
Identification of Behavioral and Creational Design Patterns through
Dynamic Analysis

Janice Ka-Yee Ng and Yann-Gaël Guéhéneuc
Ptidej Team – GEODES

Département d’informatique et de recherche opérationnelle
Université de Montréal – CP 6128 succ. Centre Ville

Montréal, Québec, H3C 3J7 – Canada
ngjanice@iro.umontreal.ca and guehene@iro.umontreal.ca

Abstract

Design patterns are considered to be a simple and
elegant way to solve problems in object-oriented soft-
ware systems, because their application leads to a well-
structured object-oriented design, and hence, are con-
sidered to ease software comprehension and mainte-
nance. However, due to the complexity of large object-
oriented software systems nowadays, it is impossible
to recover manually the design patterns applied dur-
ing the design and implementation of a system, which,
in turn, impedes its comprehension. In the past few
years, the structure and organization among classes
were the predominant means of identifying design pat-
terns in object-oriented software systems. In this pa-
per, we show how to describe behavioral and creational
design patterns as collaborations among objects and
how these representations allow the identification of be-
havioral and creational design patterns using dynamic
analysis and constraint programming.

1 Introduction

In the past, several approaches have been proposed
to detect design patterns in source code using static
analysis. The fundamental idea of these approaches
consists in analyzing the class structure of a system to
identify classes whose structure resembles the most the
structure of a design pattern. The dynamic aspect of
the system has almost been completely ignored, but
it should not be because, on the one hand, behavioral
and creational design patterns can hardly be described
by their structure, and on the other hand, the dynamic
aspect provides data to complement data related to the
architecture and design of software systems.

In this paper, we propose a 3-step approach (as il-
lustrated in Figure 1 Steps 1, 2, and 3) to identify be-
havioral and creational design patterns in source code
using dynamic analysis. First, we describe behavioral
and creational design patterns in terms of UML se-
quence diagrams (really scenario diagrams as explained
in Section 2). Second, using dynamic analysis, we
reverse engineer a dynamic model—such as UML se-
quence diagrams—of any given object-oriented soft-
ware system written in Java. Finally, we perform the
Visitor pattern identification on one particular sce-
nario of JHotDraw. To this end, we translate the
problem of design patterns identification in terms of a
constraint satisfaction problem (a.k.a. CSP).

This paper is structured as follow: In Section 2, we
provide a metamodel to capture the interactions be-
tween objects at runtime. Then, a description of be-
havioral and creational design patterns in terms of the
constructs of this metamodel is provided in Section 3.
In Section 4, we describe our technique to reverse engi-
neer scenario diagram of object-oriented software sys-
tems using dynamic analysis. Section 5 elaborates on
the technique used to identify behavioral and creational
design patterns. We then report the results of one case
study in Section 6. Challenges and limitations of the
approach are discussed in Section 7. Related work is
provided in Section 8. Finally, Section 9 concludes and
presents future work.

2 Scenario Diagram Metamodel

In the context of design patterns identification, the
reverse engineered UML sequence diagrams are ob-
tained from the execution of some particular use cases.
Therefore, these diagrams are referred to as scenario
diagram [3], as they are only partial UML sequence di-



Figure 1. A 3-step approach for the identification of design patterns through dynamic analysis.

agrams describing one specific scenario corresponding
to a use case instead of all possible alternatives for the
exercised use case.

Following [3] and [12], we implement a metamodel
of scenario diagrams to express the data we need to
describe the behavior of design patterns and software
systems. Figure 2 shows our scenario diagram meta-
model. A scenario diagram, class ScenarioDiagram,
is composed of an ordered list of components, class
Component, that can either be messages, class Message,
or combined fragments, class CombinedFragment.

Messages can be of three different types: an
operation call, class Operation, a destruction
call, class Destroy, or a creation call, class
Create. Messages have a sourceClassifier and
a destinationClassifier to represent the concept
of caller and callee. Caller and callee are of type
Classifier that can be specialized into an Instance
or a Class, the latter case is applicable if the message
in relation to the caller or callee is a class method.
If any, messages are composed of arguments, class
Argument, of different types: either primitive types or
object types. The return value of messages is class
ReturnValue.

