
Five Days of Empirical Software Engineering: the PASED Experience

Massimiliano Di Penta∗, Giuliano Antoniol∗∗, Daniel M. German∗∗∗, Yann-Gaël Guéhéneuc∗∗, Bram Adams∗∗∗∗
∗University of Sannio, Benevento, Italy

∗∗École Polytechnique de Montréal, Québec, Canada
∗∗∗University of Victoria, Victoria, BC, Canada
∗∗∗∗Queen’s University, Kingston, ON, Canada

dipenta@unisannio.it, antoniol@ieee.org, dmg@uvic.ca, yann-gael.gueheneuc@polymtl.ca, bram@cs.queensu.ca

Abstract—Acquiring the skills to plan and conduct different
kinds of empirical studies is a mandatory requirement for
graduate students working in the field of software engineering.
These skills typically can only be developed based on the
teaching and experience of the students’ supervisor, because
of the lack of specific, practical courses providing these skills.

To fill this gap, we organized the first Canadian Summer
School on Practical Analyses of Software Engineering Data
(PASED). The aim of PASED is to provide—using a “learning
by doing” model of teaching—a solid foundation to software
engineering graduate students on conducting empirical studies.
This paper describes our experience in organizing the PASED
school, i.e., what challenges we encountered, how we designed
the lectures and laboratories, and what could be improved in
the future based on the participants’ feedback.

Keywords-Empirical Software Engineering, Software Engi-
neering Education.

I. INTRODUCTION

Empirical research has become crucial for today’s soft-
ware engineering researchers. Virtually any software engi-
neering research publication is expected to have some form
of empirical validation, e.g., a case study or a controlled
experiment. Moreover, software engineering is gaining ma-
turity, moving from craftsmanship towards a consolidated
scientific discipline, where conclusions are drawn based on
empirical evidences rather than on common wisdom.

In recent years, many authors have provided guidelines
on conducting empirical software engineering research [1],
[2], [3]. Some universities provide empirical software en-
gineering courses as part of their graduate curricula, e.g.,
Easterbrook’s CSC2130: Empirical Research Methods in
Software Engineering at the University of Toronto (2009)1,
Herbsleb’s 08-803: Empirical Methods for Socio-Technical
Research at CMU (2010)2, or the course described by
Jaccheri and Østerlie [4]. However, the large majority of
software engineering graduate students still do not have ac-
cess to such courses and must rely on generic statistics/data
mining courses from computer science/software engineering
curricula. Such courses do not completely satisfy the needs
of empirical software engineering researchers, because:

1http://www.cs.toronto.edu/∼sme/CSC2130/index.html
2http://herbsleb.org/web-courses/courses.shtml

• developers and users are at the center of the devel-
opment activities (either as producers or consumers),
making software engineering research more similar to
social sciences than to natural sciences research;

• many software engineering studies deal with data sets
for which parametric statistics (taught in typical statis-
tics courses) are not suitable. Thus, empirical software
engineering research courses should provide solid foun-
dations on non-parametric statistical procedures;

• empirical software engineering researchers require spe-
cific skills to extract information from software repos-
itories containing a mixture of structured and unstruc-
tured data, often incomplete and imprecise [5], [6].

Consequently, similar to others, we identified the need for
teaching students the ability to plan and conduct different
kinds of empirical studies. We acted by organizing the first
Canadian Summer School on Practical Analyses of Software
Engineering Data (PASED)3 from July 16 to 20, 2011 in
Montréal, Québec, Canada, with the support of MITACS
Networking and Training Initiative4. We aimed at offering a
venue in which graduate students, as well as young faculty
members, could learn the sound foundations of empirical
software engineering research from world experts, with a
particular emphasis on the analysis of data from software
repositories and on conducting studies involving human
subjects.

