Detection of Process Antipatterns: A BPEL Perspective

Francis Palma*T, Naouel Moha!, Yann-Gaél Guéhéneuc*
*Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
{francis.palma, yann-gael.gueheneuc} @polymil.ca
TDépartement d’informatique, Université du Québec a Montréal, Canada
moha.naouel @ugam.ca

Abstract—With the increasing significance of the service-
oriented paradigm for implementing business solutions, assess-
ing and analyzing such solutions also becomes an essential
task to ensure and improve their quality of design. One way
to develop such solutions, a.k.a., Service-Based systems (SBSs)
is to generate BPEL (Business Process Execution Language)
processes via orchestrating Web services. Development of large
business processes (BPs) involves design decisions. Improper
and wrong design decisions in software engineering are com-
monly known as anfipatterns, i.e., poor solutions that might
affect the quality of design. The detection of antipatterns
is thus important to ensure and improve the quality of
business processes. However, although BP antipatterns have
been defined in the literature, no effort was given to detect such
antipatterns within BPEL processes. With the aim of improving
the design and quality of BPEL processes, we propose the first
rule-based approach to specify and detect BP antipatterns. We
specify 7 BP antipatterns from the literature and perform the
detection for 4 of them in an initial experiment with 3 example
BPEL processes.

Keywords-Business processes; Antipatterns; Service-based
systems; Specification; Detection; Design;

I. INTRODUCTION

Service Oriented Architecture (SOA) [1], as an archi-
tectural trend, is increasingly growing and widely adopted
by practitioners because it allows low-cost and flexible
development by composing services, i.e., software units that
are autonomous, reusable, platform-independent, and are
easily accessible over the Internet.

Any systems as well as Service-Based Systems (SBSs)
may involve some antipatterns. SBSs often evolve, i.e., are
modified or added new functionalities. This evolution may
hinder the design and quality of service (QoS) of SBSs, and
thus may introduce ‘antipatterns’. An antipattern in a process
generally capture common design errors [2], which cause a
poor design resulting in bad QoS.

SOA business solutions might also contains antipatterns
while realizing the processes. The Business Process Mod-
eling Notation (BPMN, [3]) is widely used for process
modeling and provides the base for modeling control-flow,
data-flow, and resource allocation. As for the Business
Process Execution Language (BPEL, [4]), it provides an
executable transformation of BPMN to the developers and is
currently a de facto standard for Web services orchestration.

The automatic detection of business process (BP) antipat-
terns is an important task to assess the design and QoS of

SBSs, i.e., BPEL processes. However, no efforts have been
given to detect BP antipatterns in BPEL processes. Our goal
is to assess the design and QoS of BPEL processes. To
achieve this goal, we propose a novel approach to specify
BP antipatterns and detect them automatically in BPEL
processes.

In the past years, several catalogs of BP antipatterns [2],
[5], [6], [7] and analysis techniques [8], [9], [10] to discover
those antipatterns have been proposed. Indeed, most of these
catalogs and techniques focus on BPMN models.

In this paper, we focus on BPEL processes rather than
BPMN models due to several reasons:

« Firstly, antipatterns in BPMN artifacts already got much
attention in the literature;

o Secondly, BPEL processes are more off-the-rack exe-
cutable entities with more detailed operational seman-
tics, and thus may facilitate both the early design-time
and run-time investigation of structural and behavioral
properties of processes; and,

o Finally, BPEL is designed for the execution of the
models. While the business analysts create the models,
and the developers implement the technology, there
may arise some translation, adaptation, and—or imple-
mentation fault-occurrences. Even, analysts may take
some wrong design decisions that may eventually be
transferred to the executable processes.

Designs defects, i.e., antipatterns must be detected and
corrected to improve the design and QoS of SBSs. Therefore,
with the goal of detecting BP antipatterns, we propose to:
(i) specify BP antipatterns using classical Rules of Inference
for their detection, (ii) define a concrete approach for the
detection of BP antipatterns within BPEL processes, and
(iii) perform an experiment with four BP antipatterns using
our proposed approach on three example BPEL processes
provided by Oracle, FraSCAti', and OASIS [4].