Class CombinedFragment is inspired by a previous
notation [12] to group sets of messages to show condi-
tional flows in sequence diagrams. Although [12] pro-
vides eleven interactions types of combined fragments,

only the combined fragments loops and alternatives are
necessary to behavioral and creational design patterns
identification. In this context, combined fragments can
be specialized into two types: either loops, class Loop,
to illustrate repetitions of messages, or alternatives,
class Alt, to designate mutually exclusive choices be-
tween sequence of messages. To model the case where
a loop or an alternative is nested into another loop
or alternative, we introduce composition links: compo-
sition operand between classes Loop and Component,
and composition operands between classes Alt and
Component. A loop has one and only one operand,
while an alternative has one or more operands. For
instance, the classic alternative ‘if then else’ has two
operands: operand ‘if’, and operand ‘else’.

3 Description of Design Patterns

In [5], each design pattern is provided with their own
description in terms of collaborations between partic-
ipants. In particular, for some specific patterns, the
authors have chosen to use diagrams similar to sce-
nario diagrams to show sequences of messages between
objects, i.e., the order in which messages between par-
ticipants of design patterns are executed. For instance,
Figure 3 is a scenario diagram that illustrates how the
participants of the Memento pattern collaborate.

2



Figure 2. Scenario diagram metamodel.

Figure 3. Memento pattern scenario diagram.

In our approach, as illustrated in Figure 1 Step 1,
we describe behavioral and creational design patterns
by transforming the graphical description of collab-
orations in [5] into an instance of the scenario dia-
gram metamodel. For each design pattern for which a
graphical description is available, we describe its par-
ticipants and its sequence of messages in terms of ob-
jects of the scenario diagram metamodel. For instance,
for each message involved in the sequence of messages

in Figure 3, we instantiate an object Operation that
is added to the ordered list components of an object
ScenarioDiagram representing the Memento pattern.
Given message setMemento(Memento aMemento) takes
‘aMemento’ as argument, we instantiate an object
Argument whose attribute type is Instance. This ob-
ject Argument is added to the ordered list arguments of
message setMemento(Memento aMemento). The par-
ticipants collaborating in the pattern, for instance
aCaretaker, anOriginator, and aMemento, are in-
stantiated as objects Instance, and are set to be
the sourceClassifier or destinationClassifier
of the corresponding message. For example, the
sourceClassifier of createMemento() and set-
Memento(Memento aMemento) is aCaretaker, while
anOriginator is their destinationClassifier.

4 Reverse Engineering of
Scenario Diagram

In the literature, many approaches have been pro-
posed to reverse engineer dynamic models of object-
oriented software systems. Based on [3], our approach
for the scenario diagram reverse engineering consists

3



in 4 steps (as illustrated in Figure 1 Steps i, ii, iii, and
iv). First, we compile the source files of an object-
oriented software system to obtain their corresponding
class files. Second, we instrument the class files using
bytecode instrumentation. Third, we execute the in-
strumented system following some scenario to produce
an execution trace. Finally, we instantiate the scenario
diagram that corresponds to the execution trace.

In this section, we describe briefly the mechanism
used to produce an execution trace containing dynamic
data of an object-oriented software systems in Java
(Step ii), and to instantiate a scenario diagram from
the execution trace (Step iv).

Instrumentation. In terms of design patterns iden-
tification, the type and amount of dynamic data to re-
trieve are relative to the description of design patterns.
In this context, we focus primarily on the control flow
data, that is, the sequence of messages actually exe-
cuted during runtime. We have chosen to instrument
Java bytecode with Bcel—the Byte Code Engineer-
ing Library [2]. Bcel is a Java library that gives users
the possibility to create, analyze, and manipulate easily
Java class files.

We need to trace the execution of methods and con-
structors to instantiate class Message in a scenario dia-
gram. To this end, we introduce bytecode instructions
to produce dynamic data before and after the execution
of the methods and constructors. We indicate in the
execution trace when methods and constructors start
and end executing in relation to other events. Figure
4 shows an example of execution trace of a toy system
implemented in Java.