The school attracted 44 participants from 25 Universities
(9 countries) across the world. It featured morning lectures
on general empirical software engineering topics, such as
experimental design and data analysis, and also on specific
topics, such as mining software repositories, natural lan-
guage processing, and machine learning. All lectures were
complemented by afternoon laboratories where students
could practice the concepts they had learned in the morning.
It also included keynotes by leading researchers in software
engineering and industrial partners interested in the field,
a poster session where participants could showcase their
current work, and several social events to foster discussion

3http://pased.soccerlab.polymtl.ca
4http://www.mitacs.ca/opportunites/13

1

among participants.
The educational objectives of the school were to:

1) learn to plan and conduct software engineering experi-
ments with human subjects and collect related data;

2) learn to plan and conduct software engineering experi-
ments involving the mining of data from (un)structured
software repositories;

3) learn to build prediction and classification models from
the collected data, and to use these models.

Mastering each of these objectives would have, on av-
erage, required at least months of individual study by a
student and tutoring by the student’s supervisor. Thus, we
faced the challenge of teaching the students how to apply the
appropriate empirical methods and tools to their everyday
research work. Therefore, rather than providing deep details
on the various existing methods and tools, we showed the
students, using a “learning by doing” model of teaching, how
problems recurring when carrying out empirical research can
be solved, building and relying on a proper skill and tool
set.

In the following, Section II describes the main challenges
that we encountered when planning and organizing the
PASED school. Then, Section III illustrates how the school
was conducted. Section IV summarizes the lessons learned
from organizing the school, distills guidelines on planning
and organizing such a school based on the participants’
feedback, and concludes the paper.

II. CHALLENGES

When planning the PASED School, we dealt with three
major challenges related to the school’s content and organi-
zation.

A. Choosing the School Topics

The first challenge was choosing the concrete topics of
the school. Empirical research in software engineering is a
broad area. Different researchers conduct different kinds of
empirical studies and, thus, focus on different aspects of
empirical software engineering. Based on our experiences,
on the background of potential attendees (collected through
a pre-school survey as explained in Section III), and on
the recent empirical studies published in major software
engineering venues, we identified three course requirements:

1) Req 1: Extracting facts from software repositories;
2) Req 2: Designing different kinds of empirical studies,

including those involving human subjects;
3) Req 3: Analyzing and presenting empirical study re-

sults.

B. Combining Theory and Practice Effectively

The second challenge was providing the right mix of
theoretical and practical content. While the school provided
material on performing statistical analyses, it would have
been impossible, given the available time frame, to include

complete courses on the covered topics (e.g., on statistical
techniques or mining software repositories) and on their
application to software engineering data.

Thus, we tried to provide direct answers to questions
that students would typically ask during their research (and
that we asked ourselves), e.g., What is an experimental
design? How can I compare the usefulness of two techniques
for developers in a controlled experiment? What kind of
variables should I measure? Given two data sets containing
the test coverage achieved using different techniques, how
can I statistically compare them? What test should I use?
What kind of graph is most appropriate to show such a
dataset? How can I implement the test using available tools?

C. Heterogeneous Participants

The third challenge was the participants’ varied back-
grounds. The school received applications from students
working on a wide variety of software engineering research
topics and with very different levels of experience. Some
students were already experts in mining software reposi-
tories, while others had significant expertise in statistical
analyses. Hence, our goal was to make sure that all students
could learn from the school and that nobody would find
its content too trivial or too complicated. We (partially)
addressed this last challenge by reviewing each participants’
backgrounds and expertise levels before the school to fine-
tune the covered topics.

III. THE SCHOOL STRUCTURE AND CONTENTS

To design the detailed curriculum of the school, we asked
each participant (when signing up, at least three months
before the school) to fill a form describing his or her level
of expertise in topics related to the school, i.e., statistical
techniques, mining software repositories, machine learning,
and experimental software engineering. Figure 1 provides
a summary of the pre-school survey. It shows that most
students claimed to have “basic” or “good” knowledge on
the topics, with some “none” (especially on machine learn-
ing) and some “excellent”. We adapted the course structure
and contents to these answers. Also, we explicitly got in
touch with prospective participants who claimed to have an
excellent knowledge of some topics to make sure that they
understood the goals of the school.

A. Tutorial Lectures

Based on the requirements described in Section II-A, the
school was divided into five different topics, each covered
in a different way: mining software repositories, experiment
design, text mining, statistical techniques, and machine
learning. As mentioned before, with few exceptions, partic-
ipants had basic-to-good knowledge on the school topics.
We therefore had to make the school understandable for
people having basic knowledge and not boring for the others.