This paper is structured as follows. Section II surveys
related work on the catalog of BP antipatterns and their
analysis and detection in BPMN models. Section III presents
our proposed approach, while we show some detection
results in Section IV. Finally, Section V concludes the paper
and sketches future work.

Uhttp://frascati.ow2.org/

II. RELATED WORK

Current literature is quite rich with a number of structural
and behavioral antipatterns [2], [5], [6], [7] within models,
along with some analysis and detection techniques [8], [9],
[10], [11], in particular within BPMN models.

For example, Onoda et al. [5] first provided a catalog of
five deadlock patterns using the concept of reachability and
transferability based on the structure of a business process
(BP) model. These antipatterns have been detected using the
deadlock detection algorithm proposed by Maruta et al. [8].
Persson et al. [6] and Stirna et al. [7] provided a list of six
patterns and 13 antipatterns related to enterprise modeling
focusing on the quality aspects of models. Based on their
own practical experiences, the authors mainly identified what
mistakes the modelers need to avoid.

Gruhn and Laue [9] also proposed a heuristic-based ap-
proach for discovering problems in BP models and suggest-
ing improvements. The authors first translated the models
into a set of Prolog facts using simple XSLT transformations.
Then, they defined some basic terminologies of BPMN
modeling in the form of rules and identified some errors
related to soundness and correctness (e.g., deadlock) of the
models. Koehler and Vanhatalo [2] described 14 structural
antipatterns in IBM WebSphere Business Modeler process
models. However, if the antipatterns could be read visually
then the localization and correction would become much
easier for the modelers. Laue and Awad [11] were able
to first visually represent the BP antipatterns. After the
detection, the authors visually presented four antipatterns
proposed by Onoda et al. [5] in BPMN models. Trc¢ka
et al. [10] formalised nine BP antipatterns using temporal
logic that are caused by various data dependencies within
workflows and improper data handling.

Moreover, there are some works [12], [13] for assessing
patterns in BPEL processes. For example, Wohed et al. [12]
analysed BPEL4AWS based on workflow and communication
patterns, and showed that BPEL supports more patterns
than other modeling languages. Also, Aalst er al. [13]
discussed 26 basic control-flow, branching-synchronization,
and structural patterns those can be regarded as the basis
for defining new BP antipatterns.

From the above discussion, we can highlight the draw-
backs of the current literature as follows: (i) antipatterns
and approaches to detect them were considered only for
BPMN models, whereas the de facto language BPEL was
not considered at all; (ii) there are no other specifications for
BP antipatterns except the one in [10]; (iii) BPMN models
are not always executable. Therefore, various runtime quality
aspects (e.g., availability or response time of Web services)
were not considered, which can be obtained for the exe-
cutable BPEL processes; finally, (iv) there is no detection
approach for BP antipatterns in BPEL processes until now.

We focus on those above issues with a viable solution
to propose a concrete approach for specifying and detecting

Textual Descriptions of

BPEL Processes Process Antipatterns

Process 2
Transformation to
Analyse

transformed rules
process Y
3

Detection of
BP Antipatterns

Rule Specification

Suspicious variables/

List of existing
process fragments

antipatterns

Figure 1. Proposed Detection Approach

antipatterns within executable BPs.

ITII. APPROACH

With the aim of detecting antipatterns in BPEL processes,
we propose an approach as shown in Figure 1 involving three
major steps:
Step 1. Rule Specification: This step concerns specifying
rules for the detection of BP antipatterns that, later on, will
be applied on BPEL processes.
Step 2. Process Transformation to Analyse: In this step, we
transform BPEL processes into an intermediary represen-
tation, i.e., more abstract and simplified, by filtering some
process facts those are not required to apply a certain rule,
to ease: (i) the implementation of the rules defined in the
previous step and (ii) the further analysis of the processes.
Step 3. Detection of BP Antipatterns: The third step consists
in applying the rules defined in Step I on the transformed
processes from previous step. Finally, a list of existing
antipatterns with the involved process fragments will be
shown.