Instantiation of Scenario Diagram. To obtain
the scenario diagram corresponding to an execution
trace, the latter is processed. For each execution trace
statement such as operation start, constructor
start, or destructor start, a message of type
Operation, Create, or Destroy is respectively in-
stantiated, while an object CombinedFragment of type
Loop or Alt is instantiated for each execution trace
statement loop start or alt start. In both cases,
the component corresponding to the line currently an-
alyzed in the execution trace is referred to as the
current component. If the current component is of
type CombinedFragment, we add the subsequent ob-
jects Message or CombinedFragment to its ordered
list operands, until the corresponding end statement
is met. Otherwise, they are added to the ordered
list components of object ScenarioDiagram. Each
time an object Message is instantiated, its correspond-
ing sourceClassifier and destinationClassifier

of type Classifier are also determined and instanti-
ated. The set arguments of a message is determined
by processing the data positioned between the brack-
ets of the corresponding execution statement. Figure
5 is a textual description of the scenario diagram cor-
responding to the execution trace in Figure 4.

5 Identification of Design Patterns

Using the reverse engineering technique described in
the previous section, we instantiate two scenario dia-
grams. One instance models the sequence of messages
of a design pattern, i.e., a source system, and the other
instance models the sequences of messages of a given
source code, i.e., a target system. The approach we
propose to identify behavioral and creational design
patterns in object-oriented software systems consists
in identifying the scenario diagrams of a source system
in the scenario diagram of a target system.

As illustrated in Figure 1 Step 3, we translate the
problem of design patterns identification in terms of
a constraint satisfaction problem (CSP, as in previous
work [7]). We define the problem of detecting a design
pattern in terms of its variables, the constraints among
them, and their domains. This CSP represents the
problem that the explanation-based constraint solver
JChoco [11] solves to identify in the target system,
sequence of messages that is identical or similar to the
one defined by the source system.

Variables. The set of variables corresponds to the
entities Classifier and Message modelling the sce-
nario diagram of a design pattern (the source system).

Constraints. The set of constraints among the vari-
ables corresponds to the relationships among the en-
tities of the scenario diagram defined by a design
pattern. We use binary constraints, of the form
constraint(variable1, variable2), to express the
relationships between variable1 and variable2.

Domain. The domain of the variables corresponds to
the entities modelling the target system. It consists of
a set of integers, each corresponding to an entity in the
scenario diagram of a target system.

For a given set of constraints, the constraint solver
JChoco solves the CSP by removing from the domains
values that do not satisfy the relationships between
variable1 and variable2. If the constraint solver
JChoco provides no solution for a CSP, then the cor-
responding design pattern is considered as not imple-
mented in the target system.

4



1 operation start public static void main (String[] args) callee ModelMementoTest -1
2 constructor start public void <init>() callee Caretaker 14613018
3 constructor start public void <init>() callee Originator 12386568
4 constructor end public void <init>() callee Originator 12386568
5 constructor end public void <init>() callee Caretaker 14613018
6 operation start public void callCreateMemento() callee Caretaker 14613018
7 operation start public Memento createMemento() callee Originator 12386568
8 constructor start public void <init>() callee Memento 17237886
9 constructor end public void <init>() callee Memento 17237886

10 operation start public void setState(String state) callee Memento 17237886
11 operation end public void setState(String state) callee Memento 17237886
12 operation end public Memento createMemento() callee Originator 12386568
13 operation end public void callCreateMemento()o callee Caretaker 14613018
14 operation start public void undoOperation() callee Caretaker 14613018
15 operation start public void setMemento(Memento m) callee Originator 12386568
16 operation start public String getState() callee Memento 17237886
17 operation end public String getState() callee Memento 17237886
18 operation end public void setMemento(Memento m) callee Originator 12386568
19 operation end public void undoOperation() callee Caretaker 14613018
20 operation end void public static void main (String[] args) callee ModelMementoTest -1

Figure 4. Example of execution trace of a toy system implementing the Memento Pattern.

