ings of the International Conference on Software Maintenance
(ICSM), 2007, pp. 525–526.

[20] S. P. Reiss, “Automatic code stylizing,” in Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2007, pp. 74–83.

[21] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source
code lexicon via traceability and information retrieval,” IEEE
Transactions on Software Engineering, vol. 37, no. 2, pp.
205–227, 2011.

[22] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tCom-
ment: Testing Javadoc comments to detect comment-code in-
consistencies,” in Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), 2012,
pp. 260–269.