2

(a) Statistical techniques (b) Empirical Sw. Eng. (c) Mining Software Repos. (d) Machine learning

Figure 1. Level of knowledge of PASED participants.

We thus divided the 5-day school in ascending order of
complexity, according to the participants’ answers.

Day 1 was dedicated to Mining Software Repositories.
Its objective was two-fold: first, to motivate the need for
empirical research by providing an overview of the kind
of high-level knowledge that decision makers need in their
daily practice; second, to introduce to students software
repositories, the data they contain, and various techniques
used to mine them [7].

Day 2 was dedicated to experiment design. Its goal was
to describe how to design and plan an experiment and to
introduce students to guidelines provided by well-known
papers and textbooks [1], [2], [3]. The emphasis was on
defining experiment variables, choosing the right research
method, and properly designing and planning the study.

Day 3 was used to introduce students to information
retrieval methods and their applications, in particular to
the use of Vector Space Models [8] and Latent Semantic
Indexing [9] to recover traceability links and to cluster
software artifacts.

Day 4 was dedicated to statistical procedures for soft-
ware engineering data and their analysis, using examples
introduced in the previous days. This was not a thorough
course on statistics but rather focused on providing notions
of: (1) the kind of statistical tests to use to test different
kinds of hypotheses, (2) the preconditions for applying such
tests, (3) the implementation of these tests in R [10], and
(4) the presentation of results.

Day 5 was intended to provide an overview of machine
learning models to classify software engineering data. First,
it explained the basic methodology for training and testing
models. Then, using a running example, it introduced three
progressively more powerful, common models (ZeroR, de-
cision trees, and logistic regression). The lectures explained
the main principles and pitfalls of each model as well
as interpretations of the performance of the models using
measures such as Receiver Operating Characteristic (ROC)
curves and confusion matrices.

To ease the learning and allow students to review the
lectures after the school, lecture materials and videos were
made available on the school web site.

B. Laboratories

Every day the school ended with a 2.5 hours laboratory.
The goal of each laboratory was to apply the concepts
introduced during the morning lectures. All materials are
available on the school web site.

The mining software repository laboratory focused on
extracting facts from Git repositories. It started with a
short introduction on the basic Git commands, then focused
on building simple scripts to analyze the activities of a
developer. As a laboratory task, participants, working in
pairs, had to mine for interesting facts about PostgreSQL
developers, using a cloned PostgreSQL Git repository made
available to them. Participants were asked to submit their
report within 24 hours from the laboratory and the two
best pairs were awarded a prize, which proved to a good
motivator to promote students’ involvement and initiate their
interaction with other students.

In the experiment design laboratory, we asked students to
design an experiment evaluating the use of unit-test cases for
program comprehension purposes. The experiment topic was
introduced in a short presentation [11]. Students, working
in small groups, developed a document with the experiment
definition, the research questions and hypotheses, the depen-
dent and independent variables, the experiment design, and
the experiment material and procedure.

The subsequent three laboratories (text mining, statistical
procedures, and machine learning) were oriented towards
performing practical analyses using the R [10] and Weka [12]
tools on some real datasets. Students applied clustering tech-
niques to bug reports, analyzed results from a previously-
published experiment [13], and built bug prediction mod-
els using real datasets from the PROMISE repository5.
To deal with the challenge of making students productive
under time-constraints, we provided them with step-by-step
instructions—e.g., sequences of R commands with appro-
priate comments—to perform some of the analyses. Then,
we asked students to perform additional analyses consisting
of variations of the ones showed in the instructions, e.g., to
repeat a statistical test on a different dataset, build a model
using different variables, and so on.

5http://promisedata.org

3

C. Keynotes and Networking Opportunities

To better put the lecture content into perspective and to
provide inspiration to students about challenging research
problems that can be investigated by applying proper em-
pirical methods, the school featured one keynote per day,
from both academia and industry. The two first keynotes
were given by experts in (empirical) software engineering:
G. Murphy, UBC, and P. Devanbu, UC Davis, while the
next three by industrial partners: Benchmark Consulting Inc.,
SAP Labs., and Google Inc.