1 <OPERATION> public static void main (String[] args) <CALLEE> ModelMementoTest <CALLER> inexistant
2 <CREATE> public void <init>() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
3 <CREATE> public void <init>() <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
4 <OPERATION> public void callCreateMemento() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
5 <OPERATION> public Memento createMemento() <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
6 <CREATE> public void <init>() <CALLEE> Memento 17237886 <CALLER> Originator 12386568
7 <OPERATION> public void setState(String state) <CALLEE> Memento 17237886 <CALLER> Originator12386568
8 <OPERATION> public void undoOperation() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
9 <OPERATION> public void setMemento(Memento m) <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018

10 <OPERATION> public String getState() <CALLEE> Memento 17237886 <CALLER> Originator 12386568

Figure 5. Textual representation of the scenario diagram of Figure 4.

The constraint caller (classifier1, message2)
(respectively callee) defines the relationship
‘classifier1 is the sourceClassifer of message2 ’
(respectively destinationClassifier) between
classifier1 and message2. The domain of vari-
able classifier1 corresponds to the instances of
Classifier in the target system. The domain of vari-
able message2 corresponds to the instances of Message
in the target system. For each possible value taken
by message2, there must be a corresponding value
taken by classifier1 so that any Classifier in the
domain of classifier1 is the sourceClassifier of
a Message in the domain of message2. Conversely,
for each possible value taken by classifier1, there
must be a corresponding value taken by message2 so
that the sourceClassifier of any Message in the
domain of message2 is a Classifier in the domain
of classifier1. Each value of classifier1 and
message2 failing to comply to this relationship are
removed from the corresponding domains.

The constraint follows(message1, message2) de-
fines the relationship ‘message2 is executed after
message1 ’. The domain of variable message1 and

message2 correspond to the instances of Message in
the scenario diagram of the target system. For each
possible value taken by message2, there must be a
corresponding value taken by message1 so that any
Message in the domain of message2 is called after a
Message in the domain of message1. Conversely, for
each possible value taken by message1, there must be
a corresponding value taken by message2 so that any
Message in the domain of message1 is called before a
Message in the domain of message2. Each value of
message1 and message2 failing to comply to this rela-
tionship is removed from the corresponding domains.

The constraint creator(classifier1, message2)
(respectively created) is very similar to constraint
caller(classifier1, message2), except that for
each possible value of message2, there must be a
corresponding value of classifier1 so that any
Classifier in the domain of classifier1 is an in-
stance of Create, and is the sourceClassifier of a
Message in the domain of message2.

For example, the Memento pattern, as shown
in Figure 3, is the source system and is mod-
elled by associating a variable with each en-

5



tity in the scenario diagram (var createMemento,
var newMemento, var setState, var setMemento,
var getState, var aCaretaker, var anOriginator,
and var aMemento), and by constraining the values of
these variables according to the relationships among
the entities:
1 follows(var_createMemento, var_newMemento)
2 follows(var_newMemento,var_setState)
3 follows(var_setState, var_setMemento)
4 follows(var_setMemento, var_getState)
5 caller(var_aCaretaker, var_createMemento)
6 callee(var_anOriginator, var_createMemento)
7 creator(var_anOriginator, var_newMemento)
8 created(var_aMemento, var_newMemento)
9 caller(var_anOriginator, var_setState)

10 callee(var_aMemento, var_setState)
11 caller(var_aCaretaker, var_setMemento)
12 callee(var_anOriginator, var_setMemento)
13 caller(var_anOriginator, var_getState)
14 callee(var_aMemento, var_getState)

The domain of each variable corresponds to
the entities in the scenario diagram of a tar-
get system. For example, the excerpt shown
in Figure 5 is a toy system in which we want
to identify the Memento pattern. It involves 14
entities: main (String[] args), public void
<init>(), public void <init>(), public void
callCreateMemento(), createMemento(), public
void <init>(), setState(), undoOperation(),
setMemento(aMemento), getState(),
ModelMementoTest, Caretaker, Originator, and
Memento. The domain of variables var aCaretaker,
var anOriginator, var aMemento, and variables
var createMemento, var newMemento, var setState,
var setMemento, var getState are respectively of
size 4 and 10.