The following sections detail each of the previous steps.

A. Defining Rules for the Detection of BP Antipatterns

As the prerequisite to define rules, we carry out a thorough
domain analysis of process antipatterns by studying their
definitions in the literature, namely [2], [5], [6], [7]. This
domain analysis allows us to identify clues, i.e., bad design
criteria relevant to each process antipatterns. These identified
clues have direct link to different design elements used for
specifying BPs, i.e., gateways, decision points, and—or loops.
Therefore, the identification of these relevant controllers
within antipattern specifications is also an important task
while defining rules. To define rules, we use classical Rules
of Inference that are simple to understand and implement for
the developers.

Figure 2 shows the rules for the two common BP an-
tipatterns, i.e., Lack of Synchronization and Dangling Inputs

RULE: Lack_Of_Synchronization

IF: (((COUNT(Fork) > 1 AND COUNT(Merge) > 1) AND (Fork PRECEDE
Merge)) PRECEDE Merge)

THEN: LACK OF SYNCHRONIZATION

(a) Lack of Synchronization Through Fork-Merge Pairs

RULE: Dangling Input_And_Output

IF: ((InputVar DEFINED) AND (COUNT(Connection(InputVar))=0))
THEN: DANGLING INPUT

IF: ((OutputVar DEFINED) AND (COUNT(Connection(OutputVar))= 0))
THEN: DANGLING OUTPUT

A—> A — A —
B—» Task | —» OR B Task | —» B —»>
C (o] C

(b) Dangling Inputs and Outputs

Figure 2. Rules for ‘Lack of Synchronization’ and ‘Dangling Inputs and
Outputs’ (Fork: Parallel Gateway, Merge: Inclusive Gateway).

and Outputs that we analyzed. All process antipatterns in
the literature are defined for BPMN models. However, we
do a simple mapping between BPMN models and BPEL
processes using a well-known and straightforward approach
proposed by Weidlich et al. [14]. To define rules, we use dif-
ferent logical operators including OR and AND, and different
relational operators, including PRECEDE, NOT_PRECEDE,
BACKCONNECT, etc., that define relations between process
fragments and nodes. For example, A PRECEDE B means
B appears after A, or A BACKCONNECT B implies B has a
backward connection to A in the process.

Lack of Synchronization [2] is an antipattern with the
presence of fork-merge pair. The fork, i.e., parallel gateway
triggers output on all of its outgoing branches, while the
merge, i.e., inclusive gateway waits for input on only one
of its incoming connections. Further later in the process,
another final merge may cause synchronization problem
because the latter merge requires all the input which may
not available (cf. Figure 2(a)), thus a lack of synchronization
occurs. Dangling Inputs and Outputs [2] is a form of an-
tipattern where inputs and outputs of an activity or gateway
remain unconnected in the process. Dangling data outputs
are produced by a task or subprocess, but never used. In
contrast, dangling inputs might cause deadlocks if the input
is a data input of a gateway or an activity (cf. Figure 2(b)).
We also specify five other BP antipatterns as shown in Figure
3, and graphically present them in Figure 4.

B. Transforming Business Processes

BPs are very complex entities and their complexity in-
creases with their sizes. BPs define a collection of tasks,
i.e., Web services and the communication details among
them including data handling. For our analysis, we do not

RULE: Deadlock_Through_Decision-Join

1F: ((Start_Node PRECEDE Decision_Node) PRECEDE Join) OR

((Task PRECEDE Exclusive_Gateway) PRECEDE Task_All_Output_Required)
THEN: DEADLOCK

(a) Deadlocks Through Decision-Join Pairs

RULE: Cyclic_Deadlock

IF: (((Join PRECEDE Task) PRECEDE Exclusive_Decision) AND (Exclusive_-
Decision BACKCONNECT Join)) OR