To foster exchange of ideas among the school participants
and lectures/keynote speakers, we organized a poster session
in which each student presented his or her own early research
ideas. Every student was required to present a poster.

IV. LESSONS LEARNED AND CONCLUSIONS

At the end of the school, we asked participants to fill out a
feedback form. Rather than using scales to allow empirical
analysis of the forms, but constrain participants into cate-
gories, we preferred free-text forms to first understand the
categories with which such a school can be evaluated and
to improve the next editions.

Students were excited about the “learning by doing”
teaching model, as this model helped them to concretely
apply the various methods taught in the courses and to
reinforce learning. They also liked the variety of topics
chosen and the technical depth of the lectures.

Having laboratoires with each lecture and with step-by-
step instructions was probably the part of the school that
students liked the most, because they could (1) apply what
they learned during the lectures, (2) learn tools that they
never used before, e.g., R, and (3) interact with speakers
and teaching assistants.

We also obtained suggestions to improve future editions
of the school. Students liked laboratories and, thus, we
would like to make them longer, possibly complemented
with some general tutorials on the tools being used. Also,
students asked for keynotes on writing empirical research
papers, possibly explicitly related to the specific topics of
the lectures. Another interesting remark was the request to
see “what not to do” when conducting empirical research,
possibly by referring to wrong (and published) empirical
research. Finally, participants would like to see industry talks
that are directly connected with the topics of the lecture, to
understand their relevance in the industry.

Last, but not least, we should remark that, thanks to
sponsorships and having the school held at the École
Polytechnique de Montréal, with its meeting rooms and
student housing, we were able to charge a very low
fee (CAD$250/CAD$200, tax included, including/excluding
room and board). We believe that this low fee was an
important factor that contributed to the success of the school.
We recommend others thinking of organizing a similar event

to keep the prices low (or to provide some bursaries to
students who would not be able to afford its cost, otherwise).

We believe that the model that we implemented in the
PASED school is useful for both organizing similar summer
schools in the future and introducing topics related to
empirical software engineering into software engineering
curricula.

REFERENCES

[1] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guide-
lines for empirical research in software engineering,” IEEE
Trans. Software Eng., vol. 28, no. 8, pp. 721–734, 2002.

[2] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering -
An Introduction. Kluwer Academic Publishers, 2000.

[3] N. Juristo and A. Moreno, Basics of Software Engineering
Experimentation. Kluwer Academic Publishers, 2001.

[4] M. L. Jaccheri and T. Østerlie, “Can we teach empirical
software engineering?” in Proc. of the 11th IEEE Intl. Symp.
on Software Metrics (METRICS), Como, Italy, September
2005, p. 25.

[5] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based
approach to classify change requests,” in Proc. of the conf. of
the Centre for Advanced Studies on Collaborative Research
(CASCON), Richmond Hill, Canada, October 2008, p. 23.

[6] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. T. Devanbu, “Fair and balanced?: bias in bug-
fix datasets,” in Proc. of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Intl. Symp. on the Foundations of Software Engineering
(ESEC/FSE), Amsterdam, The Netherlands, August 2009, pp.
121–130.

[7] A. E. Hassan, “The road ahead for mining software reposito-
ries,” in Frontiers of Software Maintenance (FoSM), Beijing,
China, 2008.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by latent semantic analysis,”
Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990.

[10] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2011, ISBN 3-900051-07-0.
[Online]. Available: http://www.R-project.org/

[11] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and
P. Tonella, “Using acceptance tests as a support for clari-
fying requirements: A series of experiments,” Information &
Software Technology, vol. 51, no. 2, pp. 270–283, 2009.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The WEKA data mining software: an
update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18,
2009.

[13] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato,
and C. A. Visaggio, “Are fit tables really talking?: a series of
experiments to understand whether fit tables are useful during
evolution tasks,” in Proc. of the 30th Intl. Conf. on Software
Engineering (ICSE), Leipzig, Germany, 2008, pp. 361–370.

4