The resolution of the CSP modelling the Memento
pattern returns results of the form:
1 <Sol.#>.var_createMemento = <an entity>
2 <Sol.#>.var_newMemento = <an entity>
3 <Sol.#>.var_setState = <an entity>
4 <Sol.#>.var_setMemento = <an entity>
5 <Sol.#>.var_getState = <an entity>
6 <Sol.#>.var_caretaker = <an entity>
7 <Sol.#>.var_originator = <an entity>
8 <Sol.#>.var_memento = <an entity>

When applied to the toy system, our approach found
one solution:
1 1.var_createMemento = createMemento()
2 1.var_newMemento = new Memento()
3 1.var_setState = setState(String state)
4 1.var_setMemento = setMemento()
5 1.var_getState = getState()
6 1.var_caretaker = Caretaker [14613018]
7 1.var_originator = Originator [12386568]
8 1.var_memento = Memento [17237886]

6 Case Study

To evaluate our approach, we applied it on JHot-
Draw v6.0b1 (15 KLOCs), which is a drawing editor

with a GUI based on an open source system written in
Java. Although it is intentionally designed to have very
clear implementations of well-known design patterns,
its documentation can eventually help us determine the
precision and recall properties of our approach. The
scenario used to identify occurrences of the Visitor
pattern in JHotDraw is to Cut and Paste a figure in
a document :
1 Create a new document on which figures can be drawn;
2 Select the ‘Draw Rectangle’ tool from the menu;
3 Select the rectangle figure drawn at step 2;
4 Select the ‘Cut’ command from the menu;
5 Select the ‘Paste’ command from the menu.

On the one hand, when action ‘Cut ’ is triggered
by the user to cut a rectangle out of the docu-
ment, the participant FigureTransferCommand calls
the message visit on participant AbstractFigure.
Then, AbstractFigure delegates the visit oper-
ation by calling message visitFigure on par-
ticipant DeleteFromDrawingVisitor. Upon the
completion of the visit operation, the rectan-
gle is removed from the document by message
removeFromContainer. On the other hand, when
action ‘Paste’ is triggered by the user to paste the
rectangle that was previously cut out of the docu-
ment, the participant FigureTransferCommand calls
the message visit on participant AbstractFigure.
Then, AbstractFigure delegates the visit opera-
tion by calling message visitFigure on participant
InsertIntoDrawingVisitor. Once the visit operation
completes, the rectangle is inserted in the document by
message addToContainer.

For this scenario, our approach includes
twice in the solution variables var accept,
var visitConcreteElement, var operation,
var objectStructure, var concreteElement,
and var concreteVisitor, to illustrate the actions
‘Cut ’ and ‘Paste’ executed in the same scenario. By
applying our approach to this scenario on a subset
of JHotDraw (for performance issues as discussed
in Section 7), we obtained four occurrences of the
Visitor pattern.

Occurrence 1 is:
1 1.var_accept1 = visit(FigureVisitor visitor)
2 1.var_visitConcreteElement1 = visitFigure(Figure hostFigure)
3 1.var_operation1 = removeFromContainer(FigureChangeListener c)
4 1.var_objectStructure1 = FigureTransferCommand [7760420]
5 1.var_concreteElement1 = AbstractFigure [5489653]
6 1.var_concreteVisitor1 = DeleteFromDrawingVisitor [12741398]
7 1.var_accept2 = visit (FigureVisitor visitor)
8 1.var_visitConcreteElement2 = visitFigure (Figure hostFigure)
9 1.var_operation2 = setZValue (int z)

10 1.var_objectStructure2 = FigureTransferCommand [26980954]
11 1.var_concreteElement2 = AbstractFigure [31746664]
12 1.var_concreteVisitor2 = InsertIntoDrawingVisitor [2554341]

and Occurrence 2 is:

6



1 1.var_accept1 = visit (FigureVisitor visitor)
2 1.var_visitConcreteElement1 = visitFigure (Figure hostFigure)
3 1.var_operation1 = addToContainer (FigureChangeListener c)
4 1.var_objectStructure1 = FigureTransferCommand [26980954]
5 1.var_concreteElement1 = AbstractFigure [31746664]
6 1.var_concreteVisitor1 = InsertIntoDrawingVisitor [2554341]
7 1.var_accept2 = visit (FigureVisitor visitor)
8 1.var_visitConcreteElement2 = visitFigure (Figure hostFigure)
9 1.var_operation1 = removeFromContainer (FigureChangeListener c)