(((Join PRECEDE Task) PRECEDE Fork) AND (Fork BACKCONNECT Join))

THEN: CYCLIC DEADLOCK

(b) Cyclic Deadlocks Through Join-Fork and Join-Decision Pairs

RULE: Cyclic_Lack_of_Synchronization

IF: ((Fork NOT_PRECEDE Join) AND ((Fork BACKCONNECT Merge) OR (Fork
BACKCONNECT Inclusive_Decision)))

THEN: CYCLIC LACK OF SYNCHRONIZATION

(c) Cyclic Lack of Synchronization Through Merge-Fork Pairs

RULE: Stop-Node_In_Parallel_Branches

IF: ((Fork EXIST) AND (EACH Fork-Branch HAS Stop-Node)) OrR
((Inclusive_Branch EX1sT) AND (EACH Inclusive-Branch HAS Stop-Node))
THEN: STOP-NODE_IN_PARALLEL_BRANCHES

(d) The Stop Node in Parallel Execution Branches

RULE: Multiple_Connections

IF: ((Control-Flow EXIST BETWEEN Tasks) AND (COUNT(Control-Flow) > 1))
OR

((Data-Flow EXIST BETWEEN Tasks) AND (COUNT(ldentical_Data-Flow) > 1))
THEN: MULTIPLE CONNECTIONS

(e) Multiple Connections Between Activities

Figure 3. Rules for Five Process Antipatterns (Fork: Parallel Gateway,
Merge: Inclusive Gateway).

require all those details because in this paper we consider
only the static analysis of BPEL processes. To filter optional
details, while maintaining the process integrity, we generate
a simplified model of the original BPEL. We make sure that
we retain all the required information to apply our predefined
rules. The transformation is done in the following way:

o From the original BPEL process to a simplified BPEL
process: We parse and filter all the required details, i.e.,
all the tasks, input data, output data, and control-flow
information, etc., and generate a simplified process.
Furthermore, we generate another process skeleton that
can be mapped easily to the rules defined previously.

Developers can use this latter version for further investiga-
tion and analysis, i.e., implementing the executable versions
of the rules.

C. Detection of BP Antipatterns

The detection phase follows the specification of the rules
and the transformation of BPs. We implement the rules
shown in Figure 3 programmatically using a language like
JAVA. We implement the rules in a modularized way, i.e.,
we implement each side of different logical operators (e.g.,
AND, OR) in a rule, and join them afterwards to check the
conformance with the defined conditions. Then we apply
those code segments on transformed processes to detect
BP antipatterns. This process is currently not automatic,
however, one of our future goals is to automate this code
generation phase.

OR Task

b

J
o
i
n

elusive
Task

(a) Deadlocks Through Decision-Join Pairs

w]

(b) Cyclic Deadlocks Through Join-Fork and Join-Decision Pairs

r Decision

(c) Cyclic Lack of Synchronization Through Merge-Fork Pairs

Task

F
o
r
k

(d) The Stop Node in Parallel Execution Branches

A

Control Link 1
OR Task
AA Task

Task Task
B B

(e) Multiple Connections Between Activities

Task

‘ A

Figure 4. Graphical View of Five Process Antipatterns.

IV. EXPERIMENTS AND RESULTS

We show with a small scale experiment the effectiveness
of our proposed approach. We performed the experiment
with three small BPEL processes: (1) TravelProcess, a
reference example provided by Oracle, (2) sales-bpel, de-
veloped by FraSCAti and available in FraSCAti repository,
and (3) auctionProcess, a reference example in BPEL 2.0
specification [4]. TravelProcess is a composite Web service
containing three other Web services and seven I/O variables,
whereas sales-bpel includes two other Web services and four
I/O variables. Finally, auctionProcess involves three Web
services and six I/O variables.

We analyse and specify seven process antipatterns from
the literature and we perform detection for four BP an-
tipatterns, namely Dangling Input and Output, Lack of Syn-
chronization, Deadlock Through Decision-Join, and Stop-
Node In Parallel Branches. Detection for other three BP
antipatterns also currently is in progress.

