
Abstract and Precise Recovery of
UML Class Diagram Constituents

Yann-Gaël Guéhéneuc
Département d’informatique et de recherche opérationnelle

Université de Montréal – CP 6128 succ. Centre Ville
Montréal, Québec, H3C 3J7 – Canada

E-mail: guehene@iro.umontreal.ca

Abstract

Reverse-engineered UML class diagrams are neither
abstract nor precise representations of source code be-
cause of the loose definitions of UML constituents.
Thus, they are of little interest for software maintain-
ers. We perform an exhaustive study of UML class di-
agrams constituents with respect to their recovery from
C++, Java, and Smalltalk source code. We implement
a tool suite, Ptidej, to reverse engineer Java source
code abstractly and precisely.

1 Problem

UML class diagrams produced during design are of-
ten forgotten during implementation, under time pres-
sure usually. Thus, they present major discrepancies
with implementation frequently and are of little help
to maintainers who must support released programs.

Maintainers need means to recover UML class di-
agrams from programs implementation. These means
must be automated considering the large size of pro-
grams and they must produce abstract yet precise class
diagrams to help maintainers in their tasks.

2 Proposed Solution

We survey the literature on programs reverse-
engineering to find suitable criteria to evaluate reverse-
engineered UML class diagrams with respect to their
usefulness for maintainers [1, 2, 4]. We propose two
criteria: Abstractness and preciseness.

We survey existing reverse-engineering tools and
other tools with reverse-engineering capabilities, such
as Chava [5], ArgoUML, IDEA, Rational Rose, To-
gether TogetherJ, Womble [3]. We show that these
tools do not produce abstract nor precise class dia-
grams with respect to source code.

We perform an exhaustive study of thirty-four UML
class diagram constituents from the UML v1.5 spec-
ifications, Chapter 3, Part 5 “Static Structure Dia-
grams”, sections 3.21 through 3.53 [6]. We assess the
abstract and precise automated recovery of these con-
stituents from source code constructs in C++, Java,
and Smalltalk. We show that many of these con-
stituents can indeed be abstractly and precisely recov-
ered from source code automatically. This study is also
a step towards unambiguous definitions of UML con-
stituents through correspondence with source code.

3 Status and Future Work

We implement the results of our study in our tool
suite, Ptidej, for the abstract and precise reverse-
engineering of Java programs. We perform some ex-
periments using our tool suite on different programs.

Future work includes enhancing the implementa-
tion and performing concrete maintenance tasks to
assess the usefulness of abstract and precise reverse-
engineered UML class diagrams.

References

[1] B. Bellay and H. Gall. A comparison of four reverse engineering
tools. In proceedings of WCRE, pages 2–11. IEEE CS Press,
Oct. 1997.

[2] G. C. Gannod and B. H. C. Cheng. A framework for classifying
and comparing software reverse engineering and design recovery
techniques. In proceedings of WCRE, pages 77–88. IEEE CS
Press, Oct. 1999.

[3] D. Jackson and M. C. Rinard. Software analysis: A roadmap.
In proceedings of ICSE, pages 133–145. ACM Press, Jun. 2000.

[4] R. Kollmann, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf.
A study on the current state of the art in tool-supported UML-
based static reverse engineering. In proceedings of WCRE, pages
22–33. IEEE CS Press, Oct. 2002.

[5] J. Korn, Y.-F. Chen, and E. Koutsofios. Chava: Reverse engi-
neering and tracking of Java applets. In proceedings WCRE,
pages 314–325. IEEE CS Press, Nov. 1999.

[6] Object Management Group, Inc. UML v1.5 Specification, Mar.
2003.

1

This paper has been accepted at ICSM 2004 as poster.