10 1.var_objectStructure2 = FigureTransferCommand [7760420]
11 1.var_concreteElement2 = AbstractFigure [5489653]
12 1.var_concreteVisitor2 = DeleteFromDrawingVisitor [12741398]

Since the two other occurrences are respectively
mirror occurrence of Occurrence 1 and Occurrence
2, their details are not provided here. We say
that Occurrence X and Occurrence Y are mirror
occurences because the variables var accept1,
var visitConcreteElement1, var operation1,
var objectStructure1, var concreteElement1,
and var concreteVisitor1 of Occurrence X
have the same values as variables var accept2,
var visitConcreteElement2, var operation2,
var objectStructure2, var concreteElement2, and
var concreteVisitor2 of Occurrence Y, and vice
versa.

According to the documentation in JHotDraw, the
values of the variables provided in the Occurrence 2
and its mirror occurrence correspond to the partici-
pants and messages involved in the Visitor pattern.
In contrast, the value of variables var operation1
and var operation2 corresponding respectively to Oc-
currence 1 and its mirror occurrence, public void
setZValue(int), are not involved in the sequence
of messages corresponding to the actions ‘Cut ’ and
‘Paste’. Therefore, Solution 1 and its mirror occur-
rence are not occurrences of the Visitor pattern.

7 Challenges and Limitations

In this section, we elaborate on several challenges
we faced while reverse engineering scenario diagrams
and identifying design patterns, as well as the main
problems of the proposed approach.

Dynamic and Static Analysis. In obtaining sce-
nario diagrams, we can choose to capture the behavior
of a software system either by static analysis or dy-
namic analysis. Both strategies have their own draw-
backs. On the one hand, even if static analysis can
depict a complete picture of what could happen at run-
time, it does not show what actually happens. Further-
more, using static analysis to retrieve dynamic data
requires to analyze source code and determine the dy-
namic types of object references, which is not conceiv-
able for large, complex systems [6]. On the other hand,
reverse engineered scenario diagrams using dynamic

analysis represent only part of the system’s whole be-
havior. However, it reports precisely on the interac-
tions between objects.

In the context of design patterns identification, pre-
cise data outweighs completeness. Therefore, we fa-
vor dynamic analysis over static analysis. To make up
the incompleteness of reverse engineered scenario dia-
grams, we will consider as future work the merging of
several traces, each reporting on one observed behav-
ior according to one scenario (or use case). Also, using
test coverage tools can help defining the scenarios that
need to be executed to possibly recover all the design
patterns applied during the design and implementation
of a system.

Target Language and Runtime Environment
Specific Approach. In the proposed 3-step ap-
proach for the identification of design patterns through
dynamic analysis, the process of scenario diagram re-
verse engineering is specific to the target language: we
used bytecode instrumentation to trace a software sys-
tem’s method execution. This instrumentation tech-
nique has obvious drawbacks, among which it is spe-
cific to the target language, and highly coupled with a
particular runtime environment. However, the funda-
mental principles according to which dynamic data is
retrieved should not be affected. Regardless of the lan-
guage (as long as it is object-oriented) or the runtime
environment of the target system, a method execution
is traced in such a way that instrumentation bytecode
instructions are placed before and after the execution
starts and ends.

In contrast, the process of design patterns identifica-
tion using CSP (Figure 1 Step 3) is not specific to the
target language, since its principal actors—variables,
constraints, and domain—are described in terms of the
constructs of the scenario diagram metamodel only.

Scalability and Performance. One of the key chal-
lenges while using dynamic analysis to monitor the be-
havior of a software system is the large amount of data
traced. As the size of the target system grows, the exe-
cution trace grows in parallel, and as a result, execution
time required to solve the CSP deteriorates.