A. Results

After the initial experiment, with our defined rules, we
could not detect any antipatterns on TravelProcess and
sales-bpel processes because they are small in size, and
indeed, there were no such antipatterns. We also perform the
detection for those antipatterns on auctionProcess without
injecting or changing any variables or nodes. Indeed, we

detect Lack of Synchronization in auctionProcess, i.e., it has
two Forks and Merge, and one Fork precedes Merge, then
this precedes another Merge. However, we do not detect
any such antipattern in sales-bpel as it does not possess any
Forks, i.e., the parallel gateway (cf. Figure 5(b)).

We then asked a student who is not involved in the
experiment and has knowledge on BPEL, to add randomly
some /O data, or to change the original control flow while
maintaining the integrity of TravelProcess and sales-bpel
processes. The main goal of these changes is to inject
antipatterns intentionally without biasing the results. The
changes made by the student are summarized in Table I.

Business Process

Added 1/0 Variables

Added Control Flows

TravelProcess

name="TempAmericanAir”
name="TempDeltaAir”

merge gateway with an
assign task before end node

name="notify”
name="subscribe”
no-changes

Table I
CHANGES MADE IN TravelProcess AND sales-bpel PROCESSES.

sales-bpel

auctionProcess no-changes

B. Discussion

With the modified BPs after injecting antipatterns, we
again perform the detection and this time we detected the
Dangling Input and Lack of Synchronization antipatterns in
two processes as shown in Figure 5 for TravelProcess and
sales-bpel. Namely, in TravelProcess, we detect TempAmer-
icanAir and TempDeltaAir as Dangling Input (cf. Figure
5(a)) because they are declared within the process under its
<variables> node but not have been used later. We also
detect subscribe and notify as Dangling Input in sales-bpel
process on the same rationale (cf. Figure 5(b)).

In TravelProcess process, we also detect Lack of Syn-
chronization after manually injecting a merge in the pro-
cess (cf. Figure 5(a)). According to the rule of Lack of
Synchronization antipattern (cf. Figure 2(a)), if one (or
more) parallel gateway and merge exist in the process,
providing that the parallel gateway PRECEDE a merge,
and again the combination of those parallel gateway and
merge PRECEDE another merge then there is certainly the
presence of lack of synchronization. This occurs mainly
due to the characteristics of merge: merge does not wait
for inputs on all its incoming links. Therefore, after a
parallel gateway where tasks may not always finish their
jobs at the same time, the merge may trigger even with
one single input, which is obviously not expected. This
causes a lack of synchronization, thus we detect Lack of
Synchronization antipattern in TravelProcess as reported in
Figure 5(a). However, no occurrences were detected for
Deadlock Through Decision-Join and Stop-Node In Parallel
Branches in the processes, and injecting them intentionally
might disrupt the integrity of the original processes.

Total data-object declared: 9

Total data-object usage nodes: 7

"TempAim canAir"was not used..
"TempAmericantir”] is a Danling Input

5 net used...
] is a Danling Input

"TempDeltadir"
["TempDeltadir

< of Synchronization:

Total Forks: 1
Total Merge: 2
The Lack of Synchronization exists...
within nodes:

[parallel-gateway] followed by [s

equence-flow]

[merge] followed by [assignment]
[merge] followed by [assignment]

(a) Detection Result for TravelProcess

Total data-ocbject declared: 6
Total data-object usage nodes: 4
was not used...

" 1 is a Danling Input

cribe"was not used...
["subscribe"] is a Danling Input

Detection of Lack of Synchronization:
Total Forks: @

Total Merge: 1

No detection of Lack of Synchronization.

(b) Detection Result for sales-bpel

Figure 5. Detection Results for BPEL Processes

C. Threats to Validity

The main threat to the validity of our results involves ex-
ternal validity, i.e., the possibility to generalize our approach
to other large BPs. Indeed, the availability of large and
existing BPs is a real limit for this research. As future work,
we plan to run the experiment on other BPEL processes.
Also, the subjective nature of defining rules is a threat to
construct validity. We try to minimize this threat by defining
rules based on a thorough literature review.

