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Université de Montréal – CP 6128 succ. Centre Ville
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Abstract

Reverse-engineered UML class diagrams are neither
abstract nor precise representations of source code be-
cause of the loose definitions of UML constituents.
Thus, they are of little interest for software maintain-
ers. We perform an exhaustive study of UML class di-
agrams constituents with respect to their recovery from
C++, Java, and Smalltalk source code. We implement
a tool suite, Ptidej, to reverse engineer Java source
code abstractly and precisely.

1 Problem

UML class diagrams produced during design are of-
ten forgotten during implementation, under time pres-
sure usually. Thus, they present major discrepancies
with implementation frequently and are of little help
to maintainers who must support released programs.

Maintainers need means to recover UML class di-
agrams from programs implementation. These means
must be automated considering the large size of pro-
grams and they must produce abstract yet precise class
diagrams to help maintainers in their tasks.

2 Proposed Solution

We survey the literature on programs reverse-
engineering to find suitable criteria to evaluate reverse-
engineered UML class diagrams with respect to their
usefulness for maintainers [1, 2, 4]. We propose two
criteria: Abstractness and preciseness.

We survey existing reverse-engineering tools and
other tools with reverse-engineering capabilities, such
as Chava [5], ArgoUML, IDEA, Rational Rose, To-
gether TogetherJ, Womble [3]. We show that these
tools do not produce abstract nor precise class dia-
grams with respect to source code.

We perform an exhaustive study of thirty-four UML
class diagram constituents from the UML v1.5 spec-
ifications, Chapter 3, Part 5 “Static Structure Dia-
grams”, sections 3.21 through 3.53 [6]. We assess the
abstract and precise automated recovery of these con-
stituents from source code constructs in C++, Java,
and Smalltalk. We show that many of these con-
stituents can indeed be abstractly and precisely recov-
ered from source code automatically. This study is also
a step towards unambiguous definitions of UML con-
stituents through correspondence with source code.

3 Status and Future Work

We implement the results of our study in our tool
suite, Ptidej, for the abstract and precise reverse-
engineering of Java programs. We perform some ex-
periments using our tool suite on different programs.

Future work includes enhancing the implementa-
tion and performing concrete maintenance tasks to
assess the usefulness of abstract and precise reverse-
engineered UML class diagrams.
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