Among the most commonly used abstraction mech-
anisms to cope with high volume of data, we used start
and end markers to specify respectively the start and
end of the action primary to a particular scenario. For
instance, in the ‘Cut and Paste a figure in a document ’
scenario described in Section 6, the two principal ac-
tions involved are actions ‘Cut ’ and ‘Paste’. We thus
placed two markers in the execution trace of the corre-
sponding scenario to specify the start and end of action

7



‘Cut ’, just before and after the user chooses ‘Cut ’ in
the menu of JHotDraw. In the same manner, two
markers are specified respectively for the start and end
of action ‘Paste’. In this manner, method executions
that are positioned outside each pair of start and end
markers can be omitted from the execution trace. Re-
sults after applying our identification approach both on
the original and the summarized execution trace show
identical solutions for the Visitor pattern.

The marker mechanism is our first attempt to reduce
the volume of dynamic data, and still needs some more
refinements to assure that no occurrences of design pat-
tern are omitted because some method executions are
eliminated from the original execution trace.

Design Pattern Description. As explained in Sec-
tion 3, we describe design patterns in terms of collabo-
rations given in [5]. However, as design patterns need
not be collaborating precisely as described in the Gang
of Four, the design patterns description step could be
automated in such a way that users could easily de-
scribe the collaborations between participants to char-
acterize their own patterns of interest.

8 Related Work

The identification of design patterns in object-
oriented software systems has been the subject of many
works. In particular, the identification of structural
design patterns has been investigated since as early as
1998 [17]. However, we are not aware of work ded-
icated to the identification of general non-structural
design patterns. Thus, we present work related to the
identification of structural design patterns, the use of
dynamic data during structural design patterns identi-
fication, and the recovery of interaction diagrams.

Structural Pattern Identification. Wuyts [17]
published a precursor work on structural design pat-
terns identification. His approach consisted in repre-
senting systems as Prolog facts and in describing de-
sign pattern as predicates on these facts. Facts were
extracted using static analysis. This approach had per-
formance issues, could not deal with variations, and
had limited precision and recall. It was followed by
many other works to improve on its limits. These
works include the use of constraint programming [13],
explanation-based constraint programming [9], and,
more recently, similarity scoring [16].

Dynamic Data for Identification. To the best of
our knowledge, no previous work focused on the iden-
tification of behavioral and creational design patterns.

Heuzeroth et al. [10] proposed an approach that uses
both static and dynamic data to identify so-called in-
teraction patterns and exemplified their approach on
the Observer pattern using a dedicated detection al-
gorithm. It is unclear how this approach can be gener-
alized to pure-behavioural/creational design patterns.
Shawky et al. [15] proposed a similar approach to im-
prove the precision and recall of a static identification
approach.

Some previous works also used dynamic data in ad-
dition to structural data to improve precision and re-
call. In particular, most previous work on the identi-
fication of structural design patterns use data related
to method calls, which can be considered as dynamic
data, for example [1] or [8] used in [9].

Recovery of Interaction Diagrams. The recovery
of interaction diagrams has been recently tackled by
several authors. Briand et al. [4] proposed a method
to reverse engineer UML sequence diagrams from ex-
ecution traces. They used the recovered traces and a
metamodel to describe UML v1.x sequence diagrams.
Rountev et al. [14] described a first algorithm to re-
verse engineer UML v2.0 sequence diagrams by control-
flow analysis. Their approach did not consider data ob-
tained by dynamic analysis and thus is limited by the
accuracy of the control-flow analysis. Briand et al. [3]
introduced a complete approach to recover scenario di-
agrams using execution trace. Their work has inspired
our own work.

9 Conclusion

We proposed a 3-step approach to identify behav-
ioral and creational design patterns in source code us-
ing dynamic analysis. We described behavioral and
creational design patterns in terms of scenario dia-
grams. Then, we reverse engineered scenario dia-
grams of a given software systems by means of dy-
namic analysis through bytecode instrumentation. Fi-
nally, we performed design patterns identification us-
ing constraint programming by identifying in the sce-
nario diagrams of systems objects and messages con-
form (caller/callee, follows, and create/created)
to the scenario diagrams of some design patterns. We
evaluated our approach on JHotDraw with theVisitor
design patterns to show its precision and recall.