V. CONCLUSION AND FUTURE WORK

Business processes, in particular, BPEL processes are
the key standard to orchestrate Web services for building
composite services. While designing, BPEL processes may
possess antipatterns. Thus, the detection of process antipat-
terns is important to ensure and improve the quality of design
of business processes (BPs). In this paper, we presented
an approach, for the detection of BP antipatterns. We also
defined rules for seven BP antipatterns from the literature to
ease their detection. We applied our approach with four BP
antipatterns on three example BPEL processes.

As future work, we intend to fully automate the approach

with more detected process antipatterns. Furthermore, we
intend to perform experiments on other large and complex
BPs. In this paper, we analyzed the BPs statically, i.e.,
without executing them, one of our future goals is to analyze
the processes dynamically, i.e., executing them, to acquire
run-time properties.

VI. ACKNOWLEDGMENT

This work is supported by the NSERC Discovery Grant.

REFERENCES

[1] T. Erxl, Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, August 2005.

[2] J. Koehler and J. Vanhatalo, “Process Anti-Patterns: How to
Avoid the Common Traps of Business Process Modeling,”
IBM WebSphere Developer Technical Journal, February 2007.

[3] “OMG: Business Process Modeling Notation (BPMN) version
1.2, Tech. Rep., January 2009.

[4] A. Alves and et al., “Web Services Business Process Execu-
tion Language Version 2.0,” Tech. Rep., 2007.

[5] S.Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda, “Definition
of Deadlock Patterns for Business Processes Workflow Mod-
els,” in Proceedings of the 32nd Annual Hawaii International
Conference on System Sciences - Volume 5. Washington,
USA: IEEE Computer Society, 1999.

[6] A. Persson and J. Stirna, “How to Transfer a Knowledge
Management Approach to an Organization - A Set of Patterns
and Anti-patterns,” in Proceedings of the 6th International
Conference on Practical Aspects of Knowledge Management,
ser. PAKM °06. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 243-252.

[7] J. Stirna and A. Persson, “Anti-patterns as a Means of
Focusing on Critical Quality Aspects in Enterprise Modeling,”
in Enterprise, Business-Process and Information Systems
Modeling. Springer Berlin Heidelberg, 2009, vol. 29, pp.
407-418.

[8] T. Maruta, S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda,
“A Deadlock Detection Algorithm for Business Processes
Workflow Models,” in IEEE International Conference on
Systems, Man, and Cybernetics, Vol 1, October 1998.

[9] V. Gruhn and R. Laue, “A Heuristic Method for Detecting
Problems in Business Process Models,” Business Process
Management Journal, vol. 16, pp. 806-821, September 2010.

[10] N. Trcka, W. M. van der Aalst, and N. Sidorova, “Data-Flow
Anti-patterns: Discovering Data-Flow Errors in Workflows,”
in Proceedings of the 21st International Conference on Ad-
vanced Information Systems Engineering, ser. CAMISE ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 425-439.

[11] R. Laue and A. Awad, “Visualization of Business Process
Modeling Anti Patterns,” in Proceedings of the Ist Interna-
tional Workshop on Visual Formalisms for Patterns, vol. 25,
2010.

[12] P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter
Hofstede, “Pattern Based Analysis of BPEL4WS,” Queens-
land University of Technology, Tech. Rep., 2002.

[13] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kie-
puszewski, and A. P. Barros, “Workflow Patterns,” Distributed
and Parallel Databases, vol. 14, no. 1, pp. 5-51, July 2003.

[14] M. Weidlich, G. Decker, A. Grokopf, and M. Weske, “BPEL
to BPMN: The Myth of a Straight-Forward Mapping,” in Pro-
ceedings of the OTM 2008 Confederated International Con-
ferences, CooplS, DOA, GADA, IS, and ODBASE. Berlin:
Springer-Verlag, 2008, pp. 265-282.