Future work includes merging scenario diagrams to
obtain sequence diagrams; using abstraction mecha-
nisms that can reduce the size of execution trace with-
out loss of data relevant to the identification of design
patterns; adding new constraints and improving the
CSP of the design patterns to obtain higher precision

8



without impacting recall; evaluating our approach on
larger systems; combining this approach with a previ-
ous structural approach.

References

[1] Giuliano Antoniol, Gerardo Casazza, Massimiliano
di Penta, and Roberto Fiutem. Object-oriented design
patterns recovery. Journal of Systems and Software,
59:181–196, November 2001.

[2] Apache Jakarta Project. Byte Code Engineering Li-
brary, June 2006.

[3] Lionel Briand, Yvan Labiche, and Johanne Leduc. To-
wards the reverse engineering of UML sequence dia-
grams for distributed Java software. Transactions on
Software Engineering, 32(9), September 2006.

[4] Lionel Briand, Yvan Labiche, and Y. Miao. Towards
the reverse engineering of UML sequence diagrams.
Proceedings of the 10th Working Conference on Re-
verse Engineering, pages 57–66, November 2003.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994.

[6] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of software engineering. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1991.

[7] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using
design patterns and constraints to automate the de-
tection and correction of inter-class design defects. In
Quioyun Li, Richard Riehle, Gilda Pour, and Bertrand
Meyer, editors, Proceedings of the 39th conference on
the Technology of Object-Oriented Languages and Sys-
tems, pages 296–305. IEEE Computer Society Press,
July 2001.

[8] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recov-
ering binary class relationships: Putting icing on the
UML cake. In Doug C. Schmidt, editor, Proceedings of
the 19th conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–314.
ACM Press, October 2004.

[9] Yann-Gaël Guéhéneuc and Narendra Jussien. Us-
ing explanations for design-patterns identification. In
Christian Bessière, editor, Proceedings of the 1st IJ-
CAI workshop on Modeling and Solving Problems with
Constraints, pages 57–64. AAAI Press, August 2001.

[10] Dirk Heuzeroth, Thomas Holl, and Welf Löwe. Com-
bining static and dynamic analyses to detect interac-
tion patterns. In Hartmut Ehrig, Bernd J. Krämer,
and Atila Ertas, editors, proceedings the 6th world con-
ference on Integrated Design and Process Technology.
Society for Design and Process Science, June 2002.

[11] Narendra Jussien and Vincent Barichard. The PaLM
system: Explanation-based constraint programming.

In Nicolas Beldiceanu, Warwick Harvey, Martin Henz,
François Laburthe, Eric Monfroy, Tobias Müller, Lau-
rent Perron, and Christian Schulte, editors, Proceed-
ings of TRICS: Techniques foR Implementing Con-
straint Programming Systems, pages 118–133. School
of Computing, National University of Singapore, Sin-
gapore, September 2000. TRA9/00.

[12] Object Management Group. UML 2.0 Superstructure
Specification, October 2004.

[13] Alex Quilici, Quing Yang, and Steven Woods. Ap-
plying plan recognition algorithms to program under-
standing. journal of Automated Software Engineering,
5(3):347–372, July 1997.

[14] Atanas Rountev, Olga Volgin, and Miriam Reddoch.
Static control-flow analysis for reverse engineering of
UML sequence diagrams. Proceedings of the 6th Work-
shop on Program Analysis for Software Tools and En-
gineering, pages 96–102, September 2005.

[15] Doaa M. Shawky, Salwa K. Abd-El-Hafiz, and Abdel-
Latif El-Sedeek. A dynamic approach for the identifi-
cation of object-oriented design patterns. Proceedings
of the 2nd International Conference on Software Engi-
neering, pages 138–143, February 2005.

[16] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George
Stephanides, and Spyros Halkidis. Design pattern de-
tection using similarity scoring. Transactions on Soft-
ware Engineering, 32(11), November 2006.

[17] Roel Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Joseph Gil, editor, pro-
ceedings of the 26th conference on the Technology of
Object-Oriented Languages and Systems, pages 112–
124. IEEE Computer Society Press, August 1998.

9